
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 27(9), 995–1012 (SEPTEMBER 1997)

A Tutorial on Reed–Solomon Coding for Fault-Tolerance in
RAID-like Systems

JAMES S. PLANK

University of Tennessee, Department of Computer Science, 107 Ayres Hall, Knoxville, TN 37996, U.S.A.
(email: plank@cs.utk.edu)

SUMMARY

It is well-known that Reed-Solomon codes may be used to provide error correction for multiple failures in
RAID-like systems. The coding technique itself, however, is not as well-known. To the coding theorist, this
technique is a straightforward extension to a basic coding paradigm and needs no special mention. However,
to the systems programmer with no training in coding theory, the technique may be a mystery. Currently,
there are no references that describe how to perform this coding that do not assume that the reader is
already well-versed in algebra and coding theory. This paper is intended for the systems programmer. It
presents a complete specification of the coding algorithm plus details on how it may be implemented. This
specification assumes no prior knowledge of algebra or coding theory. The goal of this paper is for a systems
programmer to be able to implement Reed-Solomon coding for reliability in RAID-like systems without
needing to consult any external references. 1997 by John Wiley & Sons, Ltd.

KEY WORDS: Reed-Solomon coding; error-correcting codes; RAID systems; checkpoint systems; fault-tolerance

PROBLEM SPECIFICATION

Let there be n storage devices,D1; D2; : : : ; Dn, each of which holds k bytes. These are called
the Data Devices. Let there be m more storage devices C1; C2; : : : ; Cm, each of which also
holds k bytes. These are called the Checksum Devices. The contents of each checksum device
will be calculated from the contents of the data devices. The goal is to define the calculation
of each Ci such that if any m of D1; D2; : : : ; Dn; C1; C2; : : : ; Cm fail, then the contents of
the failed devices can be reconstructed from the non-failed devices.

INTRODUCTION

Error-correcting codes have been around for decades.1,2,3 However, the technique of distribut-
ing data among multiplestorage devices to achieve high-bandwidth input and output, and using
one or more error-correcting devices for failure recovery, is relatively new. It came to the fore
with ‘Redundant Arrays of Inexpensive Disks’ (RAID) where batteries of small, inexpensive
disks combine high storage capacity, bandwidth, and reliability all at a low cost.4,5,6 Since
then, the technique has been used to design multicomputer and network file systems with high
reliability and bandwidth,7,8 and to design fast distributed checkpointing systems.9,10,11,12 We
call all such systems ‘RAID-like’ systems.

CCC 0038–0644/97/090995–18 $17�50 Received 8 April 1996
1997 by John Wiley & Sons, Ltd. Revised 13 November 1996

996 J.S. PLANK

The above problem is central to all RAID-like systems. When storage is distributed amongn
devices, the chances of one of these devices failing becomes significant. To be specific, if the
mean time before failure of one device is F , then the mean time to failure of a system of n
devices is F=n. Thus in such systems, fault-tolerance must be taken into account.

For small values ofn and reasonably reliable devices, one checksum device is often sufficient
for fault-tolerance. This is the ‘RAID Level 5’ configuration, and the coding technique is called
‘n+1-parity.’4,5,6 With n+1-parity, the i-th byte of the checksum device is calculated to be the
bitwise exclusive-or (XOR) of the i-th byte of each data device. If any one of the n+1 devices
fails, it can be reconstructed as the XOR of the remaining n devices. N+1-parity is attractive
because of its simplicity. It requires one extra storage device, and one extra write operation
per write to any single device. Its main disadvantage is that it cannot recover from more than
one simultaneous failure.

As n grows, the ability to tolerate multiple failures becomes important.13 Several techniques
have been developed for this,13,14,15,16 the concentration being small values of m. The most
general technique for toleratingm simultaneous failures with exactlym checksum devices is a
technique based on Reed-Solomon coding. This fact is cited in almost all papers on RAID-like
systems. However, the technique itself is harder to come by.

The technique has an interesting history. It was first presented in terms of secret sharing
by Karnin,17 and then by Rabin18 in terms of information dispersal. Preparata19 then showed
the relationship between Rabin’s method and Reed-Solomon codes, hence the labeling of the
technique as Reed-Solomon coding. The technique has recently been discussed in varying
levels of detail by Gibson,5 Schwarz20 and Burkhard,13 with citations of standard texts on
error correcting codes1,2,3,21,22 for completeness.

There is one problem with all the above discussions of this technique – they require the
reader to have a thorough knowledge of algebra and coding theory. Any programmer with a
bachelor’s degree in computer science has the skills to implement this technique; however,
few such programmers have the background in algebra and coding theory to understand the
presentations in these papers and books.

The goal of this paper is to provide a presentation that can be understood by any systems
programmer. No background in algebra or coding theory is assumed. We give a complete
specification of the technique plus implementation details. A programmer should need no
other references besides this paper to implement Reed-Solomon coding for reliability from
multiple device failures in RAID-like systems.

GENERAL STRATEGY

Formally, our failure model is that of an erasure. When a device fails, it shuts down, and the
system recognizes this shutting down. This is as opposed to an error, in which a device failure
is manifested by storing and retrieving incorrect values that can only be recognized by sort of
embedded coding.2,23

The calculation of the contents of each checksum device Ci requires a function Fi applied
to all the data devices. Figure 1 shows an example configuration using this technique (which
we henceforth call ‘RS-Raid’) for n = 8 and m = 2. The contents of checksum devices C1
and C2 are computed by applying functions F1 and F2 respectively.

The RS-Raid coding method breaks up each storage device into words. The size of each
word is w bits, w being chosen by the programmer (subject to some constraints). Thus, the
storage devices contain l = (k bytes)

�
8 bits
byte

��
1 word
w bits

�
= 8k

w
words each. The coding functions

A TUTORIAL ON REED–SOLOMON CODING 997

= F1(D1;D2;D3;D4;D5;D6;D7;D8)

= F2(D1;D2;D3;D4;D5;D6;D7;D8)

D D D D

D D D D

C

C

1 2 3 4

5 6 7 8

1

2

Figure 1. Providing two-site fault tolerance with two checksum devices

Fi operate on a word-by-word basis, as in Figure 2, where xi;j represents the j-th word of
device Xi.

To make the notation simpler, we assume that each device holds just one word and drop the
extra subscript. Thus we view our problem as consisting of n data words d1; : : : ; dn and m
checksum words c1; : : : ; cm which are computed from the data words in such a way that the
loss of any m words can be tolerated.

To compute a checksum word ci for the checksum device Ci, we apply function Fi to the
data words:

ci = Fi(d1; d2; : : : ; dn)

If a data word on device Dj is updated from dj to d0j, then each checksum word ci is
recomputed by applying a function Gi;j such that:

c0i = Gi;j(dj ; d
0

j; ci)

When up to m devices fail, we reconstruct the system as follows. First, for each failed data
D1 D2 C1 C2
d1;1 d2;1 c1;1 = F1(d1;1; d2;1) c2;1 = F2(d1;1; d2;1)

d1;2 d2;2 c1;2 = F1(d1;2; d2;2) c2;2 = F2(d1;2; d2;2)

d1;3 d2;3 c1;3 = F1(d1;3; d2;3) c2;3 = F2(d1;3; d2;3)

...
...

...
...

d1;l d2;l c1;l = F1(d1;l; d2;l) c2;l = F2(d1;l; d2;l)

Figure 2. Breaking the storage devices into words (n = 2, m = 2, l = 8k
w

)

998 J.S. PLANK

deviceDj , we construct a function to restore the words inDj from the words in the non-failed
devices. When that is completed, we recompute any failed checksum devices Ci with Fi.

For example, supposem = 1. We can describe n+1-parity in the above terms. There is one
checksum device C1, and words consist of one bit (w = 1). To compute each checksum word
c1, we take the parity (XOR) of the data words:

c1 = F1(d1; : : : ; dn) = d1 � d2 � : : :� dn

If a word on data device Dj changes from dj to d0j , then c1 is recalculated from the parity of
its old value and the two data words:

c01 = G1;j(dj ; d
0

j; c1) = c1 � dj � d0j

If a device Dj fails, then each word may be restored as the parity of the corresponding words
on the remaining devices:

dj = d1 � : : :� dj�1 � dj+1 � : : :� dn � c1

In such a way, the system is resilient to any single device failure.
To restate, our problem is defined as follows. We are given n data words d1; d2; : : : ; dn all

of size w. We define functions F and G which we use to calculate and maintain the checksum
words c1; c2; : : : ; cm. We then describe how to reconstruct the words of any lost data device
when up to m devices fail. Once the data words are reconstructed, the checksum words can
be recomputed from the data words and F . Thus, the entire system is reconstructed.

OVERVIEW OF THE RS-RAID ALGORITHM

There are three main aspects of the RS-Raid algorithm: using the Vandermonde matrix to
calculate and maintain checksum words; using Gaussian Elimination to recover from failures,
and using Galois Fields to perform arithmetic. Each is detailed below.

Calculating and maintaining checksum words

We define each function Fi to be a linear combination of the data words:

ci = Fi(d1; d2; : : : ; dn) =
nX

j=1

djfi;j

In other words, if we represent the data and checksum words as the vectors D and C, and the
functions Fi as rows of the matrix F , then the state of the system adheres to the following
equation:

FD = C

We define F to be the m� n Vandermonde matrix: fi;j = ji�1, and thus the above equation
becomes: 2

664
f1;1 f1;2 : : : f1;n

f2;1 f2;2 : : : f2;n

...
...

...
fm;1 fm;2 : : : fm;n

3
775

2
664

d1

d2

...
dn

3
775 =

A TUTORIAL ON REED–SOLOMON CODING 999
2
664

1 1 1 : : : 1
1 2 3 : : : n

...
...

...
...

1 2m�1 3m�1 : : : nm�1

3
775

2
664

d1

d2

...
dn

3
775 =

2
664

c1

c2

...
cm

3
775 :

When one of the data words dj changes to d0j , then each of the checksum words must be
changed as well. This can be effected by subtracting out the portion of the checksum word that
corresponds to dj , and adding the required amount for d0j . Thus, Gi;j is defined as follows:

c0i = Gi;j(dj; d
0

j; ci) = ci + fi;j(d
0

j � dj)

Therefore, the calculation and maintenance of checksum words can be done by simple arith-
metic (however, it is a special kind of arithmetic, as explained below).

Recovering from failures

To explain recovery from errors, we define the matrix A and the vector E as follows:
A =

h
I

F

i
, and E =

h
D

C

i
. Then we have the following equation (AD = E):

2
666666666664

1 0 0 : : : 0
0 1 0 : : : 0
...

...
...

...
0 0 0 : : : 1
1 1 1 : : : 1
1 2 3 : : : n

...
...

...
...

1 2m�1 3m�1 : : : nm�1

3
777777777775

2
664

d1

d2

...
dn

3
775 =

2
666666666664

d1

d2

...
dn

c1

c2

...
cm

3
777777777775

:

We can view each device in the system as having a corresponding row of the matrixA and
the vector E. When a device fails, we reflect the failure by deleting the device’s row from A
and from E. What results a new matrix A0 and a new vector E0 that adhere to the equation:

A0D = E0

Suppose exactly m devices fail. Then A0 is a n � n matrix. Because matrix F is defined to
be a Vandermonde matrix, every subset of n rows of matrix A is guaranteed to be linearly
independent. Thus, the matrixA0 is non-singular, and the values of D may be calculated from
A0D = E0 using Gaussian elimination. Hence all data devices can be recovered.

Once the values of D are obtained, the values of any failed Ci may be recomputed from
D. It should be obvious that if fewer than m devices fail, the system may be recovered in
the same manner, choosing any n rows of A0 to perform the Gaussian elimination. Thus, the
system can tolerate any number of device failures up to m.

Arithmetic over Galois Fields

A major concern of the RS-Raid algorithm is that the domain and range of the computation
are binary words of a fixed length w. Although the above algebra is guaranteed to be correct

1000 J.S. PLANK

when all the elements are infinite precision real numbers, we must make sure that it is correct
for these fixed-size words. A common error in dealing with these codes is to perform all
arithmetic over the integers modulo 2w. This does not work, as division is not defined for
all pairs of elements (for example, (3 � 2) is undefined modulo 4), rendering the Gaussian
elimination unsolvable in many cases. Instead, we must perform addition and multiplication
over a field with more than n+m elements.2

Fields with 2w elements are called Galois Fields (denoted GF (2w)), and are a fundamental
topic in algebra.3,21,24 This section defines how to perform addition, subtraction, multiplication;
and division efficiently over a Galois Field. We give such a description without explaining
Galois Fields in general. Appendix A contains a more detailed description of Galois Fields,
and provides justification for the arithmetic algorithms in this section.

The elements of GF (2w) are the integers from zero to 2w � 1. Addition and subtraction of
elements of GF (2w) are simple. They are the XOR operation. For example, in GF (24):

11 + 7 = 1011� 0111 = 1100 = 12

11� 7 = 1011� 0111 = 1100 = 12

Multiplication and division are more complex. When w is small (16 or less), we use two
logarithm tables, each of length 2w � 1, to facilitate multiplication. These tables are gflog
and gfilog:

(a) int gflog[]: this table is defined for the indices 1 to 2w � 1, and maps the index to its
logarithm in the Galois Field.

(b) int gfilog[]: this table is defined for the indices 0 to 2w � 2, and maps the index
to its inverse logarithm in the Galois Field. Obviously, gflog[gfilog[i]] = i, and
gfilog[gflog[i]] = i.

With these two tables, we can multiply two elements ofGF (2w) by adding their logs and then
taking the inverse log, which yields the product. To divide two numbers, we instead subtract
the logs. Figure 3 shows an implementation in C: This implementation makes use of the fact
that the inverse log of an integer i is equal to the inverse log of (i mod (2w � 1)). This fact is
explained in Appendix A. As with regular logarithms, we must treat zero as a special case, as
the logarithm of zero is �1.

Unlike regular logarithms, the log of any non-zero element of a Galois Field is an integer,
allowing for exact multiplication and division of Galois Field elements using these logarithm
tables.

An important step, therefore, once w is chosen, is generating the logarithm tables for
GF (2w). The algorithm to generate the logarithm and inverse logarithm tables for any w can
be found in Appendix A; however the realization of this algorithm in C for w = 4, w = 8
or w = 16 is included here in Figure 4. We include the tables for GF (24) as generated by
setup tables(4) in Table I.

For example, using the values in Table I the following is arithmetic in GF (24):

3 � 7 = gfilog[gflog[3]+gflog[7]] = gfilog[4+10] = gfilog[14] = 9
13 � 10 = gfilog[gflog[13]+gflog[10]] = gfilog[13+9] = gfilog[7] = 11
13� 10 = gfilog[gflog[13]-gflog[10]] = gfilog[13-9] = gfilog[4] = 3
3� 7 = gfilog[gflog[3]-gflog[7]] = gfilog[4-10] = gfilog[9] = 14

Therefore, a multiplication or division requires one conditional, three table lookups (two

A TUTORIAL ON REED–SOLOMON CODING 1001

#define NW (1 << w) /* In other words, NW equals 2 to the w-th power */

int mult(int a, int b)
{
 int sum_log;

 if (a == 0 || b == 0) return 0;
 sum_log = gflog[a] + gflog[b];
 if (sum_log >= NW-1) sum_log -= NW-1;
 return gfilog[sum_log];
}

int div(int a, int b)
{
 int diff_log;

 if (a == 0) return 0;
 if (b == 0) return -1; /* Can’t divide by 0 */
 diff_log = gflog[a] - gflog[b];
 if (diff_log < 0) diff_log += NW-1;
 return gfilog[diff_log];
}

Figure 3. C code for multiplication and division overGF (2w) (Note: NW = 2w)

logarithm table lookups and one inverse table lookup), an addition or subtraction, and a modulo
operation. For efficiency in Figure 3, we implement the modulo operation as a conditional and
a subtraction or addition.

THE ALGORITHM SUMMARIZED

Given n data devices and m checksum devices, the RS-Raid algorithm for making them
fault-tolerant to up to m failures is as follows.

1. Choose a value of w such that 2w > n +m. It is easiest to choose w = 8 or w = 16,
as words then fall directly on byte boundaries. Note that withw = 16, n+m can be as
large as 65; 535.

Table I. Logarithm tables for GF (24)

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
gflog[i] — 0 1 4 2 8 5 10 3 14 9 7 6 13 11 12
gfilog[i] 1 2 4 8 3 6 12 11 5 10 7 14 15 13 9 —

1002 J.S. PLANK

unsigned int prim_poly_4 = 023;
unsigned int prim_poly_8 = 0435;
unsigned int prim_poly_16 = 0210013;
unsigned short *gflog, *gfilog;

int setup_tables(int w)
{
 unsigned int b, log, x_to_w, prim_poly;

 switch(w) {
 case 4: prim_poly = prim_poly_4; break;
 case 8: prim_poly = prim_poly_8; break;
 case 16: prim_poly = prim_poly_16; break;
 default: return -1;
 }

 x_to_w = 1 << w;
 gflog = (unsigned short *) malloc (sizeof(unsigned short) * x_to_w);
 gfilog = (unsigned short *) malloc (sizeof(unsigned short) * x_to_w);

 b = 1;
 for (log = 0; log < x_to_w-1; log++) {
 gflog[b] = (unsigned short) log;
 gfilog[log] = (unsigned short) b;
 b = b << 1;
 if (b & x_to_w) b = b ^ prim_poly;
 }
 return 0;
}

Figure 4. C code for generating the logarithm tables ofGF (24
), GF (28

) and GF (216
)

2. Set up the tables gflog and gfilog as described in Appendix A and implemented in
Figure 4.

3. Set up the matrix F to be the m � n Vandermonde matrix: fi;j = ji�1 (for 1 � i �
m; 1 � j � n) where multiplication is performed over GF (2w).

4. Use the matrix F to calculate and maintain each word of the checksum devices from
the words of the data devices. Again, all addition and multiplication is performed over
GF (2w).

5. If any number of devices up tom fail, then they can be restored in the following manner.
Choose any n of the remaining devices, and construct the matrix A0 and vector E0 as
defined previously. Then solve for D in A0D = E0. This enables the data devices to
be restored. Once the data devices are restored, the failed checksum devices may be
recalculated using the matrix F .

A TUTORIAL ON REED–SOLOMON CODING 1003

AN EXAMPLE

As an example, suppose we have three data devices and three checksum devices, each of which
holds one megabyte. Then n = 3 and m = 3. We choose w to be four, since 2w > n +m,
and since we can use the logarithm tables in Table I to illustrate multiplication.

Next, we set up gflog and gfilog to be as in Table I. We construct F to be a 3 � 3
Vandermonde matrix, defined over GF (24):

F =

2
4 10 20 30

11 21 31

12 22 32

3
5 =

2
4 1 1 1

1 2 3
1 4 5

3
5

Now, we can calculate each word of each checksum device using FD = C. For example,
suppose the first word of D1 is 3, the first word ofD2 is 13, and the first word ofD3 is 9. Then
we use F to calculate the first words of C1; C2, and C3:

C1 = (1)(3)� (1)(13)� (1)(9)
= 3� 13� 9
= 0011� 1101� 1001 = 0111 = 7

C2 = (1)(3)� (2)(13)� (3)(9)
= 3� 9� 8
= 0011� 1001� 1000 = 0010 = 2

C3 = (1)(3)� (4)(13)� (5)(9)
= 3� 1� 11
= 0011� 0001� 1011 = 1001 = 9

Suppose we change D2 to be 1. Then D2 sends the value (1� 13) = (0001� 1101) = 12
to each checksum device, which uses this value to recompute its checksum:

C1 = 7� (1)(12) = 0111� 1100 = 11
C2 = 2� (2)(12) = 2� 11 = 0010� 1011 = 9
C3 = 9� (4)(12) = 9� 5 = 1001� 0101 = 12

Suppose now that devices D2, D3, and C3 are lost. Then we delete the rows of A and E
corresponding to D1, D2, and C3 to get A0D = E0:

2
4 1 0 0

1 1 1
1 2 3

3
5D =

2
4 3

11
9

3
5

By applying Gaussian elimination, we can invert A0 to yield the following equation: D =

(A0)�1E0, or:

D =

2
4 1 0 0

2 3 1
3 2 1

3
5
2
4 3

11
9

3
5

1004 J.S. PLANK

CPU

D D C C1 n 1 m

CPU CPU CPU CPU

D D C C1 n 1 m

network

RAID controller Checkpointing system

Figure 5. RAID-like configurations

From this, we get:

D2 = (2)(3)� (3)(11)� (1)(9) = 6� 14� 9 = 1

D3 = (3)(3)� (2)(11)� (1)(9) = 5� 5� 9 = 9

And then:
C3 = (1)(3)� (4)(1)� (5)(9) = 3� 4� 11 = 12

Thus, the system is recovered.

IMPLEMENTATION AND PERFORMANCE DETAILS

We examine some implementation and performance details of RS-Raid coding on two ap-
plications: a RAID controller, and a distributed checkpointing system. Both are pictured in
Figure 5. In a RAID controller, there is one central processing location that controls the
multiple devices. A distributed checkpointing system is more decentralized. Each device is
controlled by a distinct processing unit, and the processing units communicate by sending
messages over a communication network.

RAID controllers

In RAID systems, a basic file system operation is when a process writes an entire stripe’s
worth of data to a file. The file system must break up this data into n blocks, one for each data
device, calculate m blocks worth of encoding information, and then write one block to each
of the n+m devices. The overhead of calculating c1 is

SBlock(n� 1)
�

1
RXOR

�

where SBlock is the size of a block and RXOR is the rate of performing XOR. This is because
the first row of F is all ones, and therefore there are no Galois Field multiplications in the
calculation of c1. The overhead of calculating ci where i > 1 is

SBlock(n� 1)
�

1
RXOR

+
1

RGFmult

�

where RGFmult is the rate of performing Galois Field multiplications. This is because n-1 of

A TUTORIAL ON REED–SOLOMON CODING 1005

the n data blocks must be multiplied by some fi;j 6= 1 before being XOR’d together. Thus the
overhead of calculating the m checksum blocks is

SBlock(n� 1)
�

m

RXOR
+

(m� 1)
RGFmult

�

The cost of writing an entire parity stripe is therefore the above figure plus the time to write
one block to each of the n+m disks.�

A second basic file system operation is overwriting a small number of bytes of a file. This
updates the information stored on one disk, and necessitates a recalculation of the encoding
on each checksum disk. To be specific, for each word of disk Dj that is changed from dj to
d0j , the appropriate word of each checksum disk Ci is changed from ci to ci + fi;j(d

0

j � dj),
where arithmetic is performed over the Galois Field.

The cost of computing (d0j � dj) is one XOR operation. This needs to be performed just one
time. The cost of multiplying (d0j � dj) by fi;j is zero if i = 1 or j = 1, and one Galois Field
multiplication if i > 1 and j > 1. Finally, the cost of adding fi;j(d0j � d0j) to ci is one XOR
operation for each value of i. Thus, the total cost of changing a word from dj to d0j is:

The cost of writing one word to m+ 1 disks +

8<
:

�
m+1
RXOR

�
if j = 1�

m+1
RXOR

�
+
�

m�1
RGFmult

�
otherwise

The dominant portion of this cost is the cost of writing to the disks. For this reason, Gibson
defines the update penalty of an encoding strategy to be the number of disks that must be
updated per word update.14 For RS-Raid coding, the update penalty is m disks, which is the
minimum value for tolerating m failures. As in all RAID systems, the encoding information
may be distributed among the n +m disks to avoid having the checksum disks become hot
spots.5,26

The final operation of concern is recovery. Here, we assume that y � m failures have
occurred and the system must recover the contents of the y disks. In the RS-Raid algorithm,
recovery consists of performing Gaussian Elimination of an equation A0D = E0 so that
(A0)�1 is determined. Then, the contents of all the failed disks may be calculated as a linear
combination of the disks in E0. Thus, recovery has two parts: the Gaussian Elimination and
the recalculation.

Since at least n � y rows of A0 are identity rows, the Gaussian Elimination takes O(y2n)
steps. As y is likely to be small this should be very fast (i.e. milliseconds). The subsequent
recalculation of the failed disks can be broken into parity stripes. For each parity stripe, one
block is read from each of the n non-failed disks. One block is then calculated for each of the
failed disks, and then written to the proper replacement disk. The cost of recovering one block
is therefore:�

The cost of reading one
block from each of n disks

�
+

�
(y)SBlock(n� 1)

RXOR

�
+

�
(y)SBlock(n)

RGFmult

�
+

�
The costs of writing one
block to each of y disks

�

Note that the
�
(y)SBlock(n)

RGFmult

�
term accounts for the fact that all the elements of (A0)�1 may

be greater than one. For more detailed information on other parameters that influence the
� We do not include any equations for the time to perform disk reads/writes because the complexity of disk operation precludes

a simple encapsulation.25

1006 J.S. PLANK

D D

D

D

D

D

D

D

C

C

C

1 2

3 4

5 6

N-1 N

1

2

m

Step 1

D D

D

D

D

D

D

D

C

C

C

1 2

3 4

5 6

N-1 N

1

2

m

Step 2

D D

D

D

D

D

D

D

C

C

C

1 2

3 4

5 6

N-1 N

1

2

m

Step N

Figure 6. The broadcast algorithm

performance of recovery in RAID systems, see Reference 26.

Checkpointing systems

In distributed checkpointing systems, the usage of RS-Raid encoding is slightly different
from its usage in the RAID controller. Here, there are two main operations, checkpointing and
recovery. With checkpointing, we assume that the data devices hold data, but that the checksum
devices are uninitialized. There are two basic approaches that can be taken to initializing the
checksum devices:

1. The Broadcast Algorithm (Figure 6): each checksum device Ci initializes its data to
zero. Then each data device Dj broadcasts its contents to every checksum device Ci.
Upon receiving Dj’s data, Ci multiplies it by fi;j and XOR’s it into its data space. When
this is done, all the checksum devices are initialized. The time complexity of this method
is

nSdevice

�
1

Rbroadcast

+
1

RGFmult

+
1

RXOR

�

Where Sdevice is the size of the device andRbroadcast is the rate of message broadcasting.
This assumes that message-sending bandwidth dominates latency, and that the checksum
devices do not overlap computation and communication significantly.

2. The Fan-in Algorithm (Figure 7): this algorithm proceeds inm steps – one for each Ci.
In step i, each data device Dj multiplies its data by fi;j , and then the data devices
perform a fan-in XOR of their data, sending the final result to Ci. The time complexity
of this method is

mSdevice

�
logn
RXOR

+
logn + 1
Rnetwork

�
+

�
(m� 1)Sdevice

RGFmult

�

whereRnetwork is the network bandwidth. This takes into account the fact that no Galois
Field multiplications are necessary to computeC1. Moreover, this equation assumes that
there is no contention for the network during the fan-in. On a broadcast network like an
Ethernet, where two sets of processors cannot exchange messages simultaneously, the
logn terms become n� 1.

A TUTORIAL ON REED–SOLOMON CODING 1007

D D

D

D

D

D

D

D

C

C

C

1 2

3 4

5 6

N-1 N

1

2

m

Step 1

D D

D

D

D

D

D

D

C

C

C

1 2

3 4

5 6

N-1 N

1

2

m

Step 2

D D

D

D

D

D

D

D

C

C

C

1 2

3 4

5 6

N-1 N

1

2

m

Step m

Figure 7. The Fan-in algorithm

Obviously, the choice of algorithm is dictated by the characteristics of the network.
Recovery from failure is straightforward. Since the Gaussian Elimination is fast, it should

be performed redundantly in the CPUs of each device (as opposed to performing the Gaussian
Elimination with some sort of distributed algorithm).

The recalculation of the failed devices can then be performed using either the broadcast or
fan-in algorithm as described above. The cost of recovery should thus be slightly greater than
the cost of computing the checksum devices.

OTHER CODING METHODS

There are other coding methods that can be used for fault-tolerance in RAID-like systems.
Most are based on parity encodings (Figure 8), where each checksum device is computed to

Figure 8. Parity-based encodings

1008 J.S. PLANK

be the bitwise exclusive-or of some subset of the data devices:

ci = ai;1d1 � ai;2d2 � : : :� ai;ndn; where ai;j 2 f0; 1g

Although these methods can tolerate up to m failures (for example, all the checksum
devices can fail), they do not tolerate all combinations of m failures. For example, the
well-known Hamming code can be adapted for RAID-like systems.5 With Hamming codes,
m = dlog(m+ n� 1)e checksum devices are employed, and all two-device failures may be
tolerated. One-dimensional parity14 is another parity-based method that can tolerate certain
classes of multiple-device failures. With one-dimensional parity, the data devices are parti-
tioned into m groups, g1 : : :gm, and each checksum device ci is computed to be the parity
of the data devices in gi. With one-dimensional parity, the system can tolerate one failure per
group. Note that when m = 1, this is simply n+1-parity, and when m = n, this is equivalent
to device mirroring.

Two-dimensional parity14 is an extension of one-dimensional parity that tolerates any two
device failures. With two-dimensional parity, m must be greater than or equal to 2

p
n, which

can result in too much cost if devices are expensive. Other strategies for parity-based encodings
that tolerate two and three device failures are discussed in Reference 14. Since all of these
schemes are based on parity, they show better performance than RS-Raid coding for equivalent
values of m. However, unlike RS-Raid coding, these schemes do not have minimal device
overhead. In other words, there are some combinations of k � m device failures that the
system cannot tolerate.

An important coding technique for two device failures is EVENODD coding.15 This technique
tolerates all two device failures with just two checksum devices, and all coding operations
are XORs. Thus, it too is faster than RS-Raid coding. To the author’s knowledge, there is no
parity-based scheme that tolerates three or more device failures with minimal device overhead.

CONCLUSION

This paper has presented a complete specification for implementing Reed-Solomon coding
for RAID-like systems. With this coding, one can add m checksum devices to n data devices,
and tolerate the failure of any m devices. This has application in disk arrays, network file
systems and distributed checkpointing systems.

This paper does not claim that RS-Raid coding is the best method for all applications in this
domain. For example, in the case where m = 2, EVENODD coding15 solves the problem with
better performance, and one-dimensional parity14 solves a similar problem with even better
performance. However, RS-Raid coding is the only general solution for all values ofn and m.

The table-driven approach for multiplication and division over a Galois Field is just one way
of performing these actions. For values where n +m < 65; 536, this is an efficient software
solution that is easy to implement and does not consume much physical memory. For larger
values of n+m, other approaches (hardware or software) may be necessary. See References
2, 27 and 28 for examples of other approaches.

ACKNOWLEDGEMENTS

The author thanks Joel Friedman, Kai Li, Michael Puening, Norman Ramsey, Brad Vander
Zanden and Michael Vose for their valuable comments and discussion concerning this paper.

A TUTORIAL ON REED–SOLOMON CODING 1009

APPENDIX: GALOIS FIELDS, AS APPLIED TO THIS ALGORITHM

Galois Fields are a fundamental topic of algebra, and are given a full treatment in a number
of texts.24,3,21 This appendix does not attempt to define and prove all the properties of Galois
Fields necessary for this algorithm. Instead, our goal is to give enough information about
Galois Fields that anyone desiring to implement this algorithm will have a good intuition
concerning the underlying theory.

A field GF (n) is a set of n elements closed under addition and multiplication, for which
every element has an additive and multiplicative inverse (except for the 0 element which
has no multiplicative inverse). For example, the field GF (2) can be represented as the set
f0; 1g, where addition and multiplication are both performed modulo 2 (i.e. addition is XOR,
and multiplication is the bit operator AND). Similarly, if n is a prime number, then we can
represent the field GF (n) to be the set f0; 1; : : : ; n � 1g where addition and multiplication
are both performed modulo n.

However, suppose n > 1 is not a prime. Then the set f0; 1; : : : ; n� 1g where addition and
multiplication are both performed modulo n is not a field. For example, let n be four. Then
the set f0; 1; 2; 3g is indeed closed under addition and multiplication modulo 4, however, the
element 2 has no multiplicative inverse (there is no a 2 f0; 1; 2; 3gsuch that 2a � 1 (mod 4)).
Thus, we cannot perform our coding with binary words of size w > 1 using addition and
multiplication modulo 2w . Instead, we need to use Galois Fields.

To explain Galois Fields, we work with polynomials of x whose coefficients are in GF (2).
This means, for example, that if r(x) = x + 1, and s(x) = x, then r(x) + s(x) = 1. This is
because

x+ x = (1 + 1)x = 0x = 0

Moreover, we take such polynomials modulo other polynomials, using the following identity:
If r(x) mod q(x) = s(x), then s(x) is a polynomial with a degree less than q(x), and r(x) =
q(x)t(x)+ s(x), where t(x) is any polynomial of x. Thus, for example, if r(x) = x2 +x, and
q(x) = x2 + 1, then r(x) mod q(x) = x+ 1.

Let q(x) be a primitive polynomial of degree w whose coefficients are in GF (2). This
means that q(x) cannot be factored, and that the polynomial x can be considered a generator
of GF (2w). To see how x generates GF (2w), we start with the elements 0, 1, and x, and then
continue to enumerate the elements by multiplying the last element by x and taking the result
modulo q(x) if it has a degree � w. This enumeration ends at 2w elements – the last element
multiplied by x mod q(x) equals 1.

For example, suppose w = 2, and q(x) = x2 + x + 1. To enumerate GF (4) we start with
the three elements 0, 1, and x, then then continue with x2 mod q(x) = x + 1. Thus we have
four elements: f0; 1; x; x+ 1g. If we continue, we see that (x+ 1)x mod q(x) = x2 + x mod
q(x) = 1, thus ending the enumeration.

The field GF (2w) is constructed by finding a primitive polynomial q(x) of degree w over
GF (2), and then enumerating the elements (which are polynomials) with the generator x.
Addition in this field is performed using polynomial addition, and multiplication is performed
using polynomial multiplication and taking the result modulo q(x). Such a field is typically
written GF (2w) = GF (2)[x]=q(x).

Now, to use GF (2w) in the RS-Raid algorithm, we need to map the elements of GF (2w)
to binary words of size w. Let r(x) be a polynomial in GF (2w). Then we can map r(x) to a
binary word b of size w by setting the ith bit of b to the coefficient of xi in r(x). For example,
in GF (4) = GF (2)[x]=x2 + x + 1, we get Table II.

1010 J.S. PLANK

Table II.

Generated Polynomial Binary Decimal
Element Element Element b Representation

of GF (4) of GF (4) of GF (4) of b
0 0 00 0
x0 1 01 1
x1 x 10 2
x2 x+ 1 11 3

Addition of binary elements of GF (2w) can be performed by bitwise exclusive-or. Multi-
plication is a little more difficult. One must convert the binary numbers to their polynomial
elements, multiply the polynomials modulo q(x), and then convert the answer back to binary.
This can be implemented, in a simple fashion, by using the two logarithm tables described
earlier: one that maps from a binary element b to power j such that xj is equivalent to b (this
is the gflog table, and is referred to in the literature as a ‘discrete logarithm’), and one that
maps from a power j to its binary element b. Each table has 2w�1 elements (there is no j such
that xj = 0). Multiplication then consists of converting each binary element to its discrete
logarithm, then adding the logarithms modulo 2w � 1 (this is equivalent to multiplying the
polynomials modulo q(x)) and converting the result back to a binary element. Division is per-
formed in the same manner, except the logarithms are subtracted instead of added. Obviously,
elements where b = 0 must be treated as special cases. Therefore, multiplication and division

Table III. Enumeration of the elements of GF (16)

Generated element Polynomial element Binary element Decimal element
0 0 0000 0
x0 1 0001 1
x1 x 0010 2
x2 x2 0100 4
x3 x3 1000 8
x4 x+ 1 0011 3
x5 x2 + x 0110 6
x6 x3 + x2 1100 12
x7 x3

+ x+ 1 1011 11
x8 x2 + 1 0101 5
x9 x3 + x 1010 10
x10 x2 + x+ 1 0111 7
x11 x3 + x2 + x 1110 14
x12 x3 + x2 + x+ 1 1111 15
x13 x3 + x2 + 1 1101 13
x14 x3 + 1 1001 9
x15 1 0001 1

A TUTORIAL ON REED–SOLOMON CODING 1011

of two binary elements takes three table lookups and a modular addition.
Thus, to implement multiplication overGF (2w), we must first set up the tables gflog and

gfilog. To do this, we first need a primitive polynomial q(x) of degree w over GF (2w).
Such polynomials can be found in texts on error correcting codes.1,2 We list examples for
powers of two up to 64 below:

w = 4 : x4 + x+ 1
w = 8 : x8 + x4 + x3 + x2 + 1
w = 16 : x16 + x12 + x3 + x+ 1
w = 32 : x32 + x22 + x2 + x+ 1
w = 64 : x64 + x4 + x3 + x+ 1

We then start with the element x0 = 1, and enumerate all non-zero polynomials over GF (2w)
by multiplying the last element by x, and taking the result modulo q(x). This is done in
Table III for GF (24), where q(x) = x4 + x+ 1.

It should be clear now how the C code in Figure 4 generates the gflog and gfilog arrays
for GF (24), GF (28) and GF (216).

REFERENCES

1. E. R. Berlekamp, Algebraic Coding Theory. McGraw-Hill, New York, 1968.
2. W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes, Second Edition. MIT Press, Cambridge, MA,

1972.
3. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Part I. North-Holland,

Amsterdam, 1977.
4. D. A. Patterson, G. Gibson and R. H. Katz, ‘A case for redundant arrays of inexpensive disks (RAID),’ ACM

Conference on Management of Data, June 1988, pp. 109–116.
5. G. A. Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary Storage. MIT Press, Cambridge, MA,

1992.
6. P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz and D. A. Patterson, ‘RAID: High-performance, reliable

secondary storage,’ ACM Computing Surveys, 26, (2), 145–185 (1994).
7. J. H. Hartman and J. K. Ousterhout, ‘The zebra striped network file system,’ Operating Systems Review –

14th ACM Symposium on Operating System Principles, 27(5);29–43 (December 1993).
8. P. Cao, S. B. Lim, S. Venkataraman and J. Wilkes, ‘The TickerTAIP parallel RAID architecture,’ ACM

Transactions on Computer Systems, 12(3) (1994).
9. J. S. Plank and K. Li, ‘Faster checkpointing with N + 1 parity,’ 24th International Symposium on Fault-

Tolerant Computing, Austin, TX, June 1994, pp. 288–297.
10. J. S. Plank, Y. Kim and J. Dongarra, ‘Algorithm-based diskless checkpointing for fault tolerant matrix

operations,’ 25th International Symposium on Fault-Tolerant Computing, Pasadena, CA, June 1995, pp.
351–360.

11. T. Chiueh and P. Deng, ‘Efficient checkpointmechanisms for massively parallel machines,’ 26th International
Symposium on Fault-Tolerant Computing, Sendai, June 1996.

12. J. S. Plank, ‘Improving the performance of coordinated checkpointers on networks of workstations using
RAID techniques,’ 15th Symposium on Reliable Distributed Systems, October 1996, pp. 76–85.

13. W. A. Burkhard and J. Menon, ‘Disk array storage system reliability,’ 23rd International Symposium on
Fault-Tolerant Computing, Toulouse, France, June 1993, pp. 432–441.

1012 J.S. PLANK

14. G. A. Gibson, L. Hellerstein, R. M. Karp, R. H. Katz and D. A. Patterson, ‘Failure correction techniques for
large disk arrays,’ Third International Conference on Architectural Support for Programming Languagesand
Operating Systems, Boston, MA, April 1989, PP. 123–132.

15. M. Blaum, J. Brady, J. Bruck and J. Menon, ‘EVENODD: An optimal scheme for tolerating double disk
failures in RAID architectures,’ 21st Annual International Symposium on Computer Architecture, Chicago,
IL, April 1994, pp. 245–254.

16. C-I. Park, ‘Efficient placement of parity and data to tolerate two disk failures in disk array systems,’ IEEE
Transactions on Parallel and Distributed Systems, 6(11); 1177–1184 (November 1995).

17. E. D. Karnin, J. W. Greene and M. E. Hellman, ‘On secret sharing systems,’ IEEE Transactionson Information
Theory, IT-29(1); 35–41 (January 1983).

18. M. O. Rabin, ‘Efficient dispersal of information for security, load balancing, and fault tolerance,’ Journal of
the Association for Computing Machinery, 36(2); 335–348 (April 1989).

19. F. P. Preparata, ‘Holographic dispersal and recovery of information,’ IEEE Transactions on Information
Theory, 35(5); 1123–1124, (September 1989).

20. T. J. E. Schwarz and W. A. Burkhard, ‘RAID organization and performance,’ Proceedings of the 12th
International Conference on Distributed Computing Systems, Yokohama, June 1992, pp. 318–325.

21. J. H. van Lint, Introduction to Coding Theory, Springer-Verlag, New York, 1982.
22. S. B. Wicker and V. K. Bhargava, Reed-Solomon Codes and their Applications, IEEE Press, New York, 1994.
23. D. Wiggert, Codes for Error Control and Synchronization. Artech House, Norwood, MA, 1988.
24. I. N. Herstein, Topis in Algebra, Second Edition, Xerox College Publishing, Lexington, MA, 1975.
25. C. Ruemmler and J. Wilkes, ‘An introduction to disk drive modeling,’ IEEE Computer, 27(3); 17–29 (March

1994).
26. M. Holland, G. A. Gibson and D. P. Siewiorek, ‘Fast, on-line failure recovery in redundant disk arrays,’ 23rd

International Symposium on Fault-Tolerant Computing, Toulouse, France, June 1993, pp. 442–423.
27. A. Z. Broder, ‘Some applications of Rabin’s fingerprinting method,’ in R. Capocelli, A. De Santis and

U. Vaccaro, (eds.), Sequences II, Springer-Verlag, New York, 1991.
28. D. W. Clark and L-J. Weng, ‘Maximal and near-maximal shift register sequences: Efficient event counters

and easy discrete logarithms,’ IEEE Transactions on Computers, 43(5); 560–568 (1994).

	PROBLEM SPECIFICATION
	INTRODUCTION
	GENERAL STRATEGY
	OVERVIEW OF THE RS-RAID ALGORITHM
	Calculating and maintaining checksum words
	Recovering from failures
	Arithmetic over Galois Fields

	THE ALGORITHM SUMMARIZED
	AN EXAMPLE
	IMPLEMENTATION AND PERFORMANCE DETAILS
	RAID controllers
	Checkpointing systems

	OTHER CODING METHODS
	CONCLUSION
	acknowledgements
	GALOIS FIELDS, AS APPLIED TO THIS ALGORITHM
	REFERENCES

