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Abstract—We present a novel framework, called balanced overlay networks (BON), that provides scalable, decentralized load

balancing for distributed computing using large-scale pools of heterogeneous computers. Fundamentally, BON encodes the

information about each node’s available computational resources in the structure of the links connecting the nodes in the network. This

distributed encoding is self-organized, with each node managing its in-degree and local connectivity via random-walk sampling.

Assignment of incoming jobs to nodes with the most free resources is also accomplished by sampling the nodes via short random

walks. Extensive simulations show that the resulting highly dynamic and self-organized graph structure can efficiently balance

computational load throughout large-scale networks. These simulations cover a wide spectrum of cases, including significant

heterogeneity in available computing resources and high burstiness in incoming load. Prior analytical results show BON’s scalability for

truly large-scale networks; under certain ideal conditions, the network structure converges to Erdös-Rényi (ER) random graphs. Our

simulation results, however, show that the algorithm does much better, and the structures seem to approach the ideal case of d-regular

random graphs. We also make a connection between highly-loaded BONs and the well-known ball-bin randomized load balancing

framework.

Index Terms—Distributed computing, random walks, load balancing, random graphs, randomized algorithms.

Ç

1 INTRODUCTION

DISTRIBUTED computing was one of the earliest applica-
tions of computer networking, and many different

methods have been developed to harness the collective
resources of networked computers. Some important archi-
tectures include centralized client-server systems, distribu-
ted hash table (DHT) systems, and diffusive algorithms.
Here, we introduce the concept of balanced overlay networks
(BON), which take the novel approach of encoding the
resource balancing algorithm into the evolution of the
network’s topology. Each node’s in-degree is kept propor-
tional to its unused resources by adding and removing edges
when resources are freed and consumed. As we will show,
this topology makes it possible to efficiently locate nodes with
the most free resources, which in turn enables load balancing
with no central server.

This work makes several novel contributions to dis-
tributed computing and resource sharing. First, BON is
decentralized and scalable with known lower bounds on
balancing performance. While other related decentralized
load-balancing algorithms (e.g., Messor [1]) have been
proposed in the literature, analysis of performance and
scalability has been largely unavailable.

Under certain ideal conditions, we show that the net-
work structure converges to a random graph that is at least

as regular and balanced as Erdös-Rényi (ER) graphs.
Second, the algorithms and protocols for both network
maintenance and job allocation are based only on local
information and actions: Each node decides the amount of
resource or computing power it wants to share, and it
embeds this information into the network structure via
short random walks; similarly, jobs are distributed based
only on information available through local explorations of
the overlay network. Thus, BON is a truly self-organized
dynamical system. Third, since the BON algorithm pro-
duces dynamic random graph topologies, these resulting
networks are very resilient to random damage and also
have no central point of failure. Finally, we make a
connection between the performance of BON in some
regimes with ball-bin random load balancing problems [2].

It is also important to note that BON is a novel paradigm
for resource sharing of any kind and its applicability is not
limited to distributed computing. The in-degree of a node
can be made to correspond to any type of shareable
resource. Then, one can exploit the fact that BON networks
have low diameters associated with random graphs, which
makes them easy to sample using short random walks.
Extensive simulation results support the effectiveness of
this approach in networks with a wide range of resource
and load distributions. These simulations show that the
actual performance of the algorithm far exceeds the lower
bounds mentioned above and achieves very close to
optimal performance.

BON is a very simple, realistic, and easily implementable
algorithm using standard networking protocols. The com-
pletely decentralized nature of the algorithm makes it very
well-suited to massive applications encompassing very
large ensembles of nodes. The following are a few examples
of applications for which BON is very well suited:
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Single-System Image (SSI) LAN/WAN clusters: BON
can be used for single-system image (SSI) clusters in the
same way that Mosix [3] is used but without the need for all
nodes to be aware of each other as is the case in Mosix. This
can allow BON to scale to very large system sizes.

Public Resource Computing: BON is also applicable to
@HOME-style projects [4]. These projects are typically
special-purpose for each application. The decentralized
nature of BON will allow multiple projects to share the
same pool of computers.

Grid Computing: BON also has the potential to be
integrated with GRID [5], [6] systems for efficient
resource discovery and load distribution across virtual
organizations (VOs).

Web Mirroring: Distributed Web mirroring is an exam-
ple of a noncomputational application of the BON algo-
rithm. The system could allow a huge number of software
users to participate in providing download mirrors.

This paper is organized as follows: Section 2 describes
prior related research in distributed computing and graph
theory. Section 3 introduces the BON architecture. Section 4
discusses the theoretical analysis of BON’s scalability.
Section 5 provides a description of the simulation setup
and results. Section 6 deals with practical considerations for
implementing BON. Finally, Section 7 discusses results,
conclusions, and future work.

2 RELATED WORK

2.1 Random Graphs

A graph, G ¼ ðV ;EÞ, consists of a set of vertexes, V , and a
set of edges, E. Graphs provide a convenient mathematical
abstraction for studying networks of nodes that are
connected by links.

2.1.1 Erdös and Rényi (ER) Random Graphs

One of the most important types of random graphs, the

Erdös and Rényi [7] (ER) random graph, can be defined as a

set N of nodes with each of the NðN�1Þ
2 possible edges

existing with probability p. The most surprising feature of

this model is that there are distinct phase transitions in the

structure of the graph as the connection probability, p,

changes. The mean degree of a graph is related to the

connection probability in the following way: hki ¼ pðN � 1Þ.
Since we are interested in using the topological proper-

ties of a graph to perform load balancing, it is important to
look at a graph’s connectedness properties. Fig. 1 shows
that an ER graph will have a giant component if hki > 1.
This means that the largest connected component in the
graph has cðpÞN nodes and all other components are
exponentially smaller with OðlnNÞ size. Furthermore, as hki
approaches lnN , the fraction of nodes in the giant
component, cðpÞ, becomes 1 with a nonzero probability.

Another important hallmark of random graphs is low
diameter. Diameter is defined as the maximum of the
shortest distance over all pairs of nodes. For ER graphs with
hki � 3:5, the diameter of the graph is OðlnN= lnhkiÞ. For
larger average degrees, the diameter scales the same but
rapidly approaches lnN= lnhki when hki � lnN . If we wish

to uniformly sample nodes using random walks (starting
from any node in the network), it is clear that the walk
length has to be at least as long as the diameter; hence,
networks with short diameters are desirable.

2.1.2 Sampling Nodes via Random Walks

We have already mentioned that sampling using random
walks is at the heart of BON. A random walk on any graph
is equivalent to following a sample path of an associated
Markov chain, where the nodes represent the states and the
transition probability pij of going from node i! j is given
by pij ¼ 1=degreeðiÞ for an undirected graph (where each
edge is basically replaced by two-directed edges pointing in
opposite directions) and by pij ¼ 1=out-degreeðiÞ for any
directed graph; of course, pij ¼ 0 if there is no edge (no
directed edge, in the case of directed graphs) connecting
node i to j. Thus, for any undirected graph, a random walk of
sufficient length samples nodes according to the steady-
state distribution of the underlying Markov chain,

�k ¼
degðkÞP
i2V degðiÞ

; ð1Þ

which is the probability of being at node k. Hence, in steady
state, nodes are sampled linearly preferentially and edges
are sampled uniformly. In the case of directed graphs, a
steady state distribution exists only if the underlying
Markov Chain is ergodic; a sufficient condition for
ergodicity is that the network be strongly connected, i.e.,
there is a directed path from every node to every other node
in the network. The steady state distribution for random
walks on such networks is no longer given by the simple
formula stated above; however, the nodes with high in-
degrees and “centrality” [8] have larger limiting probabil-
ities. Thus, even for directed graphs, random walks sample
nodes preferentially (although, not necessarily linearly)
with respect to their in-degrees; other factors, such as the in-
degrees of the nodes connecting to the given node, also play
a role. For example, the steady state distribution of random
walks on the World Wide Web network, as defined by
hyperlinks, determines the so-called “Page Rank” of a
particular Web page [9].

The length of the random walk required to be very close
to the steady-state distribution is referred to as the mixing
time. Aldous and Fill [10] provide a detailed analysis of
random walk mixing on several graph topologies including
ER graphs, regular graphs, and grown preferential attach-
ment graphs. In all of these cases, the mixing time of
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Fig. 1. The connectedness of an Erdös and Rényi random graph has
several distinct phases depending on average degree. When hki < 1,
the graph is a forest of trees with OðlnNÞ size. A giant component (OðNÞ
size) abruptly emerges as hki exceeds 1. When the average degree
exceeds lnN, the graph becomes a single connected component.



random walks is of logarithmic order in the size of the
graph. This is important because it means that OðlogNÞ
random walks can sample the nodes preferentially with
respect to degree (or in-degree, in the case of strongly
connected directed graphs).

2.1.3 Regular Random Graphs

Another important model of random graphs is based on a
random d-process. Given n nodes, edges are randomly
added one by one with the constraint that no node has more
than d incident edges. This simple model has been shown to
generate random graphs where each node has the same
degree (except for a single node when dn is odd) [11].

The regular graphs produced by the random d-process
also have predictable connectedness [12]. For d � 3,
limn!1 P ðG is connectedÞ ¼ 1. Also, d-regular random
graphs have logarithmic diameter. Recent results have also
shown that regular random graphs have fast mixing times.

In this paper, one of the goals is to design a network
dynamic that would generate directed regular random
graphs in the sense that each node will have the same in-
degree d and an average out-degree of d. Moreover, we
want these directed graphs to be strongly connected and
have low diameter. We are not aware of analytical results
for the minimum d (analogous to that of the undirected
case) that guarantee such connectivity properties for the
directed graphs. However, since d � 3 guarantees such
properties for the undirected case, we enforce that our
protocol maintains a minimum in-degree, kmin ¼ 4 (hence,
an average out-degree of 4, as well). Since the undirected
average degree is now at least 8, we would expect that the
undirected version of the graph would always be connected
and that the directed graph will not have too many strongly
connected components (SCCs). Indeed, our simulation
results show that, when the network is in this regime, i.e.,
all nodes have in-degree of 4, it always remains weakly
connected (i.e., the undirected version of the graph is
connected), and has only a very small number of SCCs.
As explained in detail in the simulation section, such
connectivity properties seem sufficient to guarantee almost
optimal load balancing in the BON system.

2.2 Distributed Computing

The authors have previously considered load balancing that
is topologically based with a simpler model than BON that
is amenable to analytical study [13]. In that work, each
node’s resources are kept proportional to its in-degree, and
load is distributed by performing a short random walk and
migrating load to the last node of the walk. As shown in
[13], this method produces Erdös-Rényi (ER) random
graphs for the uniform resource case and exhibits good
load-balancing performance. However, this work lacked
key components necessary to realize a robust, practical, and
efficient load balancing system. For example, the algorithm
aims to produce ER random graphs in the uniform-resource
case and, thus, is not capable of approaching optimal load
balancing performance. This is clear since optimal balan-
cing on uniform-resource nodes would be for every node to
have the same number of jobs. Furthermore, the ER
formulation does not address the case where nodes become
overloaded; if the degrees of the nodes are still kept

proportional to their resources in the overloaded regime,
then the average degree will go below the critical values
required to keep the robust connectivity properties of the
network, leading to deterioration in the load balancing
performance. As we demonstrate in the current work,
performing more complex functions on the random walk,
and clipping the minimum degree, can significantly
improve performance over a wide range of load conditions.

The majority of distributed computing research has
focused on central server methods, DHT architectures,
agent-based systems, randomized algorithms, and local
diffusive techniques [1], [2], [14], [15], [16], [17], [18]. Some
of the most successful systems to date [4], [19] have used a
centralized approach. This can be explained by the
relatively small scale of the networked systems or by
special properties of the workload experienced by these
systems. However, since a central server must have OðNÞ
bandwidth capacity and CPU power, systems that depend
on central architectures are unscalable [20], [21]. Reliability
is also a concern since a central server is a single point of
failure. BON addresses both of these issues by using
OðlogNÞ maximum communications scaling and no single
points of failure. Furthermore, since the networks created
by the BON algorithm are random graphs, they will be
highly robust to random failures.

The Messor project [1], in particular, has the same goal as
BON, which is to provide self-organized, distributed load
balancing. The agent-based design of Messor also involves
performing random walks on a network to distribute load.
However, BON is designed specifically to reshape the
network structure so it can be efficiently sampled. Messor
was inspired by the notion of a swarm of ants that wander
around the network picking up and dropping off load.
Thus, it is not clear how long the ant agents will need to
walk while performing the load balancing. It is the focus on
topology that distinguishes BON from other similar efforts.
BON endeavors to reshape the network topology to make
resource discovery feasible with OðlogNÞ length random
walks. A simplified version of BON can be analyzed and,
thus, we can put performance bounds on its behavior.
Messor, while very interesting, provides no analytical
treatment.

Within the large body of research, some techniques have
been implemented including Mosix, Messor, BOINC,
Condor, SWORD, Astrolabe, INS/Twine, Xenosearch [1],
[3], [4], [15], [19], [22], [23], [24], and others. Many of these
systems focus on providing a specific desired level of
service for jobs. This contrasts to the approach taken by
BON, Mosix, and others, in which processes are migrated to
nodes where they will have the most resources applied to
them rather than a specific level of resources. The other
systems are mostly based on DHT architectures and
provide for querying based on arbitrary node attributes
and link qualities. For complex distributed applications
where each participating node must have a certain level of
resources and where the connectivity between the nodes
must have prescribed latencies, these DHT systems will be
the most suitable platform. For many types of parallel
scientific computing, however, BON’s objective of placing a

1124 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007



job where it will finish as quickly as possible is appropriate
and desirable.

BON is designed to be deployed on extremely large

ensembles of nodes. This is a major similarity with BOINC

[4]. The Einstein@home project, which processes gravitation

data, and Predictor@home, which studies protein-related

disease, are based on BOINC, the latest infrastructure for
creating public-resource computing projects. Such projects

are single-purpose and are designed to handle massive,

embarrassingly parallel problems with tens or hundreds of

thousands of nodes. BON should scale to networks of this

size and beyond while providing a dynamic, multiuser
environment instead of the special-purpose environment

provided by BOINC.

3 THE BON ARCHITECTURE

3.1 BON Topology

The concept underlying BON is that the load characteristics
of a distributed computing system can be encoded in the

topology of the graph that connects the computational

nodes.
In schematic terms, an edge in a BON graph represents a

certain unit of unused capacity on the node to which the

edge points. Consequently, when a node’s resources are
being exhausted, its in-degree will decline, as seen in Fig. 2.
Conversely when a node’s available resources are increas-
ing, its in-degree will rise, as seen in Fig. 3.

Formally, a BON is a dynamic, directed graph,
D ¼ ðE; V Þ, where each node vi 2 V maintains kðminÞ �
kiðtÞ � kðmaxÞi incoming edges. The maximum incoming
edges that a node can have, k

ðmaxÞ
i , is proportional to the

computational power of vi; the role of the minimum in-
degree is described in the following: Each node vi has a
scalar metric, siðtÞ, which is kept inversely proportional to
kiðtÞ. As siðtÞ changes with time, vi severs or acquires new
incoming links to maintain the relationship between degree
and free resources (Fig. 4). In the context of distributed
computing, siðtÞ is a scalar representation of the current
load experienced by node vi. This means that each node will
endeavor to keep its in-degree proportional to its free
resources or inversely proportional to its load. Idle nodes
will have a relatively large in-degree while overloaded
nodes will have a small in-degree. The total unloaded
resources of a node are proportional to its maximum in-
degree, k

ðmaxÞ
i . As long as the network is not overloaded

(i.e., no node is forced to clip its in-degree to the minimum
of kðminÞ), each node’s free resources should be proportional
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Fig. 2. New jobs are assigned by using a greedy random walk. The large nodes depict computers in a schematic BON network while the small filled
nodes are jobs running on the node to which they are connected. The label for each of the computer nodes denotes the current number of jobs it is
running. (a) New load enters the network. (b) We see that the node where load arrives initiates a random walk which keeps track of the degree (free
resources) of each visited node. The largest degree node (most free resources) is selected to run the new load. To compensate for the additional
load, the node which accepted the new load deletes one of its incoming edges to account for its diminished resources. (c) The resulting network.

Fig. 3. When a running job finishes, the host node may need to increase its connectivity to advertise its increased resources. (a) A job finishes and,

thus, leaves the network. (b) The node where the load finishes initiates a random walk. (c) The last node on the walk will be the origin of a new edge

incident on the walk initiator. This new edge represents the increase in available resources on the node where the job just completed.



to its degree, and a uniform-resource network is ideally
balanced if the graph structure is d-regular.

Note that, as the overall network load increases, the
average in-degree of the nodes decreases, forcing the nodes
to clip their in-degrees to kmin, and the free-resources versus
in-degree correlation is no longer kept valid. We demon-
strate, however, that, even in this overloaded regime, we
achieve almost-optimal load balancing and the network
topology approaches the structure of a directed regular
random graph. Recalling the properties of regular random
graphs, selecting kðminÞ ¼ 4 ensures that the undirected view
of a BON will be connected and have a low-diameter.

3.2 BON Algorithm

Each node’s load, siðtÞ, can change as a new load arrives in the
network or when existing work is done. When a new load
arrives at vi, a short random walk is initiated to locate a
suitable execution site. The nodes visited by the random walk
will have degree that is proportional to its free resources.
Contained in this random walk is a BON resource discovery
message (BRDM) that stores the merit function information
for the most capable node visited so far on the walk.

Due to the mapping between load and in-degree, this
greedy random walk selection is the the same as choosing
the highest degree node encountered in the walk, as long as
no node in the random walk is overloaded (i.e., its free
resource maps to an in-degree that is less than the allowed
value of kðminÞ), forcing it to clip its in-degree to kðminÞ. Thus,
the BON algorithm has two primary regimes. First, when
hki � kðminÞ, the BON algorithm is in the linear regime, i.e.,
the free resources of nodes are linearly proportional to their
in-degrees. In this linear regime, the random walk samples
the nodes with a frequency that is preferential in the in-
degree of the nodes (see Section 2); in fact, our simulations
show that the sampling frequency is indeed proportional to
the in-degree. Hence, nodes are sampled preferentially with
respect to their free resources in the linear regime. When
hki ¼ kðminÞ, BON is in the clipped regime. Thus, in the
clipped regime, the free resources of the nodes are no longer
encoded by their in-degrees; in fact, we find that all nodes
have the minimum allowable in-degree. Hence, nodes are
being sampled randomly and not preferentially with
respect to their free resources in the load-clipped regime.
In practice a node in the clipped regime will be under very
heavy computational load, but, fundamentally, it can still
accept new jobs. We will discuss the case when the network
is load clipped in Section 5.4, and show that load balancing
is still performed efficiently in this regime.

Another approach to choosing a node on the walk is to
select the last node inserted into the BRDM. This case has
been previously explored [13] in the linear regime. While
this simple approach can be studied analytically, simulation
results indicate that large improvements to the balancing
performance are possible by always keeping the most
capable node’s information. Instead of performing a simple
random walk and selecting the last node to receive
incoming load, the node on the walk with the largest
power per load will be the target. This choice is made
because it selects the node that has the most free resources
to offer to the next incoming job. This same prior work also
showed that starting a BON in an ordered ring or in a

random configuration both yielded the same steady state
random graphs.

4 ANALYTICAL BACKGROUND

The performance of greedy BON walk selection is lower-
bounded by the performance of the standard walk selection
considered in [13]. Therefore, although we do not present a
calculation of the load distribution for BON graphs, we can
state that it has the same scalability as the standard walk
case described below. We also calculate the bandwidth used
by the algorithm and compare it to a centralized model.

4.1 Scalability

4.1.1 Linear Regime

Recall that, in the linear regime (i.e., when the average
degree, hki > kðminÞ), the in-degrees of the nodes are kept
linearly proportional to their free resources. Since random
walks in steady state will sample nodes preferentially
with respect to the in-degree of the nodes (see Section 2),
a random walk sampling of sufficient length on the
BON network, operating in the linear regime, corresponds
to sampling nodes preferentially with respect to their free
resources. The greedy BON algorithm is difficult to study
analytically due to the fact that we pick the node with the
maximum free resources, among the preferentially sampled
nodes, as our load destination node. However, prior results
[13] show that a modified BON, where a preferentially
sampled node is picked as the destination, is more
amenable to analysis.

Rather than selecting the node on the BRDM walk that
can process an incoming job the fastest, one can simply
select the last node of the walk. Such a node represents a
preferentially (with respect to its in-degree) or equivalently
(with respect to its free resources) sampled node. As
discussed in Section 2, in a directed network, this prefer-
ential selection is not necessarily linear; however, our
extensive simulations show that a linear approximation is
highly justified for the BON networks created by our
dynamic protocols and, in this section, we will assume a
linear preferential sampling. In this model, the average
number of absent edges, J , in the N-node graph is identified
as the total number of jobs running. The maximum number
of incoming edges that a node can have will be called C and
the number of incoming edges to a given node is denoted
as i. For the case when the average number of jobs remains
constant, we can describe this system as a simple Markov
process with state-dependent arrival and service rates; it
can be denoted by the standard queuing notation as
M=M=1==M. The arrival rate of new jobs is proportional
to the free resources, i=ðNC � JÞ, of each node since jobs
arrive preferentially based on in-degree. Assuming that jobs
terminate uniformly randomly, the departure rate is
ðC � iÞ=J . Solving the birth and death Markov process,
we obtain for the degree distribution

pn ¼
C

n

� �
1� J

NC

� �n J

NC

� �C�n
: ð2Þ

Defining the normalized load as � ¼ J=NC, the binomial
distribution means that, for each node, each unit of capacity
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is occupied with probability �. If C ¼ N � 1, this model
recovers the degree distribution for ER graphs:

pn ¼
N � 1

n

� �
E

NðN� 1Þ

� �n

1� E

NðN� 1Þ

� �C�n

; ð3Þ

where E ¼ NðN � 1Þ � J .
For a network with uniform resource distribution, the

variance of the degree distribution maps directly onto the
variance of the load. This is because each incoming edge
represents a quantum of unused power. Here, the load of
each node is defined as jobs

power . In a perfectly balanced
network, each node will have the same free resources. This
ideally balanced network is a regular graph and, thus, the
variance of the degree distribution and the load distribution
is zero. This contrasts with the ER case mentioned above,
which has a binomial variance. The highest-degree (most
free resources) node visited on a random walk must have
greater or equal resources than the last node on the walk.

In addition to this queueing model, it has been shown by
information theoretic arguments [13] and simulations that
the simplified rewiring protocol described here creates ER
random graphs.

4.1.2 Clipped Regime

Recall that in the clipped regime, the average load is high
enough that individual nodes can no longer keep its in-
degrees proportional to their free resources, and the
protocol forces them to clip their in-degrees to kðminÞ. As
demonstrated in later sections, BON produces regular
directed random graphs with an in-degree of kðminÞ. In
Section 2.1.3, we reviewed the result that random d-regular
undirected graphs with d � 3 are connected and fast
mixing. We find, via extensive simulations, that the same
results hold for the directed regular BON networks that we
create by choosing kðminÞ ¼ 4; thus, BON networks of any
size can be randomly sampled with short random walks.
Therefore, BON random walks of length K essentially
perform K random selections from the network. Then,
selecting the least-loaded node from the K selections takes
advantage of the power of K choices [2]. Our extensive

simulations support this analysis, and we find that the BON
system can provide effective load balancing in the clipped
regime as well.

4.2 Communications Complexity

An important metric of performance for distributed
computing is the network bandwidth required for a
protocol. It is clear that the architecture that requires the
least total bandwidth is a central server. While the total
consumption of bandwidth is important, the bandwidth
that any single node consumes can be a significant bottle-
neck for large central networks. Below, we compare the
bandwidth required by a centralized algorithm and by
BON, and find that BON provides significant reduction in
the maximum bandwidth consumed by any node in the
network.

4.2.1 Centralized

The simplest nontrivial centralized architecture for a comput-
ing network is the case where, initially, the central node,
denotedLB, knows the power and load of each of theN nodes
that it controls. When a job on one of the nodes completes, that
node will notify LB so that it can update its load state
information for the network. Obviously,LBkeeps track of the
assignments of new load to each of the nodes. This method
does away with the need to periodically probe every node in
the network; however, it is clear that the bandwidth, memory,
and CPU cost that LB has to bear is still OðNÞ. Further,
assume a steady-state network load and that, in every time
unit, N�, jobs begin and the same number terminate. We
further assume that all the jobs will start at one of the
computational nodes and that they will then be sent toLB for
assignment. Now, assume that, for every job that is started, a
relatively large A-byte packet, including the size of the
program code and input data, must be sent fromLB to each of
the nodes, Ni, i 2 f1; � � � ; Ng, and that relatively small a-byte
packets must be sent to the central server in response to
changes in load. Therefore,LBmust sendN�A bytes per unit
time which consumes kernel resources and requires band-
width that increases with N . The total bandwidth consumed
by the entire centralized network is

B
ðLBÞ
T ¼ N�ðAþ aÞ: ð4Þ

This is also the same amount that LB must consume
since it is involved in every communications round. For all
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Fig. 4. The relationship between load and node degree is the basis for
the BON algorithm; a node with a high in-degree is more likely to be
visited on a random walk and is thus more likely to be the recipient of
new load than a node with a low in-degree. Each node is defined to have
P units of resources. The load is the number of running jobs, J, divided
by P . As the total load increases, hki decreases until the load becomes
clipped. In the load clipped regime, the algorithm remains the same but
the mechanism behind the performance changes to become a ball-bin
load balancing problem with logN choices. This change is due to the
fact that there is no longer a connection between free resources and in-
degree. The parameters for this 2048-node simulation are given in
Table 1.

TABLE 1
Parameters for Uniform/Poisson Simulations

In all of these cases, N ¼ 2;048. Here, we see which simulations
correspond to each of the figures and we give the degree distribution,
job size distribution, and arrival rate.



nodes Ni, 8i 2 f1; � � � ; Ng, the bandwidth consumed will be
B
ðiÞ
T ¼ �ðAþ aÞ, which is Oð1Þ.

4.2.2 BON

For the decentralized BON algorithm, the network topology
is now more complex than for the central server. While the
graph of the central model was a star, BON will look
approximately like a random regular graph. Initially, we
will assume that we begin with a correctly formed BON. As
with the central model, we assume that N� jobs begin and
end at random nodes in each time unit. Since there is not a
central server, each node that initiates a new job must send
a BRDM to find a node to run the job. Every node on the
walk will need to replace the value of obj ¼ power

loadþ1 (L bytes
of data) in the BRDM if obj is larger than the objective
function that is currently in the BRDM. Since the random
walk will be OðlogNÞ steps long, the total bandwidth of the
walk will be Bw ¼ a logN . Likewise, when a job finishes,
another walk will be used to find a replacement for the
removed edge. Factoring in the cost of transmitting the
program to the target node and needed handshaking
protocols, the total bandwidth consumed by BON is

B
ðBONÞ
T ¼ N� Aþ aðlogN þ 2Þð Þ: ð5Þ

Therefore, the total bandwidth cost of BON is OðlogNÞ
greater than the central model, i.e., OðNÞ versus OðN logNÞ.
As already mentioned, a more important metric in many
situations is the maximum bandwidth consumed by any of
the nodes. In BON, each node will consume bandwidth in
proportion to how many jobs it initiates and how powerful
it is. Thus, if all of the nodes use the network equally, then
each node will consume B

ðBONÞ
T =N bandwidth, which scales

as OðlogNÞ. This contrasts to the OðNÞ bandwidth needs of
the central server.

5 SIMULATIONS

5.1 Simulation Description

For the simulations, each node in a BON network is a
computer with power equal to its maximum degree minus
its minimum degree, Pi ¼ kðmaxÞi � kðminÞ. One unit of
power can process a unit of load in each unit of time.
Jobs run on these computers in a time-sharing fashion with
each of the L jobs of a computer equally sharing the node’s
power at each time step. The simulations deal only with
CPU power as the objective function of the balancing.
Other features such as memory ushering will not be
simulated but will be added as features in the reference
implementation. Simulations of the BON system were
performed using the Netmodeler [25] package. Two types
of experiments were done.

The first experiments (Table 2) are very idealized, using
uniform node power, uniform job arrival rates, and
Poisson-distributed job sizes. This setup may apply to
cluster computing or other systems where hardware is
homogeneous and load is predictable.

The second type of simulation (Table 2) uses power-law
distributions for all parameters including job arrival rate,
node power, and job size. This configuration represents a
situation where every important system parameter is

distributed in a bursty, heavy-tailed way. Heavy-tailed
distributions are common in many real systems [26],
including networks, and, thus, these simulations provide
a fairly realistic idea of how the system will perform under
real loads. Most importantly, for simulation performance,
the computing power ranges from 1 unit of power to
300 units of power. This is at least 10 times the range of
performance seen in commonly used CPUs. As we will
revisit in the performance evaluation, having many nodes
that can only accept a few processes prior to being load-
clipped will impact the balance distribution simply due to
quantization effects. This issue will have design implica-
tions for the implementation.

In all of these simulations, we begin with a randomly
connected network subject to the initial degree distribution.
However, if one starts with a completely ordered ring with
OðNÞ diameter, the graph will quickly converge to the low-
diameter structure depicted in these simulations. This
convergence was previously demonstrated [13]. Since graph
structure is so important to this algorithm, all jobs are
initiated on a single node rather than allowing jobs to arrive at
random nodes. This choice means that the balancing of load
is due to the random walk distribution and not to random
placement.

5.2 Graph Structure

The idea at the heart of BON is that the graph structure can
capture the load state of a computational network. In
Section 4, we discussed prior theory results that describe the
structure of graphs formed using algorithms similar to
BON. We now present simulation results for both the
uniform and heavy-tailed systems described above. The
degree distribution for a balanced overlay network matches
the resources of the constituent nodes for both uniform and
power-law resource distributions as seen in Figs. 8 and 13.

Figs. 5 and 6 show that BONs maintain a low diameter
and exhibit the property of random graphs that the
diameter is proportional to lnN= lnhki. The changes in
connectivity can be seen in Fig. 7.

It is important that BON graphs remain at least weakly
connected (i.e., the undirected version of the network is
connected or has a single connected component) as they
evolve. All simulations indicate that BONs remain weakly
connected but that, when they are load-clipped, they can
acquire multiple strongly connected components (SCCs).
Recall that an SCC is a set of nodes where there is at least
one directed path from each node to every other node in the

1128 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

TABLE 2
Parameters for Power-Law Simulations

In all of these cases, N ¼ 2;048. Here, we see which simulations
correspond to each of the figures. The degree distribution, job-size
distribution, and job arrival batch size are all power-laws with the given
minimum and maximum values.



set. If there is only one SCC, then the network itself is
strongly connected. The random d-process model of a
random graph indicates that random regular graphs stay
connected if d � 3 [12]. This result holds as N !1. Thus, it
is not surprising that nearly regular BON graphs with a
minimum degree of 4 also remain weakly connected.

As the load surpasses 1 (the clipping threshold) and the
network becomes a kðminÞ-regular graph, the number of
SCCs increases. As shown in Fig. 9, the number of SCCs
falls back to unity when an overloaded network becomes
less loaded. It is also important to note that the SCCs in an
overloaded BON can change due to the rewiring of the
network. So, while every node will not be able to
communicate with every other node at each instant of time,
the out-component of each node in the graph can change
with time, allowing the network to recover effectively. Also,
the network does remain weakly connected even when the
network has many SCCs.

If future studies indicate that BON graphs are becoming
disconnected, there are several measures that can be taken.
First, the minimum degree can be increased. Second, each
node could keep a history of all nodes that it has interacted
with and use that list to attempt to reconnect if it finds itself
in a small-size subnetwork.

5.3 Load Balancing Performance

When discussing load balancing performance, we want
metrics that measure how closely load follows capacity.
When all the nodes are equally capable, standard deviation
is a convenient measure of balancing; when nodes are
heterogeneous, correlation coefficient is what we use.

5.3.1 Simple Idealized System

In simulations of BON with uniform parameters, the load
metric is the total number of jobs divided by the total
capacity. For the uniform simulation model, Fig. 10 shows
that the ensemble standard deviation of the node load is just
below 1 percent when the network is in the underloaded
regime. When the network is clipped, the standard devia-
tion of the load is � 20 percent higher than in the
underloaded regime. This difference in performance is
likely due to the transition from the degree-correlated load-
balancing that is in effect when the network is underloaded
to the ball-bin load balancing that takes over when the
network is clipped.

Another important measure of performance is how
well BON performs in comparison to a central system
that places new jobs at the least loaded node in the
network. In the uniform configuration after 1,000 itera-
tions, the central system has completed 501,314 jobs
compared with 501,238 jobs being completed by BON.
This indicates that BON’s job throughput is only about
0.01 percent worse than the optimal schedule.

5.3.2 Power-Law System

The power-law simulations illustrate an important design
criterion for practical implementations. For these simula-
tions, the power distribution of the nodes is a power-law
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Fig. 5. BON graphs obey the random graph scaling relationship between
diameter (undirected) and average degree: Diameter / lnN= lnhki,
where N is the number of nodes and hki is the mean degree. This BON
graph was generated using the uniform simulation parameters from
Table 1.

Fig. 6. The random-graph relationship between diameter (undirected)

and average degree: Diameter / lnN= lnhki also holds for the BON

networks generated using the power-law simulation parameters from

Table 2.

Fig. 7. As a BON network evolves, there is significant turnover in
connections. (b) The incident edges of a randomly-chosen node are
depicted as a function of time. Each point in this graph represents an
incoming edge from the corresponding node at a certain time. (a) shows
the average degree of the graph, as well as the instantaneous degree of
the chosen node, whose in-coming edges are being tracked. After a
short time, the graph settles down to a steady average degree, but the
detailed connectivity structure changes as the graph evolves. This
illustrates that the structure of the graph changes significantly even
when the macroscopic properties such as average degree are not
changing. The simulations parameters for this figure are shown in
Table 2.



given in Table 2. The minimum power is 1 and the
maximum power is 300. Therefore, there are many nodes
that have very low power resources. This means that, for
many values of the load, it will be impossible to get close
to optimal balancing. For this reason, the correlation
between degree and free resources is used to evaluate
performance as shown in Fig. 11. A good example is a
node with P ¼ 2. Because the load is defined to be P=L,
where L is the number of running jobs, the load is limited

to be nonnegative integer multiples of 1/2. Thus, if the
network is 75 percent loaded, then this low-powered node
is equally unbalanced whether one or two jobs are running.
By selecting a suitable minimum power, one can bound this
finite size effect. For example, if the least powerful node has
P ¼ 5, then it can always get within 10 percent of the
optimal value. This finite size effect appears as cyclical
behavior of the load standard deviation and can clearly be
seen in Fig. 12.

As was done for the uniform simulation configuration,
we compare centrally scheduled job throughput to BON
throughput with the same load trace. In the heavy-tailed
configuration, after 1,000 iterations the central system has
completed 585,872 jobs compared with 585,788 jobs being
completed by BON. As with the uniform configuration,
BON’s job throughput in the heavy-tailed configuration is
only about 0.01 percent worse than the optimal schedule.
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Fig. 8. BONs with uniform resources are approximately regular graphs. (a) These degree distribution snapshots are very close to delta functions.

(b) The average degree, hki, and the degree standard deviation, �k. The standard deviation is very small, which further indicates the nearly optimal

balancing.

Fig. 9. BONs remain weakly connected. In simulation, we observe that
BONs are always at least weakly connected directed random graphs.
This 2,048-node BON with heavy-tailed parameters remains weakly
connected even in the clipped regime. The number of strongly-
connected components (SCC) does increase under heavy load, but
the number of SCCs returns to unity when the clipping condition passes.

Fig. 10. This uniform resource, 2,048-node BON under increasing
overload also shows that the standard deviation of the load is low at
about 1 percent. The difference in performance as the network enters
the clipped regime can also be seen. At the clipping transition point, the
standard deviation experiences a spike, which is likely due to jobs
accumulating in a small SCC before additional rewiring can balance the
load. After a short time, this load imbalance dissipates as the rewiring
allows a load to be distributed throughout the network, although with a
standard deviation that is about 20 percent higher. This reduction in
performance is not surprising, given that sampling is no longer
preferential in the clipped regime.



Please note that this result ignores the effects of job

distribution latency on total throughput, but it indicates

that job placement is very close to optimal when commu-

nications delays are ignored.

5.4 Ball-Bin Regime

Every node in the graph must maintain a minimum degree

to ensure that the graph stays at least weakly-connected. For

these experiments, each node maintains at least four

incoming edges, which means that if the network’s load

becomes clipped, there is no longer a correlation between a

node’s degree and its resources. This minimum degree was

motivated by graph theory results discussed in Section 2.

For this reason, the real metric that is sampled on the walk

is the amount of computing power that the next incoming

process can expect on a given node. When the network is

not clipped, this is the same as choosing the highest-degree
node on the walk. However, for a clipped network, it selects
the node on the walk that has the largest value of the
expected power for the next incoming job. Now, consider
that a clipped network is approximately a regular random
graph and thus a short random walk will sample uniformly
from the nodes in the network. This problem now shows
itself to be very similar to ball-bin load balancing [2], [27]:

hki > kðminÞ; preferential sampling
hki ¼ kðminÞ; ball-bin sampling.

�
ð6Þ

In ball-bin systems, a ball is uniformly randomly
assigned to one of N bins. As this process is repeated, a
distribution of bin population emerges and has been
studied extensively under many kinds of assumptions.
The important result from ball-bin systems is that if one
probes the population of more than one bin prior to
assigning a ball, the population of the most full bin will be
reduced exponentially in N . This work is often referred to
as the “power of two choices” [2].

In the load-clipped regime, we have a similar situation
where, instead of two choices, we have the power of logN
choices. Each random walk on the kðminÞ-regular graph will
sample uniformly randomly from the nodes. Then, the least
loaded nodes from the logN choices will be the target to
accept the new load. This connection is made to give
intuition for why BON should function in the overloaded
regime, but we will not examine this aspect of the system in
detail here. Detailed follow-up work will be performed to
compare overloaded BON performance to the theoretical
predictions of ball-bin systems.

6 PRACTICAL CONSIDERATIONS

6.1 Network

One strength of BON is that the data structure used on the
load balancing algorithm is automatically maintained by
each node through the edges that it keeps with the other
nodes in the network. This means that keeping the
algorithm in the correct state is the same as keeping the
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Fig. 11. A node’s load is proportional to its resources. For the case where we do have many nodes with a low maximum degree, the correlation

between node power in-degree is an appropriate measure of performance. For a network that is getting increasingly loaded, the load versus power is

plotted at four time instants and the correlation coefficient is also calculated. Even when the network is 3 times the load clipping threshold, the

correlation coefficient r2 > 0:99.

Fig. 12. Load encoding quantization. Here, we see the cyclical
nature of the load standard deviation as a function of network load.
The dips happen when the network is at an integer multiple of the
load clipping threshold. This is due to the assumption in this model
that most of the nodes have a very low degree (power-law
distribution). For instance if the network is x percent loaded, a
node with a maximum in-degree of kmin þ kload will only be able to
have the same load as the rest of the network if J

kload
¼ lload, for all

J 2 f0; � � � ; kloadog, o 2 ZZþ. This makes selecting a sufficiently large
minimum degree important if resources are power-law distributed.



network in the correct state. Fortunately, this state main-
tenance is easily achieved using the local edge wiring rules.
In the presented simulations, some networks have nodes
with hundreds of incoming edges. While modern compu-
ters can easily maintain hundreds of simultaneous TCP
connections, for BON, it may be preferable to use UDP for
some aspects of the network.

BON nodes will interact with edges when load is
distributed using random walks and when edges are being
created or destroyed. These edges are important because
they maintain the state of the network, but if a connection
goes down, it can easily be replaced without affecting
system performance.

At any step in the random walk, the algorithm does not
depend on having particular connections available. If an
edge is not available to be traversed due to failure, another
node can be used just as well without loss of algorithmic
correctness. Of course, reliable transmission is important
because losing the packet will prevent a job from being
migrated. There are numerous ways to provide for reliable
communications between nodes using both TCP and UDP.
Efforts to use fast lightweight protocols while minimizing
latency will be important design issues for a BON
implementation. Most connections at any given time will
not be transmitting BRDMs but will be maintaining the
network state. For state maintenance, the use of UDP will
drastically reduce overhead compared to TCP and will
allow a much larger number of edges to be maintained with
less overhead than TCP. Using soft state information from
packet traffic to perform keep-alive operations will help
mitigate connection maintenance overhead.

6.2 State Encoding

For the load objective function, we will follow a similar
approach to the Mosix SSI cluster computing system [3]. The
Mosix migration algorithm is heuristic in nature and basically
attempts to run processes where they will finish the most
quickly. Various historical data about the process execution
and node load and resources are used to judge which node
can process a job with the least cost. Additionally, Mosix uses
a memory ushering protocol to migrate processes away from

nodes with depleted memory resources. This ushering is
done in favor of trying to integrate the memory and CPU
metrics into a single scalar value. These methods have been
motivated by real system profiling and have proved to be
successful. Thus, the node resource that will be kept
proportional to in-degree is the available CPU resources of
the node. In particular, we wish for new load to be assigned to
the node vi, where

i ¼ argmaxj
Pj

Lj þ 1

� �
:

Here, Pj is vj’s power, which can be any standardized way
of representing the number of operations per unit time that
a node can perform, and Lj is the number of processes
competing for Pj (UNIX load). The details of how to weight
integer, floating-point, and other processing characteristics
will not be considered here, but it will be assumed that a
reasonable benchmark of CPU performance can be con-
structed and run periodically on each BON node.

6.3 Load Quantization

Since computing power is represented by the edges in the
network, it is important to scale the power that each edge
represents in order to get the most load balancing
performance for the least bandwidth and state maintenance.
The initial implementation of BON will specify a CPU
model to be the baseline of computational power. As
computer performance changes, adaptive baselining can be
performed to automatically scale how much computing
power is represented by a BON edge. All other node
powers are computed with regard to the kth percentile of
benchmarks. That is, all nodes in the kth percentile will
have the baseline power of Pb and will maintain at most
kðbÞ � kmin ¼ 5 baseline resource edges. All other nodes will
maintain

ki � kmin ¼
PiðtÞ
Pb

kðbÞ ð7Þ

resource edges. Choosing k
ðmaxÞ
i � kmin � 5, 8i ensures that

even the least powerful nodes in the network can have a
load that is within 10 percent of optimally balanced.

7 CONCLUDING REMARKS

Balanced overlay networks (BON) is a novel decentralized
load-balancing approach that encodes the balancing algo-
rithm in the evolving structure of the graph that connects
the resource-bearing nodes. BON is scalable, self-organized,
and relies only on local information to make job assignment
decisions. New jobs are assigned to a node by a random
walk on the graph which not only samples the graph
preferentially but also selects the highest-degree node that
was visited on the walk. Each node’s unused resources are
proportional to its degree, so this approach works very well
when a network is not loaded beyond its clipping point.
When a BON is clipped, the relationship between load and
in-degree breaks down, but the balancing performance
remains quite good due to the so-called “power of two
choices” in ball-bin load balancing. Based on previous
theoretical results and extensive simulation results, BON is
seen to be efficient and practical. Further ongoing work on
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Fig. 13. For a network with a power-law resource distribution, the degree

distribution, P ðkÞ, also has a power-law form with the exponent getting

more negative with increasing load. Here, the mean degree is hki and

the degree standard deviation is �k.



this problem includes geographical awareness extensions

using more complex walk objective functions, a reference

implementation on PlanetLab, theoretical analysis of the

random walk with greedy node selection, algorithmic

optimizations, and a full comparison of overloaded regime

results with the predictions of ball-bin random load-

balancing. Finally, it should be noted that this is only one

possible way to encode information about a network in its

topology; other distributed algorithms may benefit from

using graph state to bias node selection.
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