
Building a Scalable Bipartite P2P
Overlay Network

Yunhao Liu, Senior Member, IEEE, Li Xiao, Member, IEEE, and Lionel M. Ni, Fellow, IEEE

Abstract—The Peer-to-Peer (P2P) model, being widely adopted in today’s Internet computing, suffers from the problem of topology

mismatch between the overlay networks and the underlying physical network. Traditional topology optimization techniques identify

physically closer nodes to connect as overlay neighbors, but could significantly shrink the search scope. Recent efforts have been

made to address the mismatch problem without sacrificing the search scope, but they either need time synchronization among peers or

have a low convergent speed. In this paper, we propose a scalable bipartite overlay (SBO) scheme to optimize the overlay topology by

identifying and replacing the mismatched connections. In SBO, we employ an efficient strategy for distributing optimization tasks in

peers with different colors. We conducted comprehensive simulations to evaluate this design. The results show that SBO achieves

approximately 85 percent of reduction on traffic cost and about 60 percent of reduction on query response time. Our comparisons with

previous approaches to address the topology mismatch problem have shown that SBO can achieve a fast convergent speed, without

the need of time synchronization among peers.

Index Terms—Unstructured peer to peer, topology mismatch, overlay, bipartite, search efficiency.

Ç

1 INTRODUCTION

THE peer-to-peer (P2P) model, such as Gnutella [1],
KaZaA [3], and BitTorrent [6], [21], aims at utilizing

and managing increasingly large and globally distributed
information and computing resources, thus complementing
available client-server services. Decentralized and unstruc-
tured P2P systems are most commonly deployed in today’s
Internet. File placement is random in these systems, which
has no correlation with the network topology. The most
popular search mechanism in use is to blindly “flood” a
query to the network among peers (such as in Gnutella) or
among superpeers (such as in KaZaA). A query is broadcast
and rebroadcast until a certain criterion is satisfied.

Based on their measurements of popular P2P systems
such as FastTrack (including KaZaA and Grokster) [2],
Gnutella, and DirectConnect, the studies in [21], [23] have
shown that P2P traffic contributes the largest portion of the
Internet traffic. Much P2P traffic, however, is unnecessary.
An attractive feature of P2P is that peers do not need to
directly interact with the underlying physical network,
providing many new opportunities for user-level develop-
ment and applications. Nevertheless, the mechanism for a
peer to randomly choose logical neighbors, without any
knowledge about the physical topology, causes a serious
topology mismatch between the P2P overlay networks and
the physical network. Our studies, detailed in Section 5,
have shown that about 75 percent of the query response

paths suffer from the topology mismatch problem. Because
of the mismatch problem, a pair of logical neighbors can be
far away from each other, causing a message to traverse the
same physical link multiple times and wasting a huge
amount of network bandwidth.

Traditional overlay topology optimization studies that
use different techniques to identify physically closer nodes
to connect as overlay neighbors could significantly shrink
the search scope, which is not feasible in P2P systems.
Recent efforts have been made to address the mismatch
problem without sacrificing the search scope, such as
Adaptive Connection Establishment (ACE) [18] and Loca-
tion-aware Topology Matching (LTM) [19]. In ACE, each
peer exchanges information with its neighbors so that an
overlay multicast tree can be built among each source peer
and its neighbors as the base for the overlay optimization.
The convergent speed of ACE is slow because of the
information exchange among each peer and all its neigh-
bors. In LTM, each peer issues a detector so that the peers
receiving the detection can record relative delay informa-
tion as the optimization basis. In order to record the correct
delay information, time synchronization among peers is
needed.

In order to address the limits of existing solutions for the
overlay mismatch problem, we propose a scalable bipartite
overlay (SBO) among peers in Gnutella-like systems or
among the superpeers in KaZaA-like systems to optimize
the overlay topology by identifying and replacing the
mismatched connections. In SBO, we employ an efficient
strategy for distributing optimization tasks to peers with
different colors, that is, white and red. The color of a peer is
assigned at the bootstrapping stage, and a peer will only be
connected with peers of a different color. A white peer
probes the cost with its neighbors and sends the cost
information to its red neighbors. With the cost information
of peers within two hops, each red peer will build a
minimum spanning tree (MST), which is the base for a
white peer to replace or cut mismatched connections. Our

1296 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

. Y. Liu and L.M. Ni are with the Department of Computer Science and
Engineering, Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong. E-mail: {liu, ni}@cse.ust.hk.

. L. Xiao is with the Department of Computer Science and Engineering,
3115 Engineering Building, Michigan State University, East Lansing, MI
48824. E-mail: lxiao@cse.msu.edu.

Manuscript received 14 Oct. 2005; revised 3 Nov. 2006; accepted 9 Nov. 2006;
published online 9 Jan. 2007.
Recommended for acceptance by K. Hwang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0434-1005.
Digital Object Identifier no. 10.1109/TPDS.2007.1059.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

simulation studies show that the total traffic and response
time of the queries can be significantly reduced by
optimized SBO without shrinking the search scope. Our
comparisons with ACE and LTM have also shown that SBO
can achieve a fast convergent speed, without the need of
time synchronization among peers.

The rest of this paper is organized as follows: Section 2
discusses related work. Section 3 analyzes the inefficient
P2P overlay topologies. Section 4 presents the design of SBO
and its optimization operations. Performance evaluation of
SBO is presented in Section 5, and we conclude the work in
Section 6.

2 RELATED WORK

Different techniques have been used to build efficient
overlay topologies. End-system multicast Narada was
proposed in [11], which first forms a rich connected graph
on which shortest path spanning trees are constructed. Each
tree is rooted at the corresponding source by using well-
known routing algorithms. This approach introduces a
large overhead in forming the graph and trees in a large
scope and does not consider the peers’ dynamic character-
istics of joining and leaving. The overhead of Narada is
proportional to the multicast group size. Researchers have
also considered clustering close peers based on their
Internet Protocol (IP) addresses (for example, [14], [20]).
We believe that there are two limitations in this approach.
First, the mapping accuracy is not guaranteed. Second, this
approach might affect the search scope of a P2P network. In
contrast, our technique is measurement based and can
accurately and dynamically connect physically closer peers
and disconnect distant ones. Also, our scheme does not
shrink the search scope. Researchers in [31] proposed
measuring the latency between each peer and multiple
stable Internet servers called “landmarks.” The measured
latency is used to determine the distance between peers.
This measurement is conducted in a global P2P domain. In
contrast, our measurement is conducted locally with high
accuracy, significantly reducing the network traffic. Cha-
wathe et al. [10] introduced a topology adaptation algo-
rithm to ensure that high-capacity nodes are the ones with
high degree, and low-capacity nodes are within the short
reach of high-capacity nodes. It addresses a different
matching problem in overlay networks but does not
address the topology mismatch problem between the
overlay and physical networks.

To attack the topology mismatch problem, the LTM
scheme [17] is proposed, in which each peer issues a
detector message in a small region so that the peers
receiving the detector can record relative delay information.
Based on the delay information, a receiver can detect and
cut most of the inefficient and redundant logical links, as
well as add closer nodes as its direct neighbors. The major
drawback of LTM is that it needs to synchronize all the
peering nodes and, thus, LTM requires the support of the
Network Time Protocol (NTP) [5], which is critical.

One of our early attempts at alleviating topology
mismatch is called ACE [18], in which every single peer
builds an overlay MST among itself (source node) and the
peers within a certain diameter from the source peer and

then optimizes the neighbor connections that are not on the
tree. However, ACE can only work with one-hop logical
neighbors, and the convergent speed is relatively slow.
Later discussions will show that our SBO proposed in this
paper has a smaller overhead and a faster convergent speed
than ACE.

3 INEFFICIENT OVERLAY TOPOLOGIES

In a P2P system, all participating peers form a P2P network
on top of an underlying physical network. A P2P network is
an abstract logical network called an overlay network. The
maintenance and search operations of a Gnutella peer are
specifically described in [7]. When a new peer wants to join
a P2P network, a bootstrapping node provides the IP
addresses of a list of existing peers in the P2P network. The
new peer then tries to connect with some of these peers. If
some attempts succeed, then the connected peers will be the
new peer’s neighbors. Once this peer joins a P2P network,
the new peer will periodically ping the network connections
and obtain the IP addresses of some other peers in the
network. These IP addresses are cached by this new peer.
When a peer leaves the P2P network and then wants to
rejoin the P2P network, it will try to connect to the peers
whose IP addresses have already been cached. The
mechanism by which a peer joins a P2P network, with
peers randomly joining and leaving, and the nature of a
flooding-based search make an inefficient mismatched
overlay network and cause large amounts of unnecessary
traffic. In this section, we use examples to explain the
message duplications and the mismatch problem.

3.1 Unnecessary Message Duplications in Overlay
Connections

Fig. 1 illustrates some examples of P2P overlay topologies,
where solid lines denote overlay connections among logical
P2P neighbors. Consider the case when node A issues a

LIU ET AL.: BUILDING A SCALABLE BIPARTITE P2P OVERLAY NETWORK 1297

Fig. 1. Examples of P2P overlay topologies.

query. A solid arrow represents a delivery of the query
message along one logical connection. In Gnutella, a peer
forwards an incoming query message to all of its directly
connected peers, except the one that delivered the incoming
query. Thus, as shown in Fig. 1a, A’s query is relayed by
nodes B and C. Peer B forwards the query to C, whereas C
also forwards the query to B. In this case, the pair of
transmissions between B and C causes an unnecessary
message duplication. We can easily observe that the other
three overlays, as shown in Figs. 1b, 1c, and 1d, have fewer
message duplications while retaining the same search scope
for this query.

However, we cannot draw the conclusion that the
overlays in Figs. 1b, 1c, and 1d are better than the one in
Fig. 1a because the above discussion only takes message
and traffic cost into consideration. In fact, compared with
Fig. 1a, the overlays in Figs. 1b, 1c, and 1d have fewer
overlay connections, but may cause longer average query
response times/query latencies. For example, when A
issues a large number of queries, and D has most of the
desired data, the query response time/query latency in the
overlay in Fig. 1b will be much longer than that in the other
three overlays.

Generally, as long as cycles exist in search paths, there will
be message duplications in overlay connections. Some peers
such as B and C are visited by the same query message
multiple times. If a peer receives a query message with the
same Message ID (GUID) as the one that it has received
before, then the peer will discard the message. Since a peer is
aware of this kind of revisit, we call it a Revisit Known (RK)
problem. In the example shown in Fig. 1, although C
eventually knows that the messages from A and B are
duplicate ones, it cannot avoid such duplication on the link
between B and C, unless we remove some logical links such
as BC or AC, as shown in Figs. 1b, 1c, and 1d. On the other
hand, reducing RK duplications might lead to an increase in
the query latency. Hence, the first design objective of SBO is to
reduce message duplications and attack RK problems with
minimal increment in the query response time while
retaining the same search scope of queries.

3.2 Message Duplications in Physical Links and
Topology Mismatch Problem

We have discussed message duplications in overlay con-
nections. However, for an overlay without RK problems,
the same message still can traverse the same physical link
multiple times, causing a large amount of unnecessary
traffic and increasing the query response time. Here is an
example. Suppose Fig. 2a illustrates the underlying physical

network of the overlay, as shown in Fig. 1b, where A, B, C,
and D are peering nodes, and node Y is not a peering node.
We can see that the query message along the overlay path
A! B! C ! D traverses physical link YB twice. Node Y
is visited twice.

Since node Y is not a peering node, the message
duplication (revisit to Y) cannot be avoided. We may
reduce the duplication between link YB by creating a direct
connection between A and C and disconnecting the logical
link BC, resulting in an overlay, as shown in Fig. 1d, but
new duplications indeed occur in other links between Y
and A. Later discussions in this paper will show that SBO
will carefully choose the most efficient overlay connections
under this situation by comparing the delay of logical
connections and observing the behavior of each peering
node.

Fig. 2b illustrates another underlying topology of the
overlay, as shown in Fig. 1b. For a query message along the
overlay path A! B! C ! D, D is visited three times.
Node D is a peering node, but in the first two visits, D is
visited as a nonpeering node. These first two visits are not
known by the P2P application. We define this kind of revisit
as a Revisit Not known (RN) problem. In this case, three
physical links have been traversed twice, as shown in
Fig. 2b; thus, a topology mismatch problem occurs.

It is more effective to solve RN problems than RK
problems, since RN problems not only increase message
duplications/traffic cost as RK problems do, but also
significantly increase the query response time. In Fig. 2b,
node D has been visited by the same query message twice
before it “formally” receives the query as a peering node. If
we can replace the overlay in Fig. 1b with the one in Fig. 1c
for the physical topology shown in Fig. 2b, then there will
be no message duplication at all, and the response time
from D to A will decrease significantly or substantially.
Hence, the second objective of SBO is to improve search
performance by alleviating RN problems.

Indeed, the stochastic peer connection and peers randomly
joining and leaving a P2P network cause large amounts of
topology mismatch between the P2P overlay network and the
physical underlying network. Studies in [22] have shown that
only 2 percent to 5 percent of Gnutella connections link peers
within a single autonomous system (AS). However, more
than 40 percent of all Gnutella peers are located within the
top-10 ASs. This means that most Gnutella-generated traffic
crosses AS borders, increasing the topology mismatch costs.
Our simulation results in Section 5 show that 744,734 out of
1,000,000 query responses traverse along mismatched paths,
in each of which at least one of the peering nodes is visited as a
nonpeering node more than once.

4 SBO

Optimizing inefficient overlay topologies can fundamen-
tally improve P2P search efficiency. All the existing
approaches such as forwarding-based and cache-based
improvement strategies could be employed based upon an
efficient overlay. In this paper, we propose a design of SBO
that effectively avoids RK and RN problems to improve
search efficiency in unstructured P2P networks.

1298 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

Fig. 2. Example of physical topologies.

4.1 Our First Attempt

Before going to SBO, we briefly introduce our early attempt,
ACE, so that we can clearly see why SBO outperforms ACE
in the traffic cost and response time reduction.

ACE uses the network delay between two peering nodes as
a metric for measuring the cost between peers. Each peer
probes the costs with its immediate logical neighbors and
forms a neighbor cost table. Two neighboring peers exchange
their neighbor cost tables so that a peer can obtain the cost
between any pair of its logical neighbors. Thus, a small
overlay topology of a source peer and all its logical neighbors
is known to the source peer. If we use NðSÞ to denote the set of
direct logical neighbors of peer S, then each peer S has the
information to obtain the overlay topology including S itself
and NðSÞ, as illustrated in Fig. 3a.

Based on the obtained neighbor cost tables, an MST
among each peer S and its immediate logical neighbors
ðS [NðSÞÞ is built, as shown in Fig. 3b. Then, the
message routing strategy of a peer is to select the peers
that are the direct neighbors in the MST to send its
queries. We can see that, after ACE operations, the traffic
cost is reduced from 7þ 5þ 10þ 12þ 6� 2þ 8� 2þ 5�
2 ¼ 72 to 7þ 5þ 10þ 8 ¼ 30. After recognizing the so-
called nonflooding neighbors such as peer H, as shown in
Fig. 3, ACE selects closer peers as its new neighbors [29].

It is also shown that a larger diameter ACE leads to a
better topology optimization rate. However, working with-
in a larger diameter often means more information
exchange and a higher overhead. Can we enable the peers
to compute MSTs more than one hop away without an
additional overhead? This is one direct motivation for the
design of SBO.

4.2 Design of SBO

SBO employs an efficient strategy to select query-forward-
ing paths and logical neighbors. In the SBO design, we
divide all the nodes into two groups: white ones and red
ones. The advantage of SBO is twofold: 1) instead of letting
every node probe the neighbor distances and compute the
MST, SBO assigns one group of nodes to probe only and lets
the other group compute only, reducing the average over-
head incurred by each node, and 2) due to the bipartite
property, SBO nodes are able to compute MST in a two-hop
depth without an extra overhead, thus increasing the
convergent speed of the algorithm.

In the first phase of SBO, each joining peer is randomly
assigned a color: white or red. Each peer is only connected
with peers in a different color. In the second phase, each
white peer probes its distances with all its red neighbors

and reports the information to the red neighbors. In the
third phase, each red peer computes efficient forwarding
paths so that the same search scope can be retained without
the need to flood a query to all neighbors. In the fourth
phase, a white peer that is not on the forwarding path tries
to find a more efficient red peer to replace its current
neighbor. Thus, the topology construction and optimization
of SBO consist of four phases: bootstrapping a new peer,
neighbor distance probing and reporting, forwarding
connections (FCs) computing, and direct neighbor replace-
ment. Details are explained as follows:

Phase 1: Bootstrapping a new peer. A typical unstruc-
tured P2P system provides several permanent well-known
bootstrap hosts to maintain a list of recently joined peers so
that a new incoming peer can find an initial host to start its
first connection by contacting the bootstrap hosts. In the
design of SBO, when a new peer is joining the P2P system, it
will randomly take an initial color: red or white. A peer
should keep its color until it leaves and again randomly select
a color when it rejoins the system. Thus, each peer has a color
associated with it, and all peers are separated into two groups:
red and white. In SBO, a bootstrap host will provide the
joining peer a list of active peers with color information. The
joining peer then tries to construct connections to the different
color peers in the list. Fig. 4 illustrates a new peer’s joining
process. In this way, all the peers form a bipartite overlay, in
which a red peer will only have white peers as its direct
neighbors, and vice versa.

Once a peer has joined the P2P system, it will
periodically ping the network connections and obtain the
IP addresses of other peers in the network, which will be
used to create new connections for the peer’s rejoining or in
case the peer loses some of its connections with its
neighbors due to the neighbors’ departure or failure, or
faults in the underlying networks.

Phase 2: Neighbor distance probing and reporting by
white peers. We use the network delay between two peers
as a metric for measuring the traffic cost between peers. We
modify the Limewire implementation of the Gnutella V0.6
P2P protocol [7] by adding one routing message type for a
peer to measure the transmission cost with its neighbors.
Each white peer probes the costs with its immediate logical
neighbors, forms a neighbor cost table, and sends this table
to all its neighbors that are all red peers. The impact of the

LIU ET AL.: BUILDING A SCALABLE BIPARTITE P2P OVERLAY NETWORK 1299

Fig. 3. ACE.

Fig. 4. Bootstrapping a new peer.

frequency of the white peers’ probing and cost table
reporting operation will be discussed in more detail in
Section 5.

We use N2ðSÞ to denote the set of peers being two hops
away from S. Since each red peer P receives the cost table
from its white neighbors about its all red neighbors, the red
peer P has the information to obtain the overlay topology
including P itself, NðP Þ, and N2ðP Þ, as illustrated in Fig. 5a.
Note that in SBO, the overlay forms a bipartite topology, so
there are no connections between any pairs of peers in
N2ðP Þ. Thus, we only require all the white peers to probe
the costs to their neighbors and send out the cost tables.
There is no need for the red peers to probe the distance.

Phase 3: FC computing by red peers. Based on cost tables
obtained from neighbors, an MST can be built by each red
peer such as P , as shown in Fig. 5b. Since a red peer builds an
MST in a two-hop diameter, a white peer does not need to
build an MST. The thick lines in the MST are selected as FCs,
whereas the remaining lines are non-FCs (NFCs). Queries are
only forwarded along FCs. For example, in Fig. 5b, P will
send/forward queries to A, B, and F , but not E. Peer P also
informs E that E is a nonforwarding neighbor. This
information will be used by E in phase 4, that is, direct
neighbor replacement.

Fig. 5c illustrates how the query message fromP is flooded
along the connections based on Fig. 5a. We can see many
message duplications, that is, the RK problem. The total
traffic cost incurred by the query is 3þ 6þ 5þ 5þ 12þ 3þ
5þ 6þ 9þ 9þ 15þ 11þ 11 ¼ 100. After FC computing, as
shown in Fig. 5b, the traffic cost incurred by this query
becomes 3þ 6þ 5þ 3þ 5þ 6þ 15 ¼ 43, as shown in Fig. 5d.

Although FC computing can reduce a lot of traffic while
retaining the same search scope, as we described earlier, the
price is to sacrifice the query response time or the query
latency. For instance, P issues a query, andE has the desired
data. The response time in Fig. 5c is 2� 12 ¼ 24. After FC
computing, the response time becomes 2� ð3þ 6þ 5Þ ¼ 28.
Based on this observation, we will further improve our FC
selecting algorithm later in this section.

Phase 4: Direct neighbor replacement by white peers.
This operation is only conducted by white peers. The goal
of neighbor replacement is to alleviate the topology
mismatch problem or RN problems. As we have explained,
solving the RN problem is essential, since it will not only
reduce message duplications and the traffic cost, but also
shorten the response times.

After computing an MST among the peers within two
hops, a red peer P is able to send its queries to all the peers
within two hops. Some white peers become nonforwarding
neighbors, such as E in Fig. 5. In this case, for peer E, P is
no longer its neighbor. In the phase of direct neighbor
replacement, a nonforwarding neighbor E will try to find
another red peer being two hops away from P to replace P
as its new neighbor.

Peer P will send the neighbor cost tables that it collected
from A, B, and F to the nonforwarding neighbor E so that
E has enough information to find another neighbor to form
a more efficient topology. Having received the cost tables, E
can obtain the overlay topology among P and the peers
NðP Þ and N2ðP Þ. In the design of SBO, E will probe the
round-trip times (RTTs) to all the red peers in N2ðP Þ and
sort the red peers according to their RTTs. Peer E then
selects the one with the smallest RTT, for example, peer D
in Fig. 6a. There are three cases for peer E that finds D as its
nearest red peer.

Case 1. The delay of ED is smaller than that of EP. The
connection of ED will be created, and D becomes E’s direct
logical neighbor. The connection EP will be put into E’s
will-cut list, which is a list of connections to be cut later. A
connection in a will-cut list will be disconnected when it has
been in the list for a certain period of time. A peer will not
send or forward any queries to the connections in its will-
cut list.

The reason for E not disconnecting EP immediately is
that some query responses might be sent back along the
overlay path EP for some earlier queries. Disconnecting
NFCs such as EP immediately may cause a serious response
loss problem. Fig. 6b is the topology after E connects with D
and disconnects with P after a time-out period.

1300 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

Fig. 5. A red peer P has a small overlay topology of NðP Þ and N2ðP Þ and

computes the efficient forwarding paths.
Fig. 6. An example of neighbor replacement.

Case 2. The delay of ED is larger than that of EP but is
smaller than the larger delays of PF and FD. For example, if
ED ¼ 13, as shown in Fig. 6c, then 12 < ED < 15. In this
case, E will create the connection of ED and treat D as its
direct neighbor. Peer E will not put connection EP into its
will-cut list until it sends its neighbor cost table to D so that
D still thinks that the connection of EP exists. Note that the
algorithm is fully distributed. Thus, when red peer D
conducts the FC computing, F will become D’s nonfor-
warding neighbor. The white peer F will conduct the same
operations as what peer E has done and may try to find a
better red peer to replace node D as its neighbor.

Case 3. If ED has the largest delay among EP, PF, and FD,
then peer E will pick the second nearest peer in N2ðP Þ such
as C, as shown in Fig. 6d, and repeat the above process until
it finds a better node to replace P as its neighbor or until it
has tried all the peers in N2ðP Þ.

The first three operations are relatively straightforward, so
we do not provide the detailed pseudocode, and the
pseudocode of the direct neighbor replacement operation is
given as follows:

For a white peer i

For each peer j in white peer i’s nonforwarding neighbor
list

Replaced ¼ false;

List ¼ all the two hop away red neighbors of j, N2ðjÞ;
Peer i pings all the peers in the list;

Add peers’ RTT information to the list;

While the list is not empty and Replaced ¼ false

remove the peer h with the smallest RTT from the list;

if RTTih < RTTij {replace j by h in i’s neighbor list;
Put j into the will-cut list;

Replaced ¼ true;}

else

Common list¼all common neighbors of peer j and h;

While Common list is not empty and Replace¼ false

Randomly remove a peer k from the

Common_list;

RTTk ¼ maxfRTTkj;RTTkhg;
if RTTih < RTTk

{add h to i’s neighbor list;

remove j from i’s neighbor list right after

i finds out jk or kh is disconnected;

Replaced ¼ true;};

End While;

End While;

End For;

Based on the above discussions, we can see the major
advantages of using a bipartite overlay. First, the operation
overhead is reduced. In ACE, every peer is required to
probe the neighbor distance and compute the MST, whereas
in SBO, white peers do the probing and red peers do the
computing. Second, SBO extends ACE into two-hop
neighbors, without additional information exchange. For a
red peer such as peer P in Fig. 5, it is sure that the two-hop
topology that it gets is complete, as the bipartite property
guarantees that there are no connections between P and A,
C, or D, or among A, C, and D, since they are all red peers.
As a result, our experimental results show that SBO
outperforms ACE significantly.

4.3 Further Improvements

Previous studies have shown that queries and queried data
have significant locality [25], [30]. A small number of peers
issue a large portion of the queries, and only 5 percent of the
files account for 50 percent of all transfers. Peers’ behaviors
are different in query frequency and response frequency. We
define a query-heavy peer as a peer that issues queries
frequently, and a response-heavy peer as a peer that often
responds to queries. We have discussed in the previous
section that reducing RK duplication may lead to an increase
in the query response time. To avoid disconnecting a path
from/to a query- or response-heavy peer, we further improve
SBO by keeping some single-direction connections (SDCs).

Query-heavy peer. If the number of queries that a peer has
issued or forwarded is five times more than the average
number of queries in the last minute (the number of times,
that is, five, is selected based on our simulation results),
then it is defined as a query-heavy peer. In our simulation,
with an average number of neighbors being 6, the initial
time to live ðTTLÞ ¼ 7, an average peer lifetime of
10 minutes, and a query frequency of 0.3 query issued per
peer per minute, we measured that the average number of
queries processed (issued and forwarded) by each peer is
about 15 to 25 per second. Thus, a peer is identified as a
query-heavy peer if it processed more than 75 queries per
second.

Response-heavy peer. In the Gnutella protocol V0.6,
QueryHit (response) messages are sent along the same
path that carried the incoming query message. In our
simulation, a peer delivers or forwards three responses per
minute on the average. In SBO, a peer that processed more
than 20 responses in the last minute is defined as a
response-heavy peer (the number of responses, that is, 20,
is selected based on our simulation).

SDCs. Every peer in SBO will monitor its own status. If a
peer finds itself a query or response-heavy peer, then it will
report its status to all its neighbors. Thus, when a red peer
computes FCs to form the forwarding paths, a white neighbor
that is not a forwarding peer may be a query or response-
heavy peer. The connection between the red peer and the
white peer will be set as an SDC. For example, if peer E in
Fig. 5b is a response-heavy peer, instead of setting PE as an
NFC, then it will set PE as an SDC P! E, whereP will send/
forward query messages to E, whereas E will not send/
forward any query messages to P . In this case, E will still do
its neighbor replacement operation. The SDC P! E will be
disabled whenE is no longer a response-heavy peer. IfE is a
query-heavy peer, then connection PE will be set as an SDC
E! P, where E will send/forward query messages to P ,
whereas P will not send/forward any query messages to E.

The simulation results in Section 5 will show that the
design of SDC further improves the system search
performance.

4.4 Traffic Overhead of SBO Optimizations

The simplicity of blind flooding makes it very popular in
practice. This mechanism relays a query message to all its
logical neighbors except the incoming peer. For each query,
each peer records the neighbors that relay the query to it. A
peer will discard a query message that has been received
before. Therefore, in the worst case, the same query message
can be sent on each logical link at most twice. For an overlay

LIU ET AL.: BUILDING A SCALABLE BIPARTITE P2P OVERLAY NETWORK 1301

network withnpeers, we use cn to denote the average number
of neighbors and use ce to denote the average number of
physical links in each logical link. The total traffic caused by a
query is less than or equal to n cn ce. In a typical P2P system,
the value ofn (more than millions) is much larger than cn (less
than tens) [26], so we can view both cn and ce as constant
numbers. Thus, in the flooding-based search, the traffic
incurred by one query from an arbitrary peer in a P2P
network is OðnÞ. As observed in [27], each peer issues 0.3
query per minute on the average. Thus, the per-minute traffic
incurred by a P2P network with n peers is Oðn2Þ.

One optimization step of SBO includes all white peers’
neighbor distance probing/reporting and neighbor replace-
ment. In the worst case, each white peer P needs to probe
every peer in N2ðP Þ. It is reasonable to assume that the
traffic overhead of peer A probing peer B is equal to a query
message traversing the connection AB twice. If each peer
conducts the SBO optimization operation k times per
minute, then the total traffic overhead per minute is

k� n

2
� 2cnce þ cnce þ 2c2

nce
� �� �

¼ kcnceð3þ 2cnÞ
2

n:

Our simulation results will show that the optimal value
for k is less than 1, so the per-minute traffic overhead
incurred by SBO to the P2P network is OðnÞ. Compared
with the query traffic savings, the traffic overhead incurred
by the SBO optimization is relatively trivial.

4.5 Property of SBO Operations

The strength of the SBO optimization operation is that it
reduces the search traffic cost and query response time
without shrinking the search scope of queries. In most
previous topology optimization approaches, the topology
mismatch problem is attacked by simply letting all the peers
keep replacing their direct neighbors with physically closer
peers without considering the search scope issue. These kinds
of approaches, however, often destroy the connectivity of
overlays and, thus, create many isolated islands in P2P
systems. In this section, we will prove that the SBO operations
will not increase the number of components of a graph.

Theorem 1. Given a bipartite graph G ¼ ðV;EÞ, the SBO
optimization operations will not increase G’s component
number.

Proof. We prove by contradiction. Suppose our claim is false.
Then, there exists at least one component C, where C is a
subgraph of G, which could be disconnected by the SBO
operations. Suppose C is disconnected into two parts, X
and Y, after the SBO operations, as shown in Fig. 7.

Before the SBO optimization, there must be one or
more edges between X and Y, since C is connected. Let M
denote the set of the edges between X and Y. Among all
these edges in M, we choose the shortest one uv 2 M.
Here, we assume that there are no exact equal-length
edges in the system, so uv is the only shortest edge in M.
Since G is a bipartite graph, peers u and v must have
different colors. Without loss of generality, we can
assume that u is red and v is white. C being disconnected
after the SBO operations means that none of the edges in
M, including uv, is selected as u’s forwarding path. We
know that the red peer u employs an MST algorithm
such as the Kruskal algorithm in the FC computing
operation. Because v is u’s one-hop neighbor, v must be

included in u’s MST. In the Kruskal algorithm, edges are
sorted from shortest to longest. If the edge uv is not
selected by the MST, then it means that there is already
another path P ðuv =2 P Þ between u and v, and the length
of each edge in P is shorter than uv. As P is between X
and Y, at least one of the edges in P , say, edge e, belongs
to M. We then have e < uv, which is a contradiction to
our choice that uv is the shortest edge in M and, thus, the
theorem. tu

5 PERFORMANCE EVALUATION

To evaluate the effectiveness of SBO, we conducted
comprehensive simulations. Based on the real P2P overlay
topology and the generated networks, we simulate P2P
flooding search, host joining/leaving behavior, SBO opera-
tions, and other previous approaches.

5.1 Simulation Methodology

We use two types of topologies, physical topology and
logical topology, in our simulation. The physical topology
should represent the real topology with Internet character-
istics. The logical topology represents the overlay topology
built on top of the physical topology. All P2P nodes are in a
subset of nodes in the physical topology. Previous studies
have shown that both large-scale Internet physical topolo-
gies [28] and P2P overlay topologies [24] follow the small
world and power law properties. Power law describes the
node degree, whereas the small world describes character-
istics of path length and clustering coefficients [9]. The
study in [24] found that the topologies generated using the
AS model have the properties of the small world and power
law. The Boston University Representative Internet Topol-
ogy gEnerator (BRITE) [4] is a topology generation tool that
provides the option to generate topologies based on the AS
model. Using BRITE, we generate three physical topologies,
each with 27,000 nodes. We also generate logical topologies,
with the number of peers ranging from 3,000 to 8,000. The
average number of neighbors of each node ranges from four
to 10. We simulate SBO for all the generated logical
topologies on top of each of the three generated physical
topologies. We also simulate this approach in a real-world
P2P topology (based on a decision support system (DSS)
clip-2 trace). We obtained consistent results on the real-
world topology and the generated topologies.

In this evaluation, we simulate the flooding search used
in the Gnutella network by conducting the Breadth-First

1302 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

Fig. 7. Proof of the property of SBO operations.

Search (BFS) algorithm from a specific node. A search
operation is simulated by randomly choosing a peer as the
sender and a keyword according to Zipf distribution. In our
simulation, 1,000,000 search operations are simulated. A
well-designed search mechanism should seek to optimize
both efficiency and quality of service (QoS). Hence, we
mainly focus on two performance metrics: the average
traffic cost and the query response time. Traffic cost is one
of the parameters that most seriously concern network
administrators. Heavy network traffic limits the scalability
of P2P networks [23] and is also a reason why a network
administrator may prohibit P2P applications. We define the
traffic cost as the network resource used in an information
search process of P2P systems, which is mainly a function of
consumed network bandwidth and other related expenses.
The response time of a query is one of the parameters
concerned by P2P users. We define the response time of a
query as the time period from when the query is issued
until when the source peer received a response result from
the first responder.

5.2 The Amount of Mismatch

We first quantitatively evaluate how serious the topology
mismatch problem is in Gnutella-like networks. We insert
1,000,000 queries into different topologies and track the
response of each query message to see if the response path
is a mismatching path. We count a path as a mismatching
path if a peering node in the path has been visited more
than once, that is, the RN problem. The results in Fig. 8
show that about 75 percent of the paths have the topology
mismatch problem. Although the mismatch problem is
slightly less serious when the average number of neighbors
increases, we can see that the mismatching degree is not
very sensitive to the average number of neighbors when the
number is changed from four to 10. We expect that the
mismatching degree can be greatly reduced if the average
number of neighbors increases significantly. However, an
extremely large average number of neighbors is not realistic
in existing P2P networks.

5.3 Effectiveness of SBO in Static Environments

We study the effectiveness of SBO in a static P2P
environment where the peers do not join and leave
frequently. This will show, without changing the overlay
topology, how many SBO optimization steps are required to
reach a better topology matching. Here, one step means that
each red peer collects the neighbor cost tables from its

neighboring white peers and computes the efficient FCs,
and its neighbors finish neighbor replacement operations if
needed. Note that in the design of SBO, if the reported
information from all neighbors, including neighbor status
and cost tables, are not changed, then the red peer will not
compute FCs. Consequently, the neighboring white peers
will not do the neighbor replacement operations.

One goal of SBO is to reduce the traffic cost as much as
possible while retaining the same search scope. We generate
500,000 queries and simulate flooding search for different
topologies, with the average neighbor number as four, six,
eight, and 10 after each SBO optimization step. Fig. 9 shows
that the traffic cost decreases when the optimization opera-
tions of SBO are conducted multiple times, where the search
scope is all 7,000 peers. To cover the same search scope, SBO
reduces the traffic cost significantly in the first two optimiza-
tion steps. We can see that the traffic cost reduction reaches a
threshold after eight to 10 steps of the SBO optimization.

Short query response time is always preferred in P2P
systems. The simulation results in Fig. 10 show that SBO
can effectively shorten the query response time by about
60 percent in the first 10 optimization steps. The trade-off
between the query traffic cost and response time has been
investigated in the recent years. P2P systems with a large
number of average connections offer a faster search speed
while increasing traffic. One of the strengths of SBO is that it
reduces both the query traffic cost and response time
without decreasing the query success rate. Our other
simulation results also show that different densities of

LIU ET AL.: BUILDING A SCALABLE BIPARTITE P2P OVERLAY NETWORK 1303

Fig. 8. The percent of query responses along mismatching paths. Fig. 9. Traffic reduction versus optimization steps.

Fig. 10. Response time versus optimization steps.

logical peers or physical nodes will not degrade the
effectiveness of SBO. The average traffic cost is only
proportional to the average number of neighbors and the
average cost of logical links, which is consistent with
previous analysis.

5.4 Effectiveness and Frequency of
SBO Optimizations

We further evaluate the effectiveness of SBO in dynamic P2P
systems and explore the best frequency for each peer to
conduct the SBO optimization operations. There are two ways
for a white peer to decide when to conduct neighbor probing
and reporting, namely, periodic and event driven. In the
periodic approach, each white peer conducts neighbor
distance probing at a predetermined interval q. After probing
the distances to all the neighbors, a white peer sends the cost
table to its neighboring red peers. In the event-driven
approach, a white peer produces and sends an updated cost
table to its neighboring red peers only if there is a change in its
logical connections with its neighbors, such as on a neighbor’s
leaving or on a peer’s joining as its new neighbor.

The value q is a critical factor for the performance of the
periodic approach. We have investigated the impact of
different values of q ranging from 20 to 600 seconds. Figs. 11
and 12 show the results on some representative samples of q
at 30, 60, 90, and 120 seconds, respectively, where the x-axis
indicates the time elapsed since the first probing or event
occurred. A small q leads to a fast convergent speed.
However, if q is too small, for example, q ¼ 30, then peers
will conduct the optimization operations too often, resulting

in the overhead still growing although the reduction of the
traffic cost and response time have already reached a
threshold. On the other hand, if q is too large, for example,
q ¼ 120, then the frequency of the optimization operations
are not frequent enough to catch the changes from the
random joining and leaving of peers. Thus, the convergent
speed is slow, and the reduction of the traffic cost and the
response time are limited. We define the value of q to be
optimal if it incurs the smallest traffic cost, which is the sum
of the query flooding traffic and the optimization operation
overhead traffic, and the difference between its average
response time and the response time threshold is not more
than 5 percent. Figs. 11 and 12 suggest that q ¼ 90 seconds is
the best, with about 85 percent of reduction on the traffic
cost and 60 percent of reduction on the response time. Our
results for different setups show that the optimal q ranges
from 60 to 90 seconds, as long as the average peer lifetime
remains at 10 minutes. The value of q should be able to
adapt to the average peer lifetime in order to achieve
optimal performance. Figs. 11 and 12 also show that the
periodic approach, with q ¼ 90 sec, outperforms the event-
driven approach on traffic reduction.

Different values of the average peer lifetime have been
presented by previous studies [8], [24]. We further tune the
average peer lifetime in our simulation. Fig. 13 shows that
the SBO operations can be conducted less frequently if the
average peer lifetime is longer. From the simulation results,
we also see that, if the average peer lifetime is longer than
37 minutes, then the event-driven policy outperforms the
periodic policy. In a hierarchical P2P system such as
KaZaA, the flooding-based search is only employed among
superpeers. The mechanism to select superpeers makes the
superpeers more stable than leaf peers. Thus, an event-driven
policy is highly recommended when SBO is implemented
among superpeers.

5.5 SBO with SDC and Index Caching

We have discussed the design of SDC in Section 4.3 to
further improve SBO. In this section, we evaluate SDC on
top of SBO and a strategy of combining SBO with the
response index caching scheme. We plot the traffic cost and
response time in a Gnutella-like system without any
optimization, with query index caching only, with the
SBO optimization only, with SDC-enabled SBO, and with
SDC-enabled SBO plus response index caching, as shown in

1304 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

Fig. 11. Traffic cost reduction in a dynamic P2P environment.

Fig. 12. Response time reduction in a dynamic P2P environment.

Fig. 13. Optimal SBO operation interval.

Figs. 14 and 15. The design of SDC can further improve the
average response time of SBO by about 25 percent, with a
very trivial traffic cost increment. Also, compared with
SBO, by combining SDC-enabled SBO with response index
caching, the traffic cost is reduced by about 50 percent
without shrinking the search scope, and the average query
response time is reduced by about 42 percent.

5.6 Comparison with Previous Approaches

We compare the performance of the three approaches, the
previous ACE [29], LTM [19], and the proposed SBO in
dynamic P2P environments, in Figs. 16 and 17. In this
simulation, the size of the overlay topology is 5,000, and the
physical topology has 27,000 nodes.

In the figures, we can see that the convergent speed of
ACE is the slowest, so its overall performance in dynamic
environments is not as good as SBO and LTM. SBO,
incurring only half of the overhead of ACE, reduces the
traffic cost the most. Although the convergent speed of LTM
is fast and it reduces the response time a little bit more than
SBO, it needs the support of NTP [5] to synchronize the
peering nodes, which means a lot of additional overhead.
Overall, SBO outperforms ACE and LTM.

6 CONCLUSION AND FUTURE WORK

We propose an SBO to attack the topology mismatch
problem in P2P systems. SBO is scalable and completely
distributed in the sense that it does not require any global
knowledge when each node is optimizing its logical
neighborhood. We show that the significant performance

benefit of SBO is consistent with various network sizes and

average numbers of neighbors. SBO achieves about 85 per-

cent of reduction on the traffic cost and about 60 percent of

reduction in the query response time. Our experimental

results also demonstrate that SBO significantly outperforms

existing approaches to address the overlay mismatch

problem.
Indeed, there are two fundamental issues in P2P systems:

efficiency and security. Over the past years, many efforts

have been made to improve the efficiency of P2P systems,

and SBO is one of them. Current P2P systems, however, are

facing more challenges from security problems. Our future

work will consider how we can provide a healthier P2P

environment. We will pay more attention on P2P reliability

[16], privacy [12], incentive [15], and trustworthiness [13].

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their helpful

comments. This work was supported in part by Hong Kong

RGC Grants HKUST6152/06E and HKUST6264/04E, the

China National Natural Science Foundation (NSFC) Grants

60573129 and 60673166, the US National Science Foundation

(NSF) Grants CCF 0514078, CNS 0549006, and CNS 0551464,

and Microsoft Research Asia. Some preliminary results of this

work were presented in the Proceedings of the 18th

International Parallel and Distributed Processing Sympo-

sium (IPDPS 2004).

LIU ET AL.: BUILDING A SCALABLE BIPARTITE P2P OVERLAY NETWORK 1305

Fig. 14. Average traffic cost of five schemes.

Fig. 15. Average response time of five schemes.

Fig. 16. Comparison on traffic cost.

Fig. 17. Comparison on response time.

REFERENCES

[1] Gnutella Network Size, http://www.limewire.com/index.jsp/
size, 2007.

[2] FastTrack, http://developer.berlios.de/projects/gift-fasttrack/,
2007.

[3] KaZaA, http://www.kazaa.com, 2007.
[4] BRITE, http://www.cs.bu.edu/brite/, 2007.
[5] NTP: The Network Time Protocol, http://www.ntp.org/, 2007.
[6] BitTorrent, http://www.bittorrent.com/, 2007.
[7] The Gnutella Protocol Specification 0.6, http://rfc-gnutella.

sourceforge.net, 2007.
[8] R. Bhagwan, S. Savage, and G.M. Voelker, “Understanding

Availability,” Proc. Second Int’l Workshop Peer-to-Peer Systems
(IPTPS ’03), 2003.

[9] T. Bu and D. Towsley, “On Distinguishing between Internet
Power Law Topology Generators,” Proc. IEEE INFOCOM, 2002.

[10] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S.
Shenker, “Making Gnutella-Like P2P Systems Scalable,” Proc.
ACM SIGCOMM, 2003.

[11] Y. Chu, S.G. Rao, and H. Zhang, “A Case for End System
Multicast,” Proc. ACM SIGMETRICS, 2000.

[12] J. Han and Y. Liu, “Rumor Riding: Anonymizing Unstructured
Peer-to-Peer Systems,” Proc. 14th IEEE Int’l Conf. Network Protocols
(ICNP ’06), 2006.

[13] J. Han and Y. Liu, “Dubious Feedback: Fair or Not,” Proc. Int’l
Workshop Peer-to-Peer Information Management (P2PIM ’06), 2006.

[14] B. Krishnamurthy and J. Wang, “Topology Modeling via Cluster
Graphs,” Proc. ACM SIGCOMM Internet Measurement Workshop
’01, 2001.

[15] X. Liao, H. Jin, Y. Liu, L.M. Ni, and D. Deng, “AnySee: Peer-to-
Peer Live Streaming,” Proc. IEEE INFOCOM, 2006.

[16] X. Liu, L. Xiao, A. Kreling, and Y. Liu, “Optimizing Overlay
Topology by Reducing Cut Vertices,” Proc. 16th ACM Int’l
Workshop Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV ’06), 2006.

[17] Y. Liu, X. Liu, L. Xiao, L.M. Ni, and X. Zhang, “Location-Aware
Topology Matching in P2P Systems,” Proc. IEEE INFOCOM, 2004.

[18] Y. Liu, Z. Zhuang, L. Xiao, and L.M. Ni, “A Distributed Approach
to Solving Overlay Mismatch Problem,” Proc. 24th Int’l Conf.
Distributed Computing Systems (ICDCS ’04), 2004.

[19] Y. Liu, L. Xiao, X. Liu, L.M. Ni, and X. Zhang, “Location
Awareness in Unstructured Peer-to-Peer Systems,” IEEE Trans.
Parallel and Distributed Systems, vol. 16, pp. 163-174, 2005.

[20] V.N. Padmanabhan and L. Subramanian, “An Investigation of
Geographic Mapping Techniques for Internet Hosts,” Proc. ACM
SIGCOMM, 2001.

[21] D. Qiu and R. Srikant, “Modeling and Performance Analysis of
BitTorrent-Like Peer-to-Peer Networks,” Proc. ACM SIGCOMM,
2004.

[22] M. Ripeanu, A. Iamnitchi, and I. Foster, “Mapping the Gnutella
Network,” IEEE Internet Computing, vol. 6, 2002.

[23] J. Ritter, “Why Gnutella Can’t Scale. No, Really,” http://
www.tch.org/gnutella.html, 2001.

[24] S. Saroiu, P. Gummadi, and S. Gribble, “A Measurement Study of
Peer-to-Peer File Sharing Systems,” Proc. ACM/SPIE Conf. Multi-
media Computing and Networking (MMCN ’02), 2002.

[25] M.T. Schlosser and S.D. Kamvar, “Availability and Locality
Measurements of Peer-to-Peer File Systems,” Proc. SPIE ITCom
Conf. Scalability and Traffic Control in IP Networks, 2002.

[26] S. Sen and J. Wang, “Analyzing Peer-to-Peer Traffic across Large
Networks,” Proc. ACM SIGCOMM Internet Measurement Workshop
’02, 2002.

[27] K. Sripanidkulchai, “The Popularity of Gnutella Queries and
Its Implications on Scalability,” http://www-2.cs.cmu.edu/
~kunwadee/research/p2p/gnutella.html, 2007.

[28] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W.
Willinger, “Network Topology Generators: Degree-Based versus
Structural,” Proc. ACM SIGCOMM, 2002.

[29] L. Xiao, Y. Liu, and L.M. Ni, “Improving Unstructured Peer-to-
Peer Systems by Adaptive Connection Establishment,” IEEE
Trans. Computers, 2005.

[30] Y. Xie and D. O’Hallaron, “Locality in Search Engine Queries and
Its Implications for Caching,” Proc. IEEE INFOCOM, 2002.

[31] Z. Xu, C. Tang, and Z. Zhang, “Building Topology-Aware
Overlays Using Global Soft-State,” Proc. 23rd Int’l Conf. Distributed
Computing Systems (ICDCS ’03), 2003.

Yunhao Liu received the BS degree from the
Department of Automation, Tsinghua University
in 1995, the MA degree from Beijing Foreign
Studies University in 1997, and the MS and PhD
degrees in computer science and engineering
from Michigan State University in 2003 and 2004,
respectively. He is now an assistant professor in
the Department of Computer Science and En-
gineering, Hong Kong University of Science and
Technology (HKUST). His research interests

include peer-to-peer and grid computing, sensor networks, pervasive
computing, network security, and high-speed networking. He is a senior
member of the IEEE and the IEEE Computer Society.

Li Xiao received the BS and MS degrees in
computer science from Northwestern Polytech-
nic University, China, and the PhD degree in
computer science from the College of William
and Mary in 2002. She is an assistant professor
of computer science and engineering at Michi-
gan State University. Her research interests are
in the areas of distributed and Internet systems,
overlay systems and applications, sensor net-
works, system resource management, and de-

sign and implementation of experimental algorithms. She is a member of
the ACM, the IEEE, the IEEE Computer Society, and IEEE Women in
Engineering.

Lionel M. Ni received the PhD degree in
electrical and computer engineering from Pur-
due University, West Lafayette, Indiana, in 1980.
He is a chair professor at the Hong Kong
University of Science and Technology (HKUST)
and heads the Department of Computer Science
and Engineering, HKUST. He is also the director
of the HKUST China Ministry of Education/
Microsoft Research Asia IT Key Laboratory. He
has chaired many professional conferences and

has received a number of awards for authoring outstanding papers. He
is a coauthor of the book Interconnection Networks: An Engineering
Approach (with Jose Duato and Sudhakar Yalamanchili, Morgan
Kaufmann, 2002) and the book Smart Phone and Next Generation
Mobile Computing (with Pei Zheng, Morgan Kaufmann, 2006). He is a
fellow of the IEEE and a member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1306 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

