
Flashback: A Peer-to-Peer Web Server for Flash Crowds

Mayur Deshpande, Abhishek Amit, Mason Chang, Nalini Venkatasubramanian, and Sharad Mehrotra
University of California, Irvine

email: {mayur,aamit,nalini,sharad}@ics.uci.edu, {changm}@uci.edu

Abstract

We present Flashback 1, a ready-to-use system for scalably han-
dling large unexpected traffic spikes on web-sites. Unlike previous
systems, our approach does not rely on any intermediate nodes to
cache content. Instead, the clients (browsers) create a dynamic,
self-scaling Peer-to-Peer (P2P) web-server that grows and shrinks
according to the load. This approach translates into a challeng-
ing problem – a P2P data exchange protocol that can operate in
churn rates where more than 90% of peers can leave the over-
lay in under 10 seconds. This is at least an order of magnitude
higher churn rate than previously addressed research. Addition-
ally, our system operates under two strict constraints – users are
assured that they upload only as much as they download and sec-
ond, end-user browsing experience is preserved, i.e., low latency
downloads and zero configuration or download of any software.
Various innovations were required to meet these challenges. Key
among them are (a) A TCP-friendly, UDP protocol (Roulette) for
Tit-For-Tat data exchange under extreme churn, (b) A novel data
structure (NOIS) for partial-data management and (c) A distrib-
uted hole-punching protocol for automatic NAT traversal. Exper-
imental results show the effectiveness and near optimal scaling of
Flashback. For a web-server (and clients) running on a DSL-like
connection, end-user latency increases only one second for every
doubling in web-server load.

1 Introduction
Handling sudden spike or flash loads is an ubiquitous problem for
web-servers. High-traffic sites usually over-provision their band-
width and CPU to handle the spike load. However, even these sites
sometimes face unexpectedly high flashes. For example, on 9/11,
many leading news sites buckled under the flash load and were
forced to scale down the content on their sites. Other web-site
hosters use paid third-party service providers (e.g. Akamai [3]) to
handle the distribution of ‘rich media’. This is in addition to the
web-caches (e.g. Squid2) and proxies that many ISPs and orga-
nizations already maintain. Recently, Peer-to-Peer (P2P) content
distribution systems based on volunteer machines have also been
proposed and deployed (e.g. Coral Cache [11], Squirrel [12], etc.).

The underlying idea among all these approaches is to replicate
or cache the data to a set of intermediate nodes in the network. End
user browsers first contact these intermediate cache nodes (or prox-
ies) after checking the local browser cache. If content is already
present at these cache nodes and if it is fresh, then the content is
served directly from the cache, saving the original web-server from

1Due to space limitations this is a highly condensed version of the paper. Full
details are available at [6]

2http://www.squid-cache.org/

the request. However, the end-user browsers still do not share, in
any way, the load that they create in the first place. Apart from
a philosophical fairness issue, cache-based approaches also suffer
certain tangible drawbacks. First, the number of caching nodes
(and their current load) dictates the scalability of the system. Sec-
ond, some web-sites may not favor caching of their data – espe-
cially, if hit-count and end-user statistics directly translate to adver-
tising related revenue. If the site sets no-cache on its web-pages,
then the cache nodes have to get the web-page from the original
server for each request from end users.

In this paper we explore the simple idea of distributing the flash
load back to the end user browsers (hence the name Flashback for
our system). Such a system is potentially self-scalable – as the
load increases the system scales to meet the demand. Secondly,
in such a system all end-user requests can be logged by the web-
server if need be and third, this system would work well even if
the web-page was set not to be cached.

Related Work The lure of a cache-less (free of cache nodes) ap-
proach has spurred ideas and techniques on how such a system
might be developed ([13, 17, 16, 21]). However, these systems
suffer certain drawbacks. First, they assume the users will be co-
operative and stay in the P2P for a certain period of time. Second,
they do not address the issue of users being behind Network Ad-
dress Translation (NAT) devices which block incoming connec-
tions. Third, they are either not transparent to the user (require
setup of proxy or download and configure some software) or re-
quire changes to HTTP. To the best of our knowledge, Flashback
is the first out-of-the-box deployable and working system that is
capable of preserving the user’s browsing experience while mak-
ing no assumptions that the peer will be co-operative.

Unlike a web-cache system, a cache-less system faces a differ-
ent set of challenges. In a web-cache system (both infrastructure
and P2P approach) a set of intermediate nodes maintain full copies
of popular web objects. The main problem, here, then is that of
finding the particular intermediate node fast enough that holds the
needed web object.

In a cache-less system, all end-user nodes that visit a particu-
lar web-site are interested in the same web-object. The problem
now, is finding the set of other end-user nodes dynamically who
might be able to supply (parts of) the web-object. If the nodes
are non-cooperative or selfish, however, then there are no nodes
that posses the whole web-object – once a node gets the whole ob-
ject, it can refuse to supply the object to anyone else (a problem
not addressed by the original psuedoserving [13] proposal or even
CoopNet [16]). The solution to this is to chunk the web object into
smaller pieces and have the end-nodes exchange the pieces with
each other. This kind of chunk-based, tit-for-tat incentive based
policy is a popular technique used in large-file P2P content distri-
bution systems (such as BitTorrent [1]).

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

The question then is, whether a protocol like BitTorrent can be
used in the design of a cache-less system. We argue that while
such a system is possible, it would not be very popular. BitTorrent
is designed for dissemination of large files and where peers spend
many hours in the system. In contrast, web-pages are usually small
(ranging from tens of KBs to hundreds of KBs). Secondly, the
web-page must be downloaded and displayed in the order of sec-
onds for a normal web experience. Consequently, peers participate
in the system in the order of seconds. Within this extremely small
time frame, an end-user node must be able to find other nodes and
successfully utilize its bandwidth to download the web-object as
fast as possible. The crux of the problem in a cache-less system
is therefore that of successfully being able to find other peers and
exchange data in an extremely high rate of churn. BitTorrent is
not designed for this extreme churn and, as we show in our exper-
iments, this results in large end-user latency (to download a web
page) that is way beyond the patience of an normal web-user.

Our Contributions: To address this research challenge, we
propose Roulette, a UDP based P2P content distribution protocol
that is able to operate under extreme churn to distribute even small
files (couple of KBs to hundreds of KBs) with low latency and
in a Tit-For-Tat manner. Roulette employs a unique overlay con-
struction and maintenance mechanism using a stochastic revolving
neighbor cache (hence its name) that is strongly tied to data trans-
fer. Roulette uses UDP to solve another critical design constraint
– that of a seamless web-browsing experience. Flashback seam-
lessly handles NAT by doing hole-punching. Thus, the end-user is
not bothered with ’opening up ports’ on their NATs. While TCP
hole punching has been explored, UDP hole punching is most re-
liable [10] and thus our decision to base Roulette on UDP. In ad-
dition, we also came up with a new distributed hole punching pro-
tocol to relieve one central server from participating in each hole
punch request (full details are available in [6]).

The decision to base Roulette on UDP had a cascading effect
on the design of Flashback. Roulette now had to be explicitly de-
signed to do flow and congestion control (we skipped error re-
covery) to be friendly to other TCP traffic. Further, this deci-
sion catalyzed a design for a more flexible and compact chunk
management sub-system. Flashback, therefore manages chunk in-
formation in intervals using a novel data structure we call NOIS
(Non-Overlapping Interval Skiplist). NOIS allows efficient data
exchange in an almost stateless manner and facilitates easy flow
control (full details available in [6])..

We tie all the different components into one system that pre-
serves end-user browsing experience (as shown in Fig-1). When
a user visits an overloaded site that is running Flashback, she is
served a modified web-page and a small applet that contains the
code for the Flashback peer and a stripped down web-server. The
original web-page is then downloaded by the flashback peer by
contacting other flashback peers and served up by the local web-
server to the browser. All this works seamlessly through a tech-
nique we call the transported frame hack (Full details along with
how relative links and absolute links are handled are explained in
[6]). Thus, when a user visits a ‘Flashback-enabled’ site, the expe-
rience is no different from visiting any other web-site – there is no
download of any special software or configuring of NATs – it just
works.

In summary, our main contributions are

• A fully functional and deployed system, Flashback, that can
distribute web-pages scalably without intermediate caches

Figure 1. Flashback: High level design showing the
flow of data

• Roulette: A UDP based content dissemination P2P protocol
that works in extreme churn

• A novel data structure, Non-Overlapping Interval Skiplist
(NOIS) for chunk data management

• A distributed hole punching protocol for NAT traversal
• A technique, Transported-frame hack, to display web-pages

without user intervention

The rest of the paper is organized as follows. In Sec-2, we
describe the problem with extreme churn and the techniques we
designed for handling it. In Sec-3, we describe the Roulette proto-
col in full. We evaluate the performance of Roulette in Sec-4 and
conclude in Sec-5. A full comparison to related work and more
performance results can be found in [6].

2 Handling Extreme Churn
The primary requirement of Roulette is that it can operate under
extreme churn. We term extreme churn as a 50% or more change
in the P2P overlay in under 10 seconds. In this highly dynamic
setting, normal P2P content distribution approaches either fail or
degrade significantly. We use the case study of BitTorrent to ex-
plain why. We describe our approach to tackle extreme churn and
the two specific requirements that arise out of that approach. How
these are tackled in Roulette are described last.

The Problem of Fast Download Under Extreme Churn

The nature of P2P web-page distribution requires that a Flashback-
peer be able to download the requested web-page as fast as possi-
ble and in an extreme churn environment. Ironically, the faster
peers are able to download the web-page, the more churn they cre-
ate (if it is assumed that they are selfish and leave immediately after
the download). The average end-user patience for a web-page to
load is around 10 seconds [19] and thus we would expect churn
to be in the same time range, i.e., the overlay network can com-
pletely change in under 10 seconds. In this time frame, peers must
be able to trade and download a web-page. Previous research has
addressed P2P data exchange in high churn environments where
peers have a life-time of couple of minutes [15] but Roulette faces
an order of magnitude different churn rate leading us to term it as
extreme churn. Further, unlike other P2P system, we assume the
worst – i.e. peers can leave as soon as they have all the data. Thus
there are no long term peers to take advantage of ([20, 4, 7]). Fast

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

download under extreme churn is therefore the primary design goal
and research challenge for Roulette.

Why should extreme churn be a problem? To answer this ques-
tion we first study BitTorrent, a popular P2P Tit-For-Tat, content
dissemination protocol for large (100 of MBs) data that works very
well in practice. We examine why simple modifications or tuning
to BitTorrent are not sufficient for it to be applicable for small file
dissemination under extreme churn. We then present a key insight
that is the driving factor behind most of Roulette’s design.

A Brief Primer on BitTorrent

In BitTorrent (BT), the content distributor first creates a ‘torrent’
file (MetaData about the file) which has to be downloaded first
by each BT peer. The torrent file contains information how many
‘pieces’ a file has been chunked into and a SHA hash for each
piece. The piece size is decided initially by the content distributor
and is usually in the range of 128KB-1MB. When a peer down-
loads a piece, it verifies the downloaded piece against the hash and
finally when the whole file is downloaded, verifies that as well.
A seeder peer is also created that has the whole contents. Addi-
tionally, there is a ‘tracker’ that co-ordinates the whole process.
Peers contact the tracker to obtain the list of other peers who are
currently downloading the file and establish connections to them.
When a peer first contacts another peer, they exchange a bit-vector
indicating the pieces they already have. This allows each peer to
figure out what missing pieces the other peer can provide. Af-
ter that, a peer updates each of its neighbors with the piece-id of
every piece that it successfully downloads and verifies. This al-
lows each peer to maintain a ‘stream’ of requests for pieces to ask
from neighbors. Peers therefore maintain piece ‘state’ about their
neighbors. It is worth nothing that a peer, at a certain time, is only
trading with 4-5 of its neighbors even though it pre-opens TCP
connections to as many as 20 other peers. Using a technique called
‘optimistic unchoking’ a peer slowly moves towards trading with
those peers that give it the maximum utilization of its bandwidth.

Drawback of BitTorrent under Extreme Churn

BitTorrent is designed to scalably distribute large content (100s
MB) and where peers stay in the system for hours. The design
choices and default paramater values of BT reflect this. However, a
deeper problem with trying to use BitTorrent to trade small files in
an extreme churn environment is its philosophy of doing business –
choose a few but ‘rich’ neighbors (choosing the 4 peers out of 50
to do data exchange with). A BT peer implements this philosophy
using ‘optimistic unchoking’ to find richer and richer peers (peers
with more bandwidth). This however, will be ineffective under
extreme churn. First, it may be extremely hard to get an accurate
estimate of the bandwidth in the short time frame. Thus it will
be hard to discern how rich a peer really is. Second, the extreme
churn rate implies that the chosen few neighbors may leave quickly
reducing a peers throughput until it finds other peers to ramp up its
bandwidth. By the time it finds other trading neighbors, some of
the current neighbors may leave. Thus a peer may never be able to
utilize its bandwidth fully, resulting in a slow download.

Our Approach to Tackle Extreme Churn

We make the observation that the key to handling extreme churn
might infact be to use the opposite philosophy of BitTorrent, i.e.,
choose many but ‘compatible’ neighbors. When neighbors are

disappearing fast, it helps to have a large set of them with whom
data can be exchanged. Second, due to the large number of neigh-
bors it will not matter what bandwidth one particular neighbor is
providing; the large quantity of them will result in overall effective
bandwidth utilization. However, the neighbors should be such that
data can be traded with them, i.e., they are compatible.

This solution however, is not efficient in BitTorrent. First, in
BT a peer updates all its neighbors on each chunk download. This
overhead becomes large when there are a large set of neighbors.
Second, since neighbors are arriving so frequently, a handshake of
the chunks possessed must be done frequently adding further to
the overhead of the protocol. Third, there is anecdotal evidence
that TCP congestion control starts to behave erratically when data
transfer happens simultaneously over a large number of connec-
tions resulting in poor throughput.

In Roulette, we use a two-pronged approach to handle extreme
churn. First, we implement a stochastic neighbor recommendation
policy that is tied to data transfer. This allows peers to recom-
mend compatible neighbors for other peers. Second, we reduce
the overhead of meta-data exchange by eliminating the need for a
peer to send updates to its neighbors on each chunk download. We
describe these in more detail now.

2.1 Finding Many Compatible Peers
How peers find, keep and delete neighbors has a large impact on
the type of the overlay formed and consequently on the data ex-
change between peers. In Roulette, we have designed a new over-
lay construction protocol that is explicitly tied to data transfer so
that peers can find compatible peers fast. In a sense, we have
merged a decentralized heart-beat protocol into the data exchange
process and use it for overlay construction. Further, the seeder
does not explicitly try to construct or maintain any particular type
of overlay resulting in a fully decentralized overlay construction
and maintenance.

Keeping up With Lost Neighbors

Due to extreme churn, neighbors disappear quickly and thus it is
important to keep a good fill of neighbors. Each peer is initialized
with two important parameters, MinDegree and MaxDegree
(default of 4 and 32 respectively). When a peer has less than
MinDegree neighbors, it continually seeks new neighbors by try-
ing to add a new neighbor every 100ms. Once, it has the minimum
required number of neighbors, it still continues to acquire more
neighbors (to compensate for leaving neighbors), but the neighbor-
seeking rate slows according to its degree. If a peer has more than
MaxDegree neighbors, it stops acquiring neighbors. New neigh-
bors are sought by randomly choosing an existing neighbor and
asking it for a ‘recommendation’.

Referring Neighbors Using the Roulette Cache

The key intuition behind this is that a peer keeps a ‘revolving
cache’ of the most recent neighbors with whom it has exchanged
data. When it has to recommend a neighbor to another peer, it
chooses stochastically from this revolving-cache (hence the name
Roulette). When a peer wants to find new neighbors it asks its cur-
rent neighbors for recommendations. The recommended peers are
one that are most likely to be still active and also possess some data
for the file(s) that the requesting-peer is interested in. Since peers
are leaving fast, it is essential that a peer find compatible peers that
are also active.

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

Whenever a peer sends or receives data (chunks) from its neigh-
bors, it adds them to the Roulette-Cache (RC). The RC is a variable
sized cache with the number of slots varying by the peer’s current
degree (curDegree). A neighbor is added to the end of the cache
(higher slot number). The cache is then trimmed back, if necessary,
to curDegree slots. The neighbors trimmed are at the front of the
cache (lower slot numbers). To recommend a neighbor, a peer
probabilistically selects a neighbor from the RC. The probability
of selecting a neighbor from the cache is slotNumber/

∑s
k=1 k,

where s is size of the cache. Thus, the probability of choosing is
directly proportional to the slot number, i.e., the neighbors most
likely picked from this cache is one with whom the peer has most
recently sent or received data from. Secondly, the more number
of times a node has traded data from a neighbor, the more likely
its recommendation since a neighbor can be present multiple times
in the RC. [6] also discusses how overlay partitions are repaired
using a simple and elegant mechanism.

2.2 Low Overhead Data Exchange
Keeping overhead low is an important requirement in order to
maximize the ‘useful’ file-data that a peer transfers. In most P2P
system, peers exchange meta-data about what parts of the file they
have. This allows each peer to know what actual file data to ask
or give to another peer. The meta-data is usually the chunk-ids of
the chunks a peer has downloaded, encoded in some fashion. In
Bit-torrent, two peers initially exchange a bit-vector where the bit
number corresponding to the downloaded chunks are set. After
this, a peer explicitly updates each neighbor with the chunk-id of
each new chunk that it downloads. When the files being traded are
small, the chunks have to be also small to allow for parallelism in
the system. Web-objects can range from sizes as small as couple of
KBs (simple HTML page text) to tens of KBs (CSS, javascript) to
hundreds of KBs (images) to tens of megabytes (music and video
files). For small file sizes, say tens of KBs, data chunks may need
to be as small as 512bytes. Updating a large number of neigh-
bors on each of these small chunk download can easily become a
significant fraction of actual data downloaded.

In Roulette, we eliminate these updates to neighbors. Instead
peers do a an explicit handshake each time they need meta-data in-
formation from their neighbors. In an extreme churn environment,
this scheme (no update, explicit handshake) is appropriate because
a peer does a lot of handshakes anyways due to the extreme churn
rate. Handshakes are costlier than updates and thus must be made
efficient. Roulette uses an interval-based approach to tackle this.
In a handshake, a peer sends the top intervals of data that it has. An
interval-based representation allows for a compact representation
of chunk information and thus a lower-overhead data exchange
protocol. For example, consider Fig-3 where a peer has down-
loaded certain portions of a file. If intervals are used, the peer
can encode the full information of what chunks it currently has.
The number of non overlapping intervals of data a peer has down-
loaded dictates the amount of handshake data it must transmit. The
handshake information can potentially reduce as a peer ‘fills in the
gaps’ and also initially, when a peer has a small amount of data, it
has very few intervals. The main advantage of non-overlapping in-
terval representation is that the handshake overhead is not constant
(unlike a bit-vector representation) with every handshake but is
significantly small in the initial and final stages of data download.
To aid in meta-data exchange of intervals, we developed an exten-
sion to SkipLists [18], called NOIS, that can maintain and search
for non-overlapping intervals in O(Logn(N)) time. [6] explains
NOIS in more detail; NOIS has also been released as open-source
software (http://www.ics.uci.edu/ mayur/software/nois.jar).

Figure 2. FileMetaData (FMD) Data-structure

Figure 3. Data Management Layer Cake

3 Roulette Protocol
In this section we describe in detail how Roulette actually does
data transfer. Since we use UDP as the transport protocol, much
of TCP’s functionality has to be emulated. However, we have
designed Roulette to maximally utilize UDP without being un-
friendly to other TCP traffic. We describe these issues after ex-
plaining the data transfer protocol.

After the flashback peer starts in the browser, it joins the P2P
network and waits for file request from the local web server
(pygmy). The CMS (Content Management System) is initialized
for a particular file when the flashback peer receives a request for a
file from the pygmy local webserver. The peer then asks the flash-
back seeder for the FileMetaData (FMD for short) associated with
this file. The structure of the FMD is shown in Fig2. The seeder
replies back with the FMD. The FMD consists of two important
pieces of information: (a) The File-ID which is a unique id that is
seeder generated. This File-ID is used by peers to refer to the file
with each other, since the actual filename may be quite long and
impose unnecessary overhead. The FMD also contains an SHA
hash of all the file’s contents so that when a peer downloads all
content of the file, it can verify the integrity of the file.

The FMD is made up of a list of MetaChunks. A MetaChunk
represents a set of chunks (by default 16) and contains the SHA
hash of the contents of the chunks that it represents. When a peer
downloads all chunks of a MetaChunk, it can immediately check if
the MetaChunk is valid, If not, it discards all data for the particu-
lar MetaChunk. A MetaChunk is an umbrella for faster validation
of downloaded content; it has no influence on what or how many

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

Figure 4. Roulette Protocol: Receive Side

chunks one peer will transmit to another. After the FMD is suc-
cessfully downloaded, various data structures representing the file
are initialized (shown in Fig-3).

3.1 The Data Exchange Process
At a high level, Roulette data exchange can be broken down into
two parts, the receiver side and the sender side as shown in Fig 4
and Fig 5 respectively 3. For each neighbor that a peer has, it
continually tries to download data from them. It also has to upload
data to them, else the neighbor may cut off download to it (Tit-
For-Tat policy). Once the file representation is initialized with the
FileMetaData, the peer is ready to start exchanging data for it. We
describe the receive side first followed by the sending side.

3.1.1 Receive Side

On the receive side of the protocol, a peer is continually trying to
download data for files. The first step is to figure out a file for
which the remote neighbor has data. This is the INIT phase Fig-
4). If the remote neighbor has no data for any file that the peer is
interested in, the neighbor connection is terminated.

Once a file is found for which the neighbor is willing to provide
data, the peer enters into the FIRST HANDSHAKE (FH) mode.
Here, the peer sends the top-intervals of data that it has for the file
to the remote neighbor. For example, if the peer were trying to
download data for the file in Fig-3, and it is allowed to send only
2 intervals, it would send {[0,8], [36,42]}. Since we use UDP, the
set of intervals have to fit into one message and thus the restriction
on the number of intervals a peer can send. In Roulette, the de-
fault maximum number of intervals in a message is 8. The remote
neighbor uses these intervals to figure out what intervals of data
that it can provide which the peer is missing. If the remote neigh-
bor says it cannot provide any missing data, the file is removed
from the consideration set and the per goes back to try and find
another file.

If the remote neighbor, however, says that it has data in certain
intervals that the peer needs (for e.g., let us assume that it sent
back intervals {[12,16], [28,30]}), then the peer transitions into the
SECOND HANDSHAKE (SH) mode. In the state, the peer sends
requests to the neighbor for specific chunks from the intervals of
data that the neighbor can provide. The chunks to get are selected
at random. To continue the example, let’s say the peer asks for

3We have designed the protocol using the State Design Pattern to implement
the transition among the various states in the receive process.

chunks {16, 29} (How many chunks a peer asks for is controlled
by the Burst Size – an important parameter in congestion control).

After sending this second handshake out, the peer waits to get
the chunks from the neighbor, i.e., it moves into the WAIT FOR
DATA (WFD) mode where it waits for data chunks to arrive and
then handles them. Handling a chunk involves updating data struc-
tures in the content management subsystem and also updating the
Roulette Cache. If the peer gets only some (or none) of the chunks,
it timesout and goes back to second handshake mode again (how
long to wait for timeout is a function or RTT and bandwidth esti-
mate). If it gets all requested chunks, it immediately goes back to
second handshake. This time around it has a fewer range of chunks
to choose from ({[12,15], [30]})). This cycle from second hand-
shake to wait for data continues until the peer gets all the chunks
in intervals that the neighbor originally promised. Once this is ex-
hausted, the peer goes back to first handshake to try and get more
intervals from the remote neighbor. The process is continued until
the peer gets all the data for the file or the remote neighbor can no
longer provide any data. In the latter case, a different file is then
chosen or if no such file is available, the remote neighbor connec-
tion is severed.

Since the whole protocol runs over UDP, there is no reliable
delivery. Thus, with every request message that needs a reply (First
Handshake and Second Handshake), a timeout is associated. If
the timeout expires, the message is resent. This happens a fixed
number of times (default is 4). If there is still no reply, the remote
neighbor is assumed dead and removed from the neighbor set.

3.1.2 Send Side

A peer also has to reply to handshake requests from its neighbors
and send them data chunks. The reply side is much simpler as
compared to the request side.

Upon getting a first handshake request from a neighbor, a peer
checks the Tit-For-Tat (TFT) policy first. If more data has been
transferred to the neighbor than has been received, the peer silently
drops the first handshake request. The TFT policy in Roulette is
strict. A remote neighbor is only allowed to ‘run up a tab’ of 4K
in data or 90% of received data, whichever is higher. Note that the
TFT policy is not restricted to a file but all data transfers for all
files for that particular neighbor. Dropping the request when TFT
fails, rather than sending a denial message back to the neighbor is
an explicit design mechanism. When the request is dropped, the
remote neighbor will be forced to send re-requests. This is ‘grace
period’ during which the remote neighbor must make up to this
peer. Else, as per the request side protocol, the remote neighbor
thinks this peer is dead and removes this peer from its neighbor list.
This peer however does not remove the neighbor from its neighbor
list. The remote neighbor is present in the neighbor cache until it
is garbage collected much later by the overlay management layer.
During that time, if the remote neighbor connects back again, this
peer will still not respond to any requests. This combination of
policies ensures that peers have no incentive to cheat or ‘leech’ off
other peers.

If the remote neighbor passes the TFT test, then this peer must
respond appropriately. This involves figuring out if it can supply
any missing data intervals for the file. First, the peer checks if it
has the file. If not, it responds with a NO FILE reply. The remote
neighbors will then try with another file. If the file exists, then
with the help of the content management subsystem (CMS), a list
of intervals that this peer can provide and which are not present
at the remote neighbor are created. This list of intervals are sent

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

1) WHEN message from Y arrives
2) IF Y has violated Tit-For-Tat
3) DO NOT send any reply to Y ; return;
4) IF message is asking to supply missing data intervals
5) SEND intervals we have that Y is missing
6) IF message is asking for data in chunk-ids
7) SEND data and update Tit-For-Tat
8) Add Y to Roulette-Cache

Figure 5. Roulette Protocol: Sender Side

back as a FIRST HANDSHAKE REPLY. In reply to a second
handshake request, again, a check for Tit-For-Tat is first carried
out. If this passes, the peer sends the chunks for the chunk-ids that
are requested (checking, of course, that this peer has the data for
those chunk-ids).

Roulette also performs bandwidth and RTT estimation but due
to space constraints, we do not describe it here. A detailed expla-
nation is provided in [6].

3.1.3 Flow and Congestion Control

The application layer also has to provide for flow and congestion
control since the transport protocol is UDP. Flow control and con-
gestion control are implemented in a single elegant stop-and-go
scheme. After the second handshake, a peer waits to receive all
chunks. Only after it has received all chunks, does it send out a
second handshake again (to get more chunks). This results in au-
tomatic flow control. Secondly, the receiver-peer controls the burst
of chunks that the sender may send. Initially the burst-size is set to
a default of 16. This is increased by 1 for every successful recep-
tion of the whole burst. Thus, data transfer between peers ramps
up linearly. If a whole burst is not received, the burst size is set to
the number of chunks received in the current burst. Thus, Roulette
does not follow any mathematical function in reducing the burst
but rather bases it on the actual number of data chunks that actu-
ally made it all the way from the sender to the receiver. We call
this scheme ‘linear increase with precise decrease’. This is possi-
ble only because of the stop-and-go nature of data transfer. Thus,
when there is congestion in the network, the peers automatically
scale back to the correct data transfer rate and then greedily try to
scale it up slowly.

4 Performance Measurement
In this section, we quantitatively analyze the performance and scal-
ability of Flashback, in particular the Roulette protocol. Preserv-
ing end-user browsing experience is the primary goal of Flashback
and a key parameter is the latency to download a web-page, even
when the web-server is under high load. Thus our experiments are
specifically designed keeping this in mind. We perform two major
sets of experiments to test whether Roulette can consistently pro-
vide low latency for downloads. First, we perform basic scalability
tests under ‘one-shot’ flash loads. Second, we generate consis-
tently high loads on the web-server and test whether Roulette can
perform well under high churn. Due to space constraints we do not
present the results of the basic scalability test here. The results for
that are presented in [6].

4.1 Experiments Framework
To measure the performance of Roulette and be confident that the
results would be a good indication of what one could expect in

a real deployment, we setup an Internet emulation testbed using
Modelnet [2] – a real-time network traffic shaper and provides an
ideal base to test various systems without modifying them. Further,
Modelnet allows for customized setup of various network topolo-
gies. Primarily, we used two main network topologies: (1) a net-
work where all end nodes have bandwidth of 400Kbps and (2) an-
other where all nodes have bandwidth of 800Kbps. For all network
topologies, the latency between nodes is always heterogenous, as
dictated by the router backbone generated by Inet. On an average,
inter-node latency is around 60ms. Detailed notes on the testbed
and experiment setup can be found in [6].

4.1.1 Comparison Systems

To the best of our knowledge, Flashback is the first incentive-
based system that provides cache-less flash dissemination capa-
bility. Thus, the experiments are primarily geared towards test-
ing it. BitTorrent, however, can be a potential replacement proto-
col for Roulette (since BitTorrent also provides for chunks based
dissemination in a Tit-For-Tat manner). Thus we compare with
BitTorrent. We did not include other P2P content dissemination
protocols (such as Splitstream [5], Bullet [14] or CREW [8]) be-
cause they are either designed for streaming content and/or do not
perform Tit-For-Tat. We tried to setup Dijjer [9] as a comparison
point for a cache-based system but faced many problems. For a
baseline comparison, we also test a normal client-server approach
using Apache and ‘wget’. We describe the specifics of the com-
parison systems below.

BitTorrent We downloaded and used the python source code for
BitTorrent (BT) version 4.0.2. Out of the box, BT is configured
for dissemination of large files and for nodes to seed as long as
possible. Thus, we made certain changes to it. First, we changed
it so that when a BT peer downloads the required file, it immedi-
ately exists. Thus, apart from the initial seeder, there are no extra
seeders at any time. Next, we changed the piece size. The default
is 256KB. With this default, BT performed very poorly for small
files. This is easy to understand. When the file is less than 256KB,
a peer does not trade with others at all since it waits for the single
piece to download and then immediately exits. To compare suit-
ably with Roulette, we changed the default piece size of BitTorrent
to be similar to Roulette, i.e., the piece size is now 512Bytes. We
also changed the source code so that we could accurately measure
the exact time a BT peer took to download a file.

HTTP Client-Server For a baseline comparison, we set up a
Apache4-2 web-server. Clients to this web-server are emulated
using the UNIX command line program wget (version 1.9.1).

4.2 Dynamic Stability Test for Flash Crowds
To test the performance of the various protocols as they would per-
form under flash traffic we designed a novel experiment called the
Stabilized Pool test. There are two main goals of the experiment:
(a) To test whether a protocol is stable under a particular load and
(b) To calculate the average end-user delay that a client may expe-
rience when the server is under a particular load.

The main goal of this test is whether the system self-stabilizes.
Peers are introduced at a particular rate to ‘hit’ the server. If
the system is self-stabilizing, then the number of ‘incomplete’

4http://www.apache.org

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

peers does not keep growing but stabilizes around a certain num-
ber. Incomplete peer are those which haven’t got the complete
file yet. If the throughput of the system is lower than the demand
placed on new incoming peers, then the pool of incomplete peers
keeps growing. However, if the system is self-stabilizing, then the
throughput of the system grows along with the hit-rate and thus
the pool of incomplete peers stabilizes. The self-stabilizing char-
acteristic is extremely important for the self-scaling property of a
cache-less P2P dissemination system.

In the experiment, we varied the incoming input rate from
1/second to 32/second (3.6K hits/hour to 115K hits/hour). The
files that the peers requested were also varied. Every second, we
checked the number of currently running peers or the pool-size
and stored the value. Every 10 seconds, we evaluated the maxi-
mum pool size in last 10 seconds. If this value was higher than
the maximum in the previous 10 seconds, the maximum pool size
value was updated and the test continued. Else, we assumed that
the pool had stabilized and stopped the test. The average total
time recorded by all the peers that participated in this test was also
recorded (in some tests we averaged over 800 peers).

Experiment results The results of the dynamic stability experi-
ment are shown in Fig-6. The Y-axis plot the time in milliseconds
and the X-axis (in logscale) shows the rate at which nodes arrive
continually at the webserver. For each protocol we tested the time
for three different representative file sizes (4KB (text), 64KB(small
images) and 128KB (large images)). The performance results for
normal HTTP, BitTorrent and Flashback are shown in Fig-6(a),
Fig-6(b) and Fig-6(c) respectively. In Fig-6(d) we compare Flash-
back and BitTorrent side-by-side for one file size, 128KB. We tried
running the experiment for 64 nodes/sec but again the CPU on the
cluster machines became the bottleneck and skewed the results.
We thus show results only for incoming rates upto 32 nodes/sec.

From the Figures, we can make the following observations:

• We did not show all rates for HTTP because it did not stabilize
when the input rate was more than 8nodes/sec for 64KB files
or larger. We show the latency for input rate for 64KB file
as a reference to latency time for 4KB file. The difference
in latency time is dramatic and shows why webservers can so
easily start “trashing”.

• Both Flashback and BitTorrent stabilize under loads upto
32nodes/sec. For BitTorrent, however, there is a sharp in-
crease when the load changes from 4 nodes/sec to 8 nodes/sec
but this increase is more smooth for larger incoming rates.
There are no such dramatic jumps in Flashback. In general,
the end user latency grows logarithmically with increasing
load for both BitTorrent and Flashback. Again, this shows
the superior scaling of recruiting end users to act as a distrib-
uted, self-scaling web-server.

• The difference in end-user latency between BitTorrent and
Flashback is quite significant as shown in Fig-6(c). For low
load (upto 4 nodes/sec) BitTorrent and Flashback have almost
equal latency. However, there is sharp rise in latency time
for BitTorrent after that. We conjecture this is due to BitTor-
rent’s inability to handle high churn effectively. The end-user
latency for 32 nodes/sec for BitTorrent is over 20 seconds
whereas it is less than 12 seconds in Flashback. Clearly, if
BitTorrent were to be used as the data exchange protocol it
would test many users’ patience.

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 260000

 280000

 300000

 32 16 8 4 2

T
ot

al
 D

at
a

R
ec

ei
ve

d

Incoming-Rate (nodes/sec)

Flashback - 800k network
Bittorrent - 800k network

Figure 8. Average data received by each peer in Bit-
Torrent versus Flashback to download a 128KB file

4.2.1 Effect of end-user bandwidths

In this experiment we evaluate the effect of end-user latency when
the end-user machines have a lower bandwidth capacity. Intu-
itively, the latency must increase since the system throughput as
a whole as reduced. We ignore HTTP’s performance since its be-
havior is easily predictable. We compare BitTorrent and Flashback
and show the results in Fig-7(a), Fig-7(b), Fig-7(c).

What is interesting is the difference in the trends in the two pro-
tocols for the 400Kbps network. The difference in latency grows
bigger with increasing load (number of nodes/sec) and the sub-
sequent increased churn. Flashback scales extremely well in this
case. The average end user latency grew only 4 seconds from a
load 2 nodes/sec to 32 nodes/sec (an increase in 1 second of la-
tency for every doubling of load)whereas in BitTorrent the latency
increased by almost 15 seconds. The absolute latency in BitTor-
rent at 32nodes/sec is almost too long for a good web experience
– at more than half a minute. In comparison, the latency is just
above 15 seconds in Flashback.

4.2.2 Data Overhead

Here, we compare the average total data received by a peer in Bit-
Torrent and Flashback when downloading a file. The amount of
data that a peer actually receives during the download process is
greater than the actual file because of the overhead of meta-data
exchange. In HTTP, the data downloaded is the same as the file
size (just a little bigger accounting for TCP and IP header over-
head). Fig-8 shows the average data received across increasing
load on server to get a 128KB file. The overhead in Flashback is
almost constant (and in fact decreases with load) but in BitTorrent
it is a steady increase. Note that the varying parameter is the load
and not the file size, so changing the chunk size in BitTorrent will
not change the trend of this graph. During high churn, the over-
head in a BitTorrent like protocol is high due to large number of
handshake messages. Flashback has almost constant overhead in
spite of increasing load due to the novel interval-based approach
to exchanging and maintaining meta-data. This also explains why
the end-user latency trends between Flashback and BitTorrent di-
verge. With the same end-user bandwidth, Flashback is able to
provide better ‘system throughput’. Why the overhead drops at
large load is something we are investigating closely.

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

 0

 1000

 2000

 3000

 4000

 5000

 6000

 32 16 8 4 2 1

M
e

a
n

 D
o

w
n

lo
a

d
 T

im
e

 (
m

s
)

Incoming-Rate (nodes/sec)

4K
64K

(a) HTTP Scalability

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 32 16 8 4 2 1

M
e

a
n

 D
o

w
n

lo
a

d
 T

im
e

 (
m

s
)

Incoming-Rate (nodes/sec)

4K
64K

128K

(b) BitTorrent Scalability

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 32 16 8 4 2 1

M
e

a
n

 D
o

w
n

lo
a

d
 T

im
e

 (
m

s
)

Incoming-Rate (nodes/sec)

4K
64K

128K

(c) Flashback Scalability

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 32 16 8 4 2 1

M
e

a
n

 D
o

w
n

lo
a

d
 T

im
e

 (
m

s
)

Incoming-Rate (nodes/sec)

Flashback - 128K
Bittorrent - 128K

(d) BitTorrent vs. Flashback

Figure 6. Dynamic stabilization test w.r.t. increasing incoming rates of 800kbps bandwidth nodes. X-axis is
logscale. HTTP does not stabilize with more than 8nodes/sec for files over 64KB.

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 32 16 8 4 2 1

M
e

a
n

 D
o

w
n

lo
a

d
 T

im
e

 (
m

s
)

Incoming-Rate (nodes/sec)

64K
128K

(a) BitTorrent with 400Kbps nodes

 0

 5000

 10000

 15000

 20000

 25000

 32 16 8 4 2 1

M
e

a
n

 D
o

w
n

lo
a

d
 T

im
e

 (
m

s
)

Incoming-Rate (nodes/sec)

4K
64K

128K

(b) Flashback with 400Kbps nodes

 10000

 15000

 20000

 25000

 30000

 35000

 32 16 8 4 2 1

M
e

a
n

 D
o

w
n

lo
a

d
 T

im
e

 (
m

s
)

Incoming-Rate (nodes/sec)

Flashback - 128K
Bittorrent - 128K

(c) BitTorrent vs. Flashback

Figure 7. The effect of peer bandwidth nodes. HTTP is ignored from comparison. X-axis is logscale.

5 Conclusions
In this paper we introduced a cache-less approach to handle flash
crowds at web-sites using a novel P2P data exchange protocol,
Roulette that works well in distributing small files in an extreme
churn environment. However, we see Flashback not as a replace-
ment for web-caches but as a supplementary mechanism that is
useful when Flash crowds appear inspite of web-caches or simply
because a web-site does not want its pages cached. Though Flash-
back has been designed from the ground up to maintain a seamless
user experience, some firewalls can still block P2P connections
leading to explicit user intervention. Flashback is also currently
designed only to distribute static web-pages. We are currently ex-
ploring the use of Flashback for more dynamic data use-cases.

References
[1] Bittorrent: http://bitconjurer.org/bittorrent/.
[2] Modelnet: http://issg.cs.duke.edu/modelnet.html.
[3] Akamai. http://www.akamai.com.
[4] R. Bhagwan, S. Savage, and G. M. Voelker. Understanding avail-

ability. In International Workshop on Peer-to-Peer Systems (IPTPS),
2003.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh. Splitstream: High-bandwidth multicast in a coopera-
tive environment. In SOSP, 2003.

[6] M. Deshpande, A. Amit, M. Chang, N. Venkatasubramanian, and
S. Mehrotra. Flashback: A peer-to-peer webserver for flash crowds,
http://www.ics.uci.edu/∼mayur/flashback ics tr 2006.pdf, 2006.

[7] M. Deshpande and N. Venkatasubramanian. The different dimen-
sions of dynamicity. In P2P, 2004.

[8] M. Deshpande, B. Xing, I. Lazardis, B. Hore, N. Venkatasubra-
manian, and S. Mehrotra. Crew: A gossip-based flash-dissemination
system. In ICDCS, 2006.

[9] Dijjer. http://dijjer.org.

[10] B. Ford, P. Srisuresh, and D. Kegel. Peer-to-peer communication
across network address translators. In USENIX, 2005.

[11] M. J. Freedman, E. Freudenthal, and D. Mazieres. Democratizing
content publication with coral. In NSDI, 2004.

[12] S. Iyer, A. Rowstrom, and P. Druschel. Squirrel: A decentralized
peer-to-peer web cache. In PODC, 2002.

[13] K. Kong and D. Ghosal. Mitigating server-side congestion in the
internet through psuedoserving. IEEE/ACM Transactions on Net-
working, 7(4), 1999.

[14] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High
bandwidth data dissemination using an overlay mesh. In Usenix Sym-
posium on Operating Systems Principles (SOSP), 2003.

[15] P. Linga, I. Gupta, and K. Birman. Kache: Peer-to-peer web caching
using kelips. ACM Transactions on Information Systems (under sub-
mission), 2004.

[16] V. N. Padmanabhan and K. Sripanidkulchai. The case for coopera-
tive networking. In IPTPS, 2001.

[17] J. A. Patel and I. Gupta. Overhaul: Extending http to combact flash
crowds. In WCW, 2004.

[18] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. In
Communications of the ACM. Vol 33., 1990.

[19] P. Selvidge. How long is too long to wait for a website to load?
[20] D. Stutzbach and R. Rejaie. Understanding churn in peer-to-peer

networks. In IMC, 2006.
[21] D. Stutzbach, D. Zappala, and R. Rejaie. Swarming: Scalable con-

tent delivery for the masses. In Techincal Report, University of Ore-
gon, 2004.

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

