
Locating Objects in Wide-Area Systems

Maarten van Steen (contact)

Vrije Universiteit, Department of Mathematics & Computer Science
De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands

tel: +31 (0)20 444 7784, fax: +31 (0)20 444 7653
e-mail: steen@cs.vu.nl

Franz J. Hauck

University of Erlangen–Nürnberg, IMMD4
Martensstr. 1, D–91058, Erlangen, Germany
e-mail: hauck@informatik.uni-erlangen.de

Philip Homburg
Andrew S. Tanenbaum

Vrije Universiteit, Department of Mathematics & Computer Science
De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands

e-mail: fphilip,astg@cs.vu.nl



Locating Objects in Wide-Area Systems

Maarten van Steen, Franz J. Hauck,
Philip Homburg, Andrew S. Tanenbaum

Abstract

Locating mobile objects in a worldwide system requires a scalable location service. An object can be a
telephone or a notebook computer, but also a software or data object, such as a file or an electronic docu-
ment. Our service strictly separates an object’s name from the addresses where it can be contacted. This is
done by introducing a location-independent object handle. An object’s name is bound to its unique object
handle, which, in turn, is mapped to the addresses where the object can be contacted. To locate an object,
we need only its object handle. We present a scalable location service based on a worldwide distributed
search tree that adapts dynamically to an object’s migration pattern to optimize lookups and updates.

1 Introduction

In the near future we can expect hundreds of millions of users to have access to a global Informa-
tion Superhighway. A large part of that information network will be mobile: telephones, faxes,
notebook computers, personal assistants, etc. But we can also expect software and data to be mo-
bile. For example, a Web page may move as its owner changes computers; likewise, a shared
electronic document may travel between its users. Another example is a mobile agent that moves
through the network in search of specific resources for its owner. Components in a network ca-
pable of changing locations, and which may be implemented in software, hardware, or a combi-
nation thereof, are collectively referred to as mobile objects.

Supporting mobile objects means that a client should be able to contact an object even if he
does not know its current location. Moreover, locating the object should be completely hidden
from the client. For example, in Personal Communications Systems (PCS), a user should only
have to dial a telephone number to contact the callee. It should not be necessary to know the
callee’s present location or how the callee is tracked. But mobile objects also need to contact
other (possibly nonmobile) objects. When a mobile object moves to a new location, the object
will have to find out which facilities it can use there. For example, a mobile computer may need
to use the local printer. Likewise, it may want to contact the local Web server instead of having
to use the server at its home location.

Being able to contact objects, whether they are mobile or not, is traditionally supported by a
naming service which maintains a binding between an object’s name and one or more addresses
where the object can be contacted. As an analogy, a naming service is like a telephone book; a



binding corresponds to one of its entries. With mobile objects, names should always be resolved
to a current address. To illustrate, a name such as pcs://dept.univ.edu/Mary may be dynamically
bound to the network address of Mary’s mobile computer. No matter where in the world that name
is used, it should always be resolved to her computer’s current address, which changes as she
moves. In addition, applications on her mobile computer may use the name local://usr/addr/lpr
for the local printer. In this case, as Mary travels around the world, the printer’s name on her com-
puter needs to be dynamically rebound to the address of the nearest printer server. Thus, unlike
the world of cellular telephony with their fixed bindings of device to telephone number, in the
computer world, the addresses used to reach objects change as an object moves, and the mapping
of names to addresses must also change.

Changing the address of an object affects the name–to–address binding. If such changes hardly
ever occur, then constructing a worldwide scalable naming service is feasible, as demonstrated by
the Internet’s Domain Name System [8] and the X.500 Directory Service [10]. However, if bind-
ings change frequently, as in the case of mobile objects, we have a much more difficult problem.

In this paper, we focus on a wide-area naming service that provides flexible and easily adapt-
able name–to–address bindings. The service is currently being developed as part of Globe, an
object-based worldwide distributed system aimed to support a billion users each having thousands
of objects [3]. The paper is organized as follows. In Section 2 we explain and motivate the basic
architecture of the Globe naming service. The main goal of this paper is to explain how objects
are located, which is described in Section 3. Related work is discussed in Section 4. We give our
conclusions in Section 5.

2 Binding Names to Addresses

To discuss name–to–address binding in wide-area systems, we assume that all (hardware and soft-
ware) objects have symbolic ASCII names, such aspcs://dept.univ.edu/Mary. Also, each object is
assumed to have one or more addresses where a client can contact it. By way of analogy, an owner
of a cellular telephone is also assumed to have a name which can be registered in a telephone
directory. The owner’s telephone number corresponds to the address where he can be reached.
Unlike cellular telephones, computer objects often have two or more addresses. For example, a
replicated file will be known to its users under one name, which is mapped to several addresses,
one for each copy. A user asking for the file generally does not care which copy is selected.

To make name resolution efficient for wide-area systems, names often contain location infor-
mation. For example, the Uniform Resource Locator (URL) ftp://ds.internic.net/nic/rfc/rfc1737.txt
is the name of a Web page containing the text of RFC 1737. The name reflects where the page is
stored (ds.internic.net), allowing part of the name resolution process to take place at that location.
Similarly, telephone numbers also contain location information: a worldwide number like +31 20
444 7784 gives the country (31 is The Netherlands), the city (20 is Amsterdam), and a specific
telephone exchange (the 444 exchange of the Vrije Universiteit in Amsterdam–Buitenveldert).

However, using location information in names can make it difficult to handle migration. If
an object moves, we may have to change its name, or otherwise make that name become a for-
warding reference. In wide-area systems, the latter can lead to long chains of references, which

2



are inefficient and susceptible to network failures. What is needed is a naming facility that hides
all aspects of an object’s location. Users should not be concerned where an object is located or
whether it can move.

These requirements can be met by introducing a two-level naming hierarchy as shown in Fig-
ure 1. The first level deals with hierarchically-organized, user-defined name spaces. These name
spaces are handled by what we call a distributed object naming service. A name is bound to an
object handle, which is a globally unique and location-independent object identifier.

Name Naming service

Location service

Contact address

Object handle

Contact address Contact address

Figure 1: A two-level naming hierarchy that allows an object’s name and contact addresses to be indepen-
dently changed.

The second level deals with mapping each object handle to a set of contact addresses, and
is handled by a distributed object location service. In contrast to traditional naming services, a
location service is designed to support frequent updates and lookups of contact addresses such as
needed for mobile objects. It is not concerned with naming.

As an illustration, consider an officeless company whose employees are located across the
country, normally working at home, or visiting customers. Using our approach, we assign a life-
time and location-independent telephone number to the company. This number corresponds to an
object handle. A naming or directory service would maintain a mapping between the company’s
name and it’s lifetime telephone number. The telephone number is used by a location service to
redirect incoming calls to, for example, the nearest employee currently working. An employee’s
own telephone number is registered at the location service when he or she starts work, and is
unregistered again when he or she finishes. An employee’s telephone number corresponds to a
contact address. Note that how the company is named, and in which directories its name is regis-
tered, is no longer important. Naming has been fully separated from how and where we contact
the company.

In distributed systems, this way of locating a service is also known as anycasting: a client re-
quires a particular service, but is really not interested which server will handle the request. Using
our approach, the service is assigned a unique object handle, and each server registers its network
address under that object handle. A client has the service’s name resolved to the object handle,
which is then subsequently resolved to the address of any server that can handle the request

An object handle is designed specifically for the location service. It contains a globally unique
service-independent object identifier which is very similar to a UUID in DCE [11]. Additionally,

3



an object handle may contain information that can be used to assist in locating the object. For
example, it may be known that an object will move only within a certain region. Instead of con-
ducting a global search for such an object, it is more efficient to start the search process in that
specific region. Therefore, it makes sense to encode this information into the object handle.

Requirements for a location service

Clearly, our two-level approach makes sense only if we can indeed provide a scalable and efficient
naming and location service. The feasibility of developing scalable naming services has been
demonstrated by systems such as DNS. This is not yet the case for location services, for which
the following requirements will have to be met:

Scalability. The service should allow clients and objects to be located anywhere in the world,
and be able to support a huge number of objects. We anticipate that eventually, one billion
users with 1000 objects each will be registered with the location service, adding up to 1012

objects.

Locality. Assuming that the cost for looking up an address generally increases with the length of
the route to that address, we require that the location service exploits locality. This means,
for example, that if an object has its address near to the client, finding the object should be
fairly cheap.

Stability. Objects may differ with respect to their migration patterns. For example, a Web page
may possibly move through the entire network in a seemingly random way, whereas a mo-
bile computer may possibly move only within a city. An object is said to be stable with
respect to a region, if its addresses most often are in that region. If an object is stable with re-
spect to a region R, we require that searching or updating one of its addresses in R is cheaper
than when the object is not stable with respect to R.

Fault tolerance. The location service should be resilient to node and link failures and should
continue to operate in the presence of network partitions. The service should, at the least,
degrade gracefully in terms of performance and functionality.

Location services are not new and have shown to be relatively easy to implement in local dis-
tributed systems. However, they become much more complicated when scalability is taken into
account as we discuss next.

3 Tracking Distributed Objects in Globe

In this section we discuss the architecture of Globe’s scalable location service. We shall provide
only an outline of the architecture, further information can be found in [13].

4



Basic operations

In our model for tracking objects, we assume a hierarchical decomposition of a (worldwide) net-
work into regions. This decomposition is relevant to only the location service. With each region
we associate a directory node, capable of storing addresses that lie within that region. This leads
to a logical tree-based organization as shown in Figure 2. Addresses are assumed to be location
dependent: the region in which an address lies is encoded in the address itself.

region A1

B2
B1

A0

A1
A2

B0 C0

C1

PB
PCPA

R

region A0 region A2

region B1

region B0

region B2

region C0

region C1

region PA region PB region PC

region R

Figure 2: The logical organization of the location service as a virtual search tree.

The location service normally stores new addresses at the leaf node representing the region in
which the address lies. For each new object, it constructs a path of forwarding pointers from the
root to each leaf node where an address is stored. Addresses and forwarding pointers are stored
in contact records. An implication of this design is that in the worst case, it is always possible
to locate every object by following the chain of pointers from the root node. In practice, we can
do much better than this, as described later.

In principle, a request for insertion of a previously unregistered object begins at a leaf node
and is propagated up the tree to the root. Then, a path of forwarding pointers is established from
the root to the leaf node where the insertion takes place. A contact record containing a forwarding
pointer is created at each intermediate node. The address itself is finally stored only in the leaf
node. When a part of the path already exists, for example, when inserting a second address in a
different region, only the missing pointers are established. This is shown in Figure 3. In the case
that there is already a contact record for the object at the leaf node, the new address is simply
added to that record.

Deleting a contact address is straightforward and is done as follows. First, the address is found
through a search path up the tree, starting at the leaf node representing the region in which the
address lies (note that this information is encoded in the address). Once the contact record in
which the address is stored, has been found, it is removed from that record. If a contact record
no longer contains contact addresses or forwarding pointers, it is deleted. The parent directory
node is informed that it should delete its forwarding pointer to that record, possibly leading to the
(recursive) deletion of the object’s contact record at the parent node.

Looking up a contact address is done as follows. A client process passes an object handle to

5



Request arrives at
node with a contact
record

Insert contact address
at leaf node1

2

Path of pointers
is established

3

4
Address has
been inserted

(a) (b)

Contact record storing addresses

Contact record with only pointers

Figure 3: Inserting a contact address when the object is already known. Only the missing pointers are
established.

Issue lookup
request at leaf node

Contact address found ⇒
return along reverse path

No contact record ⇒
forward to parent

Object known ⇒
forward to child

Make decision on
how to continue

1

2

3

4

5

Figure 4: The default approach for looking up a contact address.

6



the leaf node of the region where that process resides. (We require that there is exactly one such
leaf node.) As shown in Figure 4, a search path is established starting at the client’s leaf node, and
going upwards to the first directory node where the object is already known. In the worst case,
this means propagating the request up to the root. The path then continues downwards to a leaf
node, whose addresses are then returned to the requester.

Concurrent update and lookup operations are allowed, although no ordering is guaranteed
when requests are issued at different nodes. In particular, we have the following consistency rule:

Request Consistency: Update requests issued at the same leaf node are completed
in the order they were issued. Update operations issued at different leaf nodes are
completed in an arbitrary order.

Dynamic optimizations

The location service has full control over the placement of addresses in contact records. Conse-
quently, if we can place addresses in stable locations, we can make effective use of pointer caches
during lookup operations. By default, an object’s address is stored in its contact record at the leaf
node where it was initially inserted. Now, consider some region R as shown in Figure 5, and as-
sume that an object O is changing its addresses regularly between the subregions S1, S2, and S3.
For simplicity, assume that there is always at least one address somewhere in R, so that there will
always be a nonempty contact record for O at directory node dir(R).

obj-handle

Contact record

Regularly changing
forwarding pointers

Region R

Dir(R)

Subregion S1

Subregion S2

Subregion S3

Contact addresses are regularly
inserted and deleted 

Figure 5: The situation of an object regularly moving between subregions. The solution is to store its
changing address in dir(R).

Each time the object moves to a new subregion Sk, the location service creates a path of for-
warding pointers from dir(R) to a leaf node in Sk. Likewise, when moving out of Sk the path has

7



to be deleted. If migration occurs regularly, it makes sense to store the address in the object’s
contact record at dir(R). This not only saves the cost of path maintenance, but more important is
that addresses from any of the subregions are now stored at a stable place, namely at the directory
node dir(R).

By storing addresses in stable contact records, our model leads to the construction of a search
tree per object, in which contact records tend to remain in place, even for mobile objects. This
permits us to effectively shorten search paths by caching pointers to contact records, since they are
stable, even if the corresponding objects are not. Specifically, a pointer to the directory node with
a contact record containing addresses, is cached at each node of the search path when returning
the answer to the leaf node where a lookup request originated.

The combined effect of pointer caches and stable contact records should not be underesti-
mated. An object that moves primarily within a region R can be tracked by just two successive
lookup operations: the first one at the leaf node servicing the requesting process, and the second
one at the directory node for region R. Moreover, our solution forwards a request in the direction
of an address. This is a considerable improvement over existing approaches.

Of course, the migration behavior of an object may change. For example, assume the con-
tact record at dir(R) has contained an address for subregion Sk for quite some time. In that case,
the address will be propagated to a directory node in Sk, because apparently, stability occurs in a
smaller region than R. Stability is measured by timestamping addresses and forwarding pointers,
as well as recording how long an object has not been in a specific region. In all cases, history is
taken into account by weighted accumulation of old and new timing information.

Fault tolerance

Any service available in a wide-area distributed system should mask failures of the underlying
network to its clients. This is not always possible, because, for example, network partitions may
last for hours. Fault tolerant behavior for our location service can be partly expressed in terms of
the following informal progress rules:

Global progress: The effect of an update operation initiated at an arbitrary leaf node
is eventually visible to a lookup operation initiated at any of the leaf nodes of the
search tree.

Local progress: The effect of an update operation at a directory node D should be
immediately visible at each directory node in the (connected) subtree rooted at D.

The second rule states that an update operation should come into effect at a particular directory
node as soon as it is issued at that node, and perhaps before the operation completes. The com-
pletion of an operation may depend on the response of the parent node, which may be temporar-
ily unreachable. In other words, update operations are to be handled in an asynchronous fashion.
Satisfying the progress rules effectively means that our service is resilient to nodes being unreach-
able, either caused by network partitioning or because a node has crashed.

To handle operations asynchronously while satisfying the rule for request consistency, incom-
ing requests are first appended to a queue and subsequently forwarded to the parent node. Queued

8



operations at a particular node are evaluated in the order they have been appended, and yield aten-
tative result. As soon as the parent agrees with the update, the operation is completed by removing
it from the queue and making its result authoritative. If the parent disagrees with the update, for
example, when a new address should be stored at a higher-level directory node, the operation is
only removed from the queue.

There are several benefits to this approach. First, queuing operations allows us to maintain
a consistent, albeit tentative view of the data maintained at a node without having to block any
requests until the associated operation is fully completed. This makes the location service resilient
to network partitions.

Recovering from node crashes is harder, and is subject to further research. However, a crashed
node can easily re-invoke incomplete operations by having its children re-issue their requests, al-
though this is clearly not enough to restore the node’s original data set. This approach is very sim-
ilar to sender-based message logging as discussed in [4], or using queued RPCs as in the Rover
toolkit [5]. By replicating authoritative data among the directory nodes in each subtree, the lo-
cation service can be made resilient against a single node failure in each path originating at the
root.

Scalability

Clearly, to construct a worldwide scalable location service it is necessary to adopt hierarchical
solutions. For example, nonhierarchical solutions such as the read/write sets proposed in [9] will
not do, as it is much harder to exploit locality. However, our search tree described so far obviously
does not yet scale. In particular, higher-level directory nodes not only have to handle a relatively
large number of requests, they also have enormous storage demands. Our solution is to partition
a directory node into one or more directory subnodes, such that each subnode is responsible for
a subset of the records originally stored at the directory node.

As an example, we can use the first n bits of an object’s handle to identify the subnode re-
sponsible for that object. Subnodes of a particular directory node need not communicate with
each other since they maintain different subsets of objects, and all operations are performed on a
per-object basis. Communication between directory nodes in the original search tree takes place
only between their respective subnodes. To illustrate, Figure 6 shows a search tree in which the
root node has been partitioned into four subnodes based on the first two bits of the object handle
(n = 2), and each of the leaf nodes into two subnodes (n = 1). (We note that we have developed
more realistic hashing-based methods than explained here. For example, we also have to take
into account that the total number of links between parent and children subnodes remains man-
ageable.)

As communication between directory nodes in the original search tree now takes place be-
tween their respective subnodes each subnode should be aware of how the directory node with
which it communicates is actually partitioned. This information is contained in a separate tree
management service. This service also maintains the mapping of subnodes to physical nodes.
Partitioning and mapping information is assumed to be relatively stable, so that it can be easily
cached by subnodes. This assumption is necessary to avoid having to query the management ser-
vice each time a subnode needs to communicate with its parent or children, which would turn the

9



Virtual search tree Partitioned search tree

Subnodes

00 01 10 11

0 1 0 1 0 1

Figure 6: A search tree and a corresponding logical tree after partitioning the directory nodes into subn-
odes.

management service into a potential communication bottleneck.

4 Related work

Location services are becoming increasingly important as mobile telecommunication and com-
puting facilities become more widespread. So far, mobility is almost invariably connected to mo-
bile hosts. A characteristic feature of these hosts is that their mobility is directly coupled to that
of their user. This has two important consequences that do not apply to our location service. First,
the speed of migration is limited to the maximum speed at which a person can move (typically
1000 km/hour in an airplane), making it possible to adopt a strategy in which data structures grad-
ually adapt as the object moves. This has been successfully applied to several models for location
services (see e.g. [1, 7]), but these techniques cannot be used in our case. Second, a host is always
at precisely one location. There is no notion of multiple addresses per object as we have intro-
duced in our model. In contrast to current approaches, we can effectively deal with replication.

The situation becomes entirely different when dealing with mobile software objects. An im-
portant distinction with keeping track of mobile hosts, is that there are many more objects than
hosts, immediately leading to a scalability problem. Also, to ensure scalability, it is necessary to
take mobility patterns of an individual object into account as well. In Emerald [6], mobile objects
are tracked through chains of forwarding pointers, combined with techniques for shortening long
chains, and a broadcast facility when all else fails. Such an approach does not scale to worldwide
networks. An alternative approach to handle worldwide distributed systems is the Location In-
dependent Invocation (LII) described in [2]. However, LII uses a global naming service as a fall-
back mechanism, where it assumes that the update–to–lookup ratio is small. Designing a global
location service that is not based on such an assumption is an important goal of our research.

A seemingly promising approach that has been advocated for large-scale systems are SSP
chains [12]. SSP chains allow object references to be transparently handed over between pro-
cesses, at the expense of gradually constructing a chain of forwarding references to the object. A
serious drawback of this approach is that exploiting locality is completely neglected. In particu-

10



lar, a home must keep track where the object is during its entire lifetime, possibly years after the
object last lived there. Also, it is unclear how fault tolerance can be efficiently dealt with. SSP
chains therefore do not seem to scale to worldwide systems.

Contributions of our approach

One of the main advantages of our approach is that our location service can handle objects that
have several contact addresses and that show arbitrary migration patterns. We do not adaptupdate
and search strategies to migration patterns, but adapt the search tree on a per-object basis instead.
By registering contact addresses in the smallest region in which (part of) the object is moving we
can make effective use of pointer caches. The combined effect is an extremely short search path,
in the optimal case of only length two, from a client to the object. In just two hops it is possible
to locate even seemingly randomly migrating objects. This is a considerable improvement over
existing approaches.

The use of pointer caches instead of data caches has also been proposed for Personal Commu-
nications Systems (PCS). The main reason to apply caching in those cases is to avoid excessive
network traffic to the home location of a host, which forms the root of a two-level search tree
such as in GSM. Caching is done at the second level, by pointing to locations where the host is
expected to be found. Cache consistency is achieved either by invalidation on demand, or through
active updates. However, caches in PCSs do not account for update patterns. A distinctive feature
of our approach compared to PCSs, is that we have several levels allowing us to exploit locality
more effectively by inspecting succeeding expanded regions at linearly incrementing costs. On
the other hand, locality is also exploited in location updates, making our pointer caches highly
effective.

5 Conclusions

The Globe location service offers a novel approach to locating objects in a worldwide context, us-
ing location-independent object identifiers instead of user-defined names. Our approach allows
an object to update its contact addresses independent of how users have named the object. Lo-
cating an object proceeds through a worldwide search tree which dynamically adapts itself on a
per-object basis. By storing addresses at stable locations and subsequently caching pointers to
those locations, it is possible to contact an object in just two steps, irrespective of the object’s
migration pattern. An important distinction with current approaches, is that the search path is
directed toward the object’s present location.

Presently, our research is continuing in two directions. First, we are building a prototype im-
plementation for experimentation and validation of our approach. Second, we are enhancing the
basic algorithms described in this paper to include fault tolerance. Also, algorithms for selecting
the most appropriate nodes for storing an object’s contact addresses need to be further improved.

11



References

[1] B. Awerbuch and D. Peleg. “Online Tracking of Mobile Users.” J. ACM, 42(5):1021–1058, Sept.
1995.

[2] A. Black and Y. Artsy. “Implementing Location Independent Invocation.” IEEE Trans. Par. Distr.
Syst., 1(1):107–119, Jan. 1990.

[3] P. Homburg, M. van Steen, and A. Tanenbaum. “An Architecture for A Scalable Wide Area Dis-
tributed System.” In Proc. Seventh SIGOPS European Workshop, pp. 75–82, Connemara, Ireland,
Sept. 1996. ACM.

[4] D. Johnson and W. Zwaenepoel. “Sender-Based Message Logging.” InProc. 17th Annual Interna-
tional Symposium on Fault-Tolerant Computing, pp. 14–19, Pittsburgh, PA, July 1987. IEEE.

[5] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek. “Mobile Computing with the Rover Toolkit.”IEEE
Trans. Comput., 46(3):337–352, Mar. 1997.

[6] E. Jul, H. Levy, N. Hutchinson, and A. Black. “Fine-Grained Mobility in the Emerald System.”ACM
Trans. Comp. Syst., 6(1):109–133, Feb. 1988.

[7] P. Krishna, N. Vaidya, and D. Pradhan. “Location Management in Distributed Mobile Environ-
ments.” In Proc. Parallel and Distributed Information Systems, pp. 81–88. IEEE, 1994.

[8] P. Mockapetris. “Domain Names - Concepts and Facilities.” RFC 1034, Nov. 1987.

[9] S. Mullender and P. Vitányi. “Distributed Match-Making.” Algorithmica, 3:367–391, 1988.

[10] S. Radicati. X.500 Directory Services: Technology and Deployment. International Thomson Com-
puter Press, London, 1994.

[11] W. Rosenberry, D. Kenney, and G. Fisher. Understanding DCE. O’Reilly & Associates, Sebastopol,
CA., 1992.

[12] M. Shapiro, P. Dickman, and D. Plainfosśe. “SSP Chains: Robust, Distributed References Support-
ing Acyclic Garbage Collection.” Technical Report 1799, INRIA, Rocquencourt, France, Nov. 1992.

[13] M. van Steen, F. Hauck, and A. Tanenbaum. “A Model for Worldwide Tracking of Distributed Ob-
jects.” In Proc. TINA ’96, pp. 203–212, Heidelberg, Germany, Sept. 1996. Eurescom.

12


