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Distributed data processing is becoming a reality. Businesses want to do it for many
reasons, and they often must do it in order to stay competitive. While much of the
infrastructure for distributed data processing is already there (e.g., modern network
technology), a number of issues make distributed data processing still a complex
undertaking: (1) distributed systems can become very large, involving thousands of
heterogeneous sites including PCs and mainframe server machines; (2) the state of a
distributed system changes rapidly because the load of sites varies over time and new
sites are added to the system; (3) legacy systems need to be integrated—such legacy
systems usually have not been designed for distributed data processing and now need
to interact with other (modern) systems in a distributed environment.

This paper presents the state of the art of query processing for distributed database
and information systems. The paper presents the “textbook” architecture for distributed
query processing and a series of techniques that are particularly useful for distributed
database systems. These techniques include special join techniques, techniques to
exploit intraquery parallelism, techniques to reduce communication costs, and
techniques to exploit caching and replication of data. Furthermore, the paper discusses
different kinds of distributed systems such as client-server, middleware (multitier), and
heterogeneous database systems, and shows how query processing works in these
systems.

Categories and Subject Descriptors: E.5 [Data:]: Files; H.2.4 [Database Management
Systems:]: Distributed Databases, Query Processing; H.2.5 [Heterogeneous
Databases:]: Data Translation

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Query optimization, query execution, client-server
databases, middleware, multitier architectures, database application systems,
wrappers, replication, caching, economic models for query processing,
dissemination-based information systems

1. INTRODUCTION

1.1 Background and Motivation

Researchers and practitioners have been
interested in distributed database sys-
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tems since the 1970s. At that time,
the main focus was on supporting dis-
tributed data management for large corpo-
rations and organizations that kept their
data at different offices or subsidiaries.
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Although there was a clear need and
many good ideas and prototypes (e.g., Sys-
tem R∗ [Williams et al. 1981], SDD-1
[Bernstein et al. 1981], and Distributed
Ingres [Stonebraker 1985]), the early ef-
forts in building distributed database sys-
tems were never commercially successful
[Stonebraker 1994]. In some aspects, the
early distributed database systems were
ahead of their time. First, communication
technology was not stable enough to ship
megabytes of data as required for these
systems. Second, large businesses some-
how managed to survive without sophisti-
cated distributed database technology by
sending tapes, diskettes, or just paper to
exchange data between their offices.

Today, the situation has changed dra-
matically. Distributed data processing is
both feasible and needed. Almost all major
database system vendors offer products to
support distributed data processing (e.g.,
IBM, Informix, Microsoft, Oracle, Sybase),
and large database application systems
have a distributed architecture (e.g., busi-
ness application systems such as Baan IV,
Oracle Finance, Peoplesoft 7.5, and SAP
R/3). Distributed data processing is fea-
sible because of recent technological ad-
vances (e.g., hardware, software protocols,
standards). Distributed data processing is
needed because of changing business re-
quirements, which have made distributed
data processing cost-effective and in cer-
tain situations the only viable option.
Specifically, businesses are beginning to
rely on distributed rather than centralized
databases for the following reasons:

1. Cost and scalability. Today, one thou-
sand PC processors are cheaper and sig-
nificantly more powerful than one big
mainframe computer. So, it makes eco-
nomic sense to replace a mainframe by
a network of small, off-the-shelf pro-
cessors. Furthermore, it is very dif-
ficult to “up-size” a mainframe com-
puter if a company grows, while new
PCs can be added to the network at
any time in order to meet a company’s
new requirements. High availability
can be achieved by mirroring (replicat-
ing) data.

2. Integration of different software
modules. It has become clear that no
single software package can meet all
the requirements of a company. Compa-
nies must, therefore, install several dif-
ferent packages, each potentially with
its own database, and the result is a
distributed database system. Even sin-
gle software packages offered by one
vendor have a distributed, component-
based architecture so that the vendor
can market and offer upgrades for ev-
ery component individually.

3. Integration of legacy systems. The
integration of legacy systems is one par-
ticular example that demonstrates how
some companies are forced to rely on
distributed data processing in which
their old legacy systems need to coexist
with new modern systems.

4. New applications. There are a num-
ber of new emerging applications that
rely heavily on distributed database
technology; examples are workflow
management, computer-supported col-
laborative work, tele-conferencing, and
electronic commerce.

5. Market forces. Many companies are
forced to reorganize their businesses
and use state-of-the-art distributed in-
formation technology in order to remain
competitive. As an example, people will
probably not eat more Pizza because of
the Internet, but a Pizza delivery ser-
vice is definitely going to lose some of its
market share if it does not allow people
to order Pizza on the Web.

This list shows that there are many
different reasons to rely on distributed
architectures and correspondingly many
different kinds of distributed systems
exist. Sometimes it is only the soft-
ware and not the hardware that is dis-
tributed. The purpose of this paper is to
give a comprehensive overview of what
query processing techniques are needed
to implement any kind of distributed
database and information system. It is
assumed that users and application pro-
grams issue queries using a declarative
query language such as SQL [Melton and

ACM Computing Surveys, Vol. 32, No. 4, December 2000.



424 D. Kossmann

Simon 1993] or OQL [Cattell et al. 1997]
and without knowing where and in which
format the data is stored in the distributed
system. The goal is to execute such queries
as efficiently as possible in order to min-
imize the time that users must wait for
answers or the time application programs
are delayed. To this end, we will discuss
a series of techniques that are particu-
larly effective to execute queries in today’s
distributed systems. For example, we will
describe the design of a query optimizer
that compiles a query for execution and
determines the best possible way among
many alternative ways to execute a query.
We will also show how techniques such as
caching and replication can be used to im-
prove the performance of queries in a dis-
tributed environment. Furthermore, we
will cover specific query processing tech-
niques for client-server, middleware (mul-
titier), and heterogeneous database and
information systems, which represent ar-
chitectures that are frequently found in
practice.

1.2 Scope of this Paper and
Related Surveys

A very large body of work in the gen-
eral area of database systems exists. All
this work can be roughly classified into
work on architectures and techniques for
transaction processing (i.e., quickly pro-
cessing small update operations), work on
query processing (i.e., mostly read opera-
tions that explore large amounts of data),
and work on data models, languages, and
user interfaces for advanced applications.
In this paper, we will focus primarily on
query processing. A discussion of trans-
action processing and of alternative data
models is beyond the scope of this pa-
per. Transaction processing has been thor-
oughly investigated in, for example, Gray
and Reuter [1993]. Work on data models
(relational, deductive, object-oriented, and
semistructured) is described in Ullman
[1988], Cattell et al. [1997], Abiteboul
[1997], and Buneman [1997]. Also, we
will assume that the reader is famil-
iar with basic database system concepts,
SQL, and the relational data model. Good

introductory textbooks are Silberschatz
et al. [1997] and Ramakrishnan [1997].

This paper will not even be able to give a
full coverage of all query processing tech-
niques used today; in particular, a num-
ber of query processing techniques for the
World Wide Web are not discussed. For in-
stance, we will not present the architec-
ture of search engines such as AltaVista.
Furthermore, there have been several pro-
posals to manage Web sites and query a
network of Web pages; see Florescu et al.
[1998] for a survey. In addition, several
proposals to manage and query XML data
exist (e.g., McHugh and Widom [1999],
Abiteboul et al. [1999], and Florescu et al.
[1999]). Instead of going into the details of
all these techniques, the focus of this pa-
per is on fundamental mechanisms to pro-
cess queries that involve data from several
sites. We will, therefore, concentrate on
structured data (such as that found in rela-
tional or object-oriented databases) and on
query languages for structured data (such
as SQL or OQL). Nevertheless, the tech-
niques described in this paper are also rel-
evant to process other kinds of data in a
distributed environment.

A parallel database system is a par-
ticular type of distributed system. Dis-
tributed and parallel database systems
share several properties and goals—in
particular, if the parallel system has
a so-called “shared-nothing” architecture
[Stonebraker 1986]. The purpose of a par-
allel database system is to improve trans-
action and query response times, and the
availability of the system for centralized
applications. Parallel systems, therefore,
emphasize the cost/scalability arguments
described above, while the distributed sys-
tems discussed in this paper often ad-
dress issues such as the heterogeneity of
components. While some query process-
ing techniques are useful for both kinds
of systems, researchers in both areas have
developed special-purpose techniques for
their particular environment. In this pa-
per, we will concentrate on the tech-
niques that are of interest for distributed
database systems, and will not discuss
techniques which are specifically used in
parallel database systems (e.g., special
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parallel join methods, repartitioning of
data during query execution, etc.). An ex-
cellent overview on parallel database sys-
tems is given in DeWitt and Gray [1992].

In terms of related work, there have
been several surveys on distributed query
processing; for example, a paper by Yu
and Chang [1984] and parts of the books
by Ceri and Pelagatti [1984], Özsu and
Valduriez [1999], and Yu and Meng [1997]
are devoted to distributed query process-
ing. These surveys, however, are mostly
focused on the presentation of the tech-
niques used in the early prototypes of the
1970 and 1980. While there is some over-
lap, most of the material presented in
this paper is not covered in those articles
and books simply because the underly-
ing technology and business requirements
have significantly changed in the last few
years.

1.3 Organization of this Paper

This paper is organized as follows:r Section 2. presents the textbook archi-
tecture for query processing and a se-
ries of basic query execution techniques
that are useful for all kinds of distributed
database systemsr Section 3. takes a closer look at query
processing for one particular and very
important class of distributed database
systems: client-server database systemsr Section 4. deals with the query pro-
cessing issues that arise in heteroge-
neous database systems, that is, sys-
tems that are composed of several
autonomous component databases with
different schemas, varying query pro-
cessing capabilities, and application pro-
gramming interfaces (APIs)r Section 5. shows how data placement
(i.e., replication and caching) and query
processing interact and shows how data
can dynamically and automatically be
distributed in a system in order to
achieve good performancer Section 6. describes other emerging and
promising architectures for distributed
data processing; specifically, this sec-
tion gives an overview of economic

models for distributed query process-
ing and dissemination-based informa-
tion systemsr Section 7. contains conclusions and sum-
marizes open problems for future re-
search.

2. DISTRIBUTED QUERY PROCESSING:
BASIC APPROACH AND TECHNIQUES

In this section, we will describe the “text-
book” architecture for query processing
and present a series of specific query
processing techniques for distributed
database and information systems. These
techniques include alternative ways to
ship data from one site to one or several
other sites, implement joins, and carry out
certain kinds of queries in a distributed
environment. The purpose of this section
is to give an overview of basic mecha-
nisms that can be used in any kind of dis-
tributed database system. In Sections 3.
and 4., we will discuss the techniques that
are particularly useful for certain classes
of distributed database systems (i.e.,
client-server and heterogeneous database
systems).

2.1 Architecture of a Query Processor

Figure 1 shows the classic “textbook” ar-
chitecture for query processing. This ar-
chitecture was used, for example, in IBM’s
Starburst project [Haas et al. 1989]. This
architecture can be used for any kind
of database system including centralized,
distributed, or parallel systems. The query
processor receives an SQL (or OQL) query
as input, translates and optimizes this
query in several phases into an executable
query plan, and executes the plan in or-
der to obtain the results of the query. If
the query is an interactive ad hoc query
(dynamic SQL), the plan is directly exe-
cuted by the query execution engine and
the results are presented to the user. If
the query is a canned query that is part of
an application program (embedded SQL),
the plan is stored in the database and exe-
cuted by the query execution engine every
time the application program is executed
[Chamberlin et al. 1981]. Below is a brief
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Fig. 1 . Phases of query processing [Haas et al. 1989].

description of each component of the query
processor.

Parser. In the first phase, the query is
parsed and translated into an internal
representation (e.g., a query graph [Jenq
et al. 1990; Pirahesh et al. 1992]) that can
be easily processed by the later phases.
The development of parsers is well under-
stood [Aho et al. 1987], and tools like flex
and bison can be used for the construction
of SQL or OQL parsers just as for most
other programming languages. The same
parser can be used for a centralized and
distributed database system.

Query Rewrite. Query rewrite transforms
a query in order to carry out optimiza-
tions that are good regardless of the phys-
ical state of the system (e.g., the size of
tables, presence of indices, locations of
copies of tables, speed of machines, etc.)
[Pirahesh et al. 1992]. Typical transfor-
mations are the elimination of redundant
predicates, simplification of expressions,
and unnesting of subqueries and views. In
a distributed system, query rewrite also
selects the partitions of a table that must
be considered to answer a query [Ceri and
Pelagatti 1984; Özsu and Valduriez 1999].
Query rewrite is carried out by a sophisti-
cated rule engine [Pirahesh et al. 1992].

Query Optimizer. This component carries
out optimizations that depend on the
physical state of the system. The optimizer
decides which indices to use to execute
a query, which methods (e.g., hashing or
sorting) to use to execute the operations of
a query (e.g., joins and group-bys), and in
which order to execute the operations of

a query. The query optimizer also decides
how much main memory to allocate for
the execution of each operation. In a dis-
tributed system, the optimizer must also
decide at which site each operation is to be
executed. To make these decisions, the op-
timizer enumerates alternative plans (de-
scribed below) and chooses the best plan
using a cost estimation model. Almost all
commercial query optimizers are based on
dynamic programming in order to enumer-
ate plans efficiently. Dynamic program-
ming and considerations for cost estima-
tion in a distributed system are described
in more detail in Section 2.2.

Plan. A plan specifies precisely how the
query is to be executed. Probably every
database system represents plans in the
same way: as trees. The nodes of a plan are
operators, and every operator carries out
one particular operation (e.g., join, group-
by, sort, scan, etc.). The nodes of a plan are
annotated, indicating, for instance, where
the operator is to be carried out. The edges
of a plan represent consumer-producer re-
lationships of operators. Figure 2 shows
an example plan for a query that involves
Tables A and B. The plan specifies that Ta-
ble A is read at Site 1 using an index (the
idxscan(A) operator), B is read at Site 2
without an index (the scan(B) operator),
A and B are shipped to Site 0 (the send
and receive operators), B is materialized
and reread at Site 0 (the temp and scan
operators), and finally, A and B are joined
at Site 0 using a nested-loop join method
(the NLJ operator). The send and receive
operators encapsulate all the communica-
tion activity so that all other operators
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Fig. 2 . Example query evaluation plan.

(e.g., NLJ or scan) can be implemented
and used in the same way as in a central-
ized database system.

Plan Refinement/Code Generation. This
component transforms the plan produced
by the optimizer into an executable plan.
In System R, for example, this trans-
formation involves the generation of an
assembler-like code to evaluate expres-
sions and predicates efficiently [Lorie and
Wade 1979]. In some systems, plan re-
finement also involves carrying out sim-
ple optimizations which are not carried
out by the query optimizer in order to
simplify the implementation of the query
optimizer.

Query Execution Engine. This component
provides generic implementations for ev-
ery operator (e.g., send, scan, or NLJ). All
state-of-the-art query execution engines
are based on an iterator model [Graefe
1993]. In such a model, operators are
implemented as iterators and all itera-
tors have the same interface. As a re-
sult, any two iterators can be plugged
together (as specified by the consumer–
producer relationship of a plan), and thus,
any plan can be executed. Another advan-
tage of the iterator model is that it sup-
ports the pipelining of results from one op-
erator to another in order to achieve good
performance.

Catalog. The catalog stores all the infor-
mation needed in order to parse, rewrite,
and optimize a query. It maintains the
schema of the database (i.e., definitions of
tables, views, user-defined types and func-
tions, integrity constraints, etc.), the par-
titioning schema (i.e., information about
what global tables have been partitioned
and how they can be reconstructed), and
physical information such as the location
of copies of partitions of tables, informa-
tion about indices, and statistics that are
used to estimate the cost of a plan. In most
relational database systems, the catalog
information is stored like all other data
in tables. In a distributed database sys-
tem, the question of where to store the
catalog arises. The simplest approach is
to store the catalog at one central site.
In wide-area networks, it makes sense to
replicate the catalog at several sites in or-
der to reduce communication costs. It is
also possible to cache catalog information
at sites in a wide-area network [Williams
et al. 1981]. Both replication and caching
of catalog information are very effective
because catalogs are usually quite small
(hundreds of kilobytes rather than giga-
bytes) and catalog information is rarely
updated in most environments. In cer-
tain environments, however, the catalog
can become very large and be frequently
updated. In such environments, it makes
sense to partition the catalog data and
store catalog data where it is most needed.
For example, catalogs of distributed ob-
ject databases need to know where copies
of all the objects (potentially millions) are
stored, and they need to update this infor-
mation every time an object is migrated
or replicated. Such catalogs can be imple-
mented in a hierarchical way as described
in Eickler et al. [1997].

It should be noted that the architec-
ture shown in Figure 1 and described
in this subsection is not the only pos-
sible way to process queries. There is
no such thing as a perfect query pro-
cessor. An alternative architecture has,
for example, been developed by Graefe
and others as part of the Exodus, Vol-
cano, and Cascades projects [Graefe 1995;
Graefe and McKenna 1993; Graefe and
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Input: SPJ query q on relations R1, . . . , Rn

Output: A query plan for q

1: for i = 1 to n do {
2: optPlan({Ri}) = accessPlans(Ri)
3: prunePlans(optPlan({Ri}))
4: }
5: for i = 2 to n do {
6: for all S ⊆ {R1, . . . , Rn} such that |S| = i do {
7: optPlan(S) = ∅
8: for all O ⊂ S do {
9: optPlan(S) = optPlan(S) ∪ joinPlans(optPlan(O), optPlan(S − O))
10: prunePlans(optPlan(S))
11: }
12: }
13: }
14: return optPlan({R1, . . . , Rn})

Fig. 3 . Dynamic programming algorithm for query optimization.

DeWitt 1987], and is used in several com-
mercial database products (e.g., Microsoft
SQL Server 7.0). In that architecture,
query rewrite and query optimization are
carried out in one phase. Furthermore,
there have been proposals to optimize
a set of queries rather than individual
queries [Sellis 1988]. The advantage of
such an approach is that common subex-
pressions (e.g., joins) that are part of sev-
eral queries need only be carried out once
for the whole set of queries.

2.2 Query Optimization

We now turn to a description of techniques
that can be used to implement the query
optimizer of a distributed database sys-
tem. We will first describe the most pop-
ular enumeration algorithm for query op-
timization. After that, we will describe two
cost models that can be used to estimate
the cost of a plan.

2.2.1 Plan Enumeration with Dynamic Pro-
gramming. A large number of alterna-
tive enumeration algorithms have been
proposed in the literature; Steinbrunn
et al. [1997] contains a good overview,
and Kossmann and Stocker [2000] eval-
uate the most important algorithms
for distributed database systems. In
the following, dynamic programming is

described. This algorithm is used in al-
most all commercial database products,
and it was pioneered in IBM’s System R
project [Selinger et al. 1979]. The advan-
tage of dynamic programming is that it
produces the best possible plans if the cost
model is sufficiently accurate. The disad-
vantage of this algorithm is that it has
exponential time and space complexity so
that it is not viable for complex queries;
in particular, in a distributed system, the
complexity of dynamic programming is
prohibitive for many queries. An extension
of the dynamic programming algorithm is
known as iterative dynamic programming.
This extended algorithm is adaptive and
produces as good plans as basic dynamic
programming for simple queries and “as
good as possible plans” for complex queries
for which dynamic programming is not vi-
able. We do not describe this extended al-
gorithm in this paper and refer the in-
terested reader to Kossmann and Stocker
[2000].

The basic dynamic programming algo-
rithm for query optimization is shown in
Figure 3. It works in a bottom-up way by
building more complex (sub-) plans from
simpler (sub-) plans. In the first step, the
algorithm builds an access plan for every
table involved in the query (Lines 1 to 4
of Figure 3). If Table A, for instance, is
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replicated at sites S1 and S2, the algo-
rithm would enumerate scan(A, S1) and
scan(A, S2) as alternative access plans for
Table A. Then, the algorithm enumerates
all two-way join plans using the access
plans as building blocks (Lines 5 to 13).
Again, the algorithm would enumerate al-
ternative join plans for all relevant sites,
that is, consider carrying out joins with A
at S1 and S2. Next, the algorithm builds
three-way join plans, using access-plans
and two-way join plans as building blocks.
The algorithm continues in this way un-
til it has enumerated all n-way join plans
which are complete plans for the query, if
the query involves n tables.

The beauty of the dynamic program-
ming algorithm is that inferior plans are
discarded (i.e., pruned) as early as possi-
ble (Lines 3 and 10). A plan can be pruned
if an alternative plan exists that does the
same or more work at a lower cost. Dy-
namic programming, for example, would
enumerate A1 B and B 1 A as two al-
ternative plans to execute this join, but
only the cheaper of the two plans would
be kept in the optPlan(A, B) structure af-
ter pruning. Pruning significantly reduces
the complexity of query optimization; the
earlier inferior plans are pruned, the bet-
ter because more complex plans are not
constructed from such inferior plans.

In a distributed system, neither scan(A,
S1 ) nor scan(A, S2 ) may be immediately
pruned in order to guarantee that the op-
timizer finds a good plan. Both plans do
the same work, but they produce their re-
sults at different sites. Even if scan(A, S1 )
is cheaper than scan(A, S2 ), scan(A, S2 )
must be kept because it might be a build-
ing block of the overall best plan if, for
instance, the query results are to be pre-
sented at S2. Only if the cost of scan(A, S1 )
plus the cost of shipping A from S1 to S2 is
lower than the cost of scan(A, S2 ), scan(A,
S2 ) is pruned. In general, a plan P1 may be
pruned if there exists a plan P2 that does
the same or more work and the following
criterion holds:

∀i ∈ interesting sites(P1) : cost (ship(P1, i))
≥ cost (ship(P2, i)) (1)

Here, interesting site denotes the set of
sites that are potentially involved in pro-
cessing the query; the concept is for-
mally defined in Kossmann and Stocker
[2000], who also show how this expres-
sion can be evaluated efficiently during
query optimization under certain condi-
tions. Ganguly et al. [1992] describes fur-
ther adaptions to the pruning logic that
need to be considered if a response time
cost model is used (Section 2.2.2).

In the literature, there has been a
great deal of discussion concerning bushy
or (left-) deep join plan enumeration
[Ioannidis and Kang 1991; Lanzelotte
et al. 1993; Schneider and DeWitt 1990].
Deep plans are plans in which every join
involves at least one base table. Bushy
plans are more general; in a bushy plan,
a join could involve one or two base ta-
bles or the result of one or two other join
operations (for instance, the plans of Fig-
ure 4 are bushy). The algorithm shown
in Figure 3 enumerates all bushy plans,
and taking all bushy plans into account
is also the approach taken in most com-
mercial database systems. The best plan
to execute a query is often bushy and not
deep; in particular in a distributed sys-
tem [Franklin et al. 1996].

2.2.2 Cost Estimation for Plans. The Classic
Cost Model The classic way to estimate
the cost of a plan is to estimate the cost
of every individual operator of the plan
and then sum up these costs [Mackert
and Lohman 1986]. In this model, the
cost of a plan is defined as the total re-
source consumption of the plan. In a cen-
tralized system, the cost of an operator
is composed of CPU costs plus disk I/O
costs. The disk I/O costs, in turn, are
composed of seek, latency, and transfer
costs. In a distributed system, communi-
cation costs must also be considered; these
costs are composed of fixed costs per mes-
sage, per-byte costs to transfer data, and
CPU costs to pack and unpack messages
at the sending and receiving sites. The
costs can be weighted in order to model
the impact of slow and fast machines and
communication links; for example, it is
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Minimum Resource Consumption Minimum Response Time

Fig. 4 . Example plans: total resource consumption vs. response time.

more expensive to ship data from Passau
(Germany) to Washington (USA) than
from Passau to Munich (Germany). Also,
high weights are assigned to the CPU in-
structions and disk I/O operations that are
carried out by heavily loaded machines. As
a result, the optimizer will favor plans that
carry out operators at fast and unloaded
machines and avoid expensive communi-
cation links, wherever possible.

Response Time Models. The classic cost
model that estimates the total resource
consumption of a query is useful to opti-
mize the overall throughput of a system:
if all queries consume as few resources
as possible and avoid heavily loaded ma-
chines, then as many queries as possi-
ble can be executed in parallel. The clas-
sic cost model, however, does not consider
intraquery parallelism, so an optimizer
based on this cost model will not neces-
sarily find the plan with the lowest re-
sponse time for a query in cases in which
machines are lightly loaded and commu-
nication is fast.

To give an example that demonstrates
the difference between the total resource
consumption and the response time of a
plan, consider the two plans of Figure 4.
Assuming that the costs of join processing
are the same at all three sites and that
copies of all tables are stored at all the
sites, the first plan clearly has a lower to-
tal resource consumption than the second

plan because the first plan involves no
communication. The second plan, how-
ever, probably has a lower response time if
communication is fairly cheap because all
three joins can be carried out in parallel
at the three sites.

To find the plan with the lowest re-
sponse time for a query (i.e., the second
plan of Figure 4), the query optimizer
must use a cost model that estimates re-
sponse time, rather than total resource
consumption. Such a cost model was de-
vised in Ganguly et al. [1992]. This cost
model differentiates between pipelined
and independent parallelism; for example,
A1 B and C 1 D can be carried out inde-
pendently in parallel in both plans of Fig-
ure 4, and these two joins and the top-
level join can be carried out in a pipelined
parallel fashion. Described at a high level,
this cost model works as follows to deal
with both kinds of parallelism (pipelining
is slightly more complex). First, the to-
tal resource consumption is computed for
each individual operator. Second, the to-
tal usage of every shared resource used
by a group of operators that run in par-
allel is computed; for example, the usage
of the network is computed by taking into
account the bandwidth of the network and
the volume of data transmitted to carry
out all the operators that run in paral-
lel. The response time of an entire group
of operators that run in parallel is then
computed as the maximum of the total
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resource consumption of the individual
operators and of the total usage of all the
shared resources.

To illustrate, let us go back to the two
plans of Figure 4 and make the following
assumptions: (1) all three joins run in par-
allel (pipelined and/or independently) in
both plans; (2) each join costs 200 sec of
CPU time and no disk I/O in both plans; (3)
the network has no latency, and shipping
the results of A1 B and C 1 D each cost
130 sec of network bandwidth in the sec-
ond plan; (4) sending and receiving tuples
incurs no CPU costs; (5) reading all four
tables is free in both plans. Under these
assumptions, the response time model es-
timates that the first plan of Figure 4 has
a response time of 600 sec; this is the total
usage of the CPU at Site 0. For the second
plan, the response time model makes the
following calculations: total usage of each
CPU is 200 sec; total usage of the network
is 260 sec; the maximum cost of an oper-
ator is 200 sec. As a result, the response
time is estimated to be 260 sec, as the max-
imum of all these components.

This cost model captures the effects of
operator parallelism in a coarse-grained
way; for example, scheduling considera-
tions that arise when several operators
concurrently use the same resource are
not modeled. Looking closer at the model,
it is possible to find situations in which
inaccuracies of the cost model make the
optimizer choose suboptimal plans even
if the resource consumption of the indi-
vidual operators is accurately estimated.
However, the cost model works quite well
if only a few operators run in parallel.
It has already been successfully used for
query optimization in several studies (e.g.,
Franklin et al. [1996] and Urhan et al.
[1998]). Like the classic cost model, it is
able to evaluate a plan very quickly. This
is important because query optimization
often involves applying the cost model to
thousands of plans.

2.3 Query Execution Techniques

This subsection describes alternative
ways to execute queries in a distributed
database system. In particular, we will

describe how data can be shipped and how
joins between tables stored at different
sites can be computed. We will not describe
“standard” execution techniques that are
commonly used in centralized database
systems (e.g., hash, sort, or index-based al-
gorithms to compute joins and group-bys).
Such techniques have been described in
full detail in other surveys [Graefe 1993;
Mishra and Eich 1992], and they can nat-
urally be applied in a distributed system
in concert with send and receive operators.

Most of the execution techniques de-
scribed in this subsection represent one
of many options to implement an opera-
tor in a distributed system. In order to
make the best use of these execution tech-
niques, the query optimizer of the system
must be extended in order to decide if
and how to make use of these techniques
for a specific query. In other words, inte-
grating these techniques into a distributed
database system involves extending the
accessPlans and joinPlans functions in
a dynamic-programming-based optimizer
(Figure 3) in order to enumerate alterna-
tive plans that make use of these execution
techniques. Also, cost formulas must be
provided so that the cost and/or response
time of such plans can be estimated.

2.3.1 Row Blocking. As seen in Figure 2,
communication is typically implemented
by send and receive operators. Naturally,
the implementation of these operators is
based on TCP/IP, UDP, or some other net-
work protocol [Tanenbaum 1989]. To re-
duce the overhead, almost all database
systems employ a technique called row
blocking. The idea is to ship tuples in a
blockwise fashion, rather than every tuple
individually. In other words, a send opera-
tor consumes several tuples of its child op-
erator and sends these tuples as a batch.
This approach is obviously much cheaper
than the naive approach of sending one tu-
ple at a time because the data is packed
into fewer messages. The size of the blocks
is a parameter of the send and receive op-
erators; this parameter is set taking into
account the characteristics of the network
(i.e., the message size of the network).
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One particular advantage of row block-
ing is that it compensates for burstiness
in the arrival of data up to a certain point.
If tuples are shipped one by one through
the network, any short delay in the net-
work would immediately stop the execu-
tion of the query at the receiving site be-
cause of a shortage of tuples to consume.
Due to row blocking, the receive opera-
tor has a reservoir of tuples and can feed
its parent operator even if the next block
of tuples is delayed. As a result, it is of-
ten better to choose a block size that is
larger than the message size used by the
network.

2.3.2 Optimization of Multicasts. In most
environments, networks are organized in
a hierarchical way so that communica-
tion costs vary significantly depending on
the locations of the sending and receiving
sites. It is, for instance, cheaper to send
data from Munich to Passau, which are
both in Germany, than from Washington,
across the Atlantic, to Passau. Sometimes,
a site needs to send the same data to sev-
eral sites to execute a query; it is, for in-
stance, possible that the same data must
be sent from Washington to Munich and
Passau. If the network does not provide
cheap ways to implement such multicasts,
it is preferable to send the data from Wash-
ington to Munich and then forward it from
Munich to Passau, rather than sending the
data from Washington across the Atlantic
twice.

Sometimes, this technique is useful
even in a homogeneous and fast network.
Let us assume that the time on the wire
to send messages between Washington,
Munich, and Passau is negligible; in this
case, CPU costs to send (i.e., pack) and
receive (unpack) messages dominate com-
munication costs. If Washington is heavily
loaded or has a slow CPU, then it might
again be better if Passau receives the data
from Munich rather than from Washing-
ton. Obviously, another option would be
for Passau to receive the data from Wash-
ington and for Munich to receive the data
from Passau. The best choice must be
made by the query optimizer.

Fig. 5 . Example union plan.

2.3.3 Multithreaded Query Execution. To
take the best advantage of intraquery par-
allelism, it is sometimes advantageous to
establish several threads at a site [Graefe
1990]. As an example, consider the plan
of Figure 5, which implements the query
A1 ∪ A2 ∪ A3; A1 is stored at Site 1, A2 at
Site 2, and A3 at Site 3. If the union and
receive operators of Site 0 are executed
within a single thread, then Site 0 only
requests one block at a time (e.g., in a
round-robin way) and the opportunity to
read and send the three partitions from
Sites 1, 2, and 3 to Site 0 in parallel is
wasted. Only if the union and receive oper-
ators at Site 0 run in different threads can
the three receive operators continuously
ask for tuples from the send operators
at Sites 1, 2, and 3 so that all three
send operators run and produce tuples
in parallel.

Establishing a separate thread for ev-
ery query operator, however, is not always
the best thing to do. First, shared-memory
communication between threads needs to
be synchronized, resulting in additional
cost. Second, it is not always advantageous
to parallelize all operations. Consider,
for example, the plan of Figure 6 which
carries out a sort-merge join of Tables A
and B. Depending on the available main
memory at Site 0, it might or might not be
advantageous to receive and sort Tables A
and B in parallel at Site 0. If there is
plenty of main memory to store large
fractions of both A and B at Site 0, then
the two pairs of receive and sort operators
should be carried out in parallel in order
to parallelize the send and scan of A
and B. Otherwise, the two receive-sort
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Fig. 6 . Example join plan.

branches should be carried out one at a
time in order to avoid resource contention
at Site 0 (i.e., disk thrashing if both sorts
write concurrently to the same disk). The
query optimizer and/or a scheduler at
run time must decide which parts of a
query should run in parallel and, thus,
which operators should run in the same
thread. Work on scheduling and dynamic
resource allocation for distributed and
parallel databases has been described in,
for example, Graefe [1996].

2.3.4 Joins with Horizontally Partitioned
Data. The logical properties of the join
and union operators make it possible
to process joins in a number of differ-
ent ways if the tables are horizontally
partitioned. If, for example, Table A is
horizontally partitioned in such a way
that A = A1 ∪ A2, then A1 B can be com-
puted in the following two ways [Epstein
et al. 1978]:

(A1 ∪ A2) 1 B or (A1 1 B) ∪ (A2 1 B)

If A is partitioned into more than two par-
titions or if B is also partitioned, then even
more variants are possible: for example,
((A1 ∪ A2) 1 B) ∪ (A3 1 B) might be an at-
tractive plan if B is replicated and one
copy of B is located at a site near the sites
that store A1 and A2 and another copy of
B is located near the site that stores A3.

The optimizer ought to consider all these
options.

In some situations, A and B are par-
titioned in such a way that it is possible
to deduce that some of the Ai 1 Bj are
empty. The optimizer should, of course,
take advantage of such knowledge and
eliminate such “empty” expressions in
order to reduce the cost of join processing.
One very common situation is that A
and B are partitioned in such a way that
Ai 1 Bj is empty if i 6= j . Consider, for
example, a company that has a Dept table
that is partitioned by Dept.location in
order to store all the Dept information at
the site of the department. This company
may also have an Emp table that is parti-
tioned according to the location of the Dept
in which the Emp works Emp1 Dept can be
carried out for this company by joining
the Emp and Dept partitions separately at
every site. In other words, the following
equation holds if the company has n sites:

(Emp1 ∪ · · · ∪ Empn) 1 (Dept1 ∪ · · · ∪ Deptn)
= (Emp1 1 Dept1) ∪ · · · ∪ (Empn 1 Deptn)

2.3.5 Semijoins. Semijoin programs were
proposed as another technique to process
joins between tables stored at different
sites [Bernstein et al. 1981]. If Table A
is stored at Site 1 and Table B is stored
at Site 2, then the “conventional” way to
execute A1 B is to ship A from Site 1 to
Site 2 and execute the join at Site 2 (or the
other way around). The idea of a semijoin
program is to send only the column(s) of A
that are needed to evaluate the join pred-
icates from Site 1 to Site 2, find the tuples
of B that qualify the join at Site 2, send
those tuples to Site 1, and then match A
with those B tuples at Site 1. Formally,
this procedure can be described as follows
(n is the semijoin operator and π (A)
projects out the join columns from A).

A1 B = A1 (Bnπ (A))

Variants of this approach are meant to
eliminate duplicate tuples from π (A)
(trading additional work at Site 1 for less
communication) and sending a signature
file for A, called a bloom-hash filter,
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rather than π (A) [Babb 1979; Valduriez
and Gardarin 1984]. Again, the optimizer
must decide which variant to use, if any,
and in which direction to carry out the
semijoin program, from Site 1 to Site 2
or vice versa, based on the cardinalities
of the tables, the selectivity of the join
predicate(s), and the location of the data
used in the other operations of the query.

Experimental work indicates that
semijoin programs are typically not very
attractive for join processing in standard
(relational) distributed database systems
because the additional computational
overhead is usually higher than the
savings in communication costs [Lu and
Carey 1985; Mackert and Lohman 1986].
Today, however, several applications that
involve tables with very large tuples can
be found and semijoin style techniques
can indeed be very attractive for such
applications. Consider, for example, a
table that stores employee information
including a picture of every employee. In
this case, it does make sense to find the
target employees of a query using, say, the
age, dept no, and so on columns and then
fetch the picture and other columns of the
query result at the end. Other examples
arise in client-server database systems
(Section 3.). In a client-server system, for
example, the following plan might be very
useful

(A1 S1C) 1 S3 (Bn S2C)

if A is stored at Server S1, B is stored
at Server S2, C is replicated at both
servers, and the result of the whole
query must be displayed at Client S3
[Braumandl et al. 1999c; Stocker et al.
2001]. Furthermore, Section 4.3.1 demon-
strates how semijoin style techniques
can be very useful to exploit the specific
capabilities of sites in a heterogeneous
database system.

2.3.6 Double-Pipelined Hash Joins. Re-
cently, double-pipelined (or nonblocking)
hash-join algorithms were proposed [Ives
et al. 1999; Urhan and Franklin 1999;
Wilshut and Apers 1991]. The use of
such join algorithms makes it possible

to deliver the first results of a query
as early as possible. In addition, such
join algorithms make it possible to fully
exploit pipelined parallelism and thus re-
duce the overall response time of a query
in a distributed system. As described
in Urhan and Franklin [1999], variants
of such join methods can be particularly
useful in a distributed system in which
the delivery of tuples through the network
is bursty because certain phases of the
join processing can be carried out at a site
while the site waits for the next, possibly
delayed, batch of tuples.

The basic idea on which all these
algorithms are based is quite simple. To
execute A1 B, two main-memory hash
tables are constructed: one for tuples of
A and one for tuples of B. The two hash
tables are initially empty. The tuples of
A and B are processed one at a time. To
process a tuple of A, the B hash table
is probed in order to find B tuples that
match this A tuple; A and the matching
B tuples are immediately output. After
that, the A tuple is inserted into the A
hash table for matching B tuples that
have not yet been processed. B tuples
are processed analogously. The algorithm
terminates when all A and B tuples have
been processed and is guaranteed to find
all the results of the join. Special actions
need to be taken if the hash tables grow
in such a way that the main memory is
exhausted. To remedy such a situation,
the algorithms in Ives et al. [1999] and
Urhan and Franklin [1999] adopt a hybrid
hashing and partitioning scheme.

2.3.7 Pointer-Based Joins and Distributed
Object Assembly. One particular kind of
query that can be found in object-oriented
and object-relational database systems
are called pointer-based joins. Pointer-
based joins occur because foreign keys are
implemented in these systems by explicit
references that contain the address of
an object or the address of a placeholder
of an object [Eickler et al. 1995]. Rather
than a user-defined department number,
for example, every Emp tuple contains a
reference or pointer to the site and storage
location of the corresponding Dept object.
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A pointer-based join query is a query that
involves traversing a set of references as
in “find the Dept information of all Emps
that are older than 50 years old.”

Alternative ways to execute pointer-
based joins have been studied in Shekita
and Carey [1990]—that paper focuses
on centralized database systems, but
the basic ideas can naturally be applied
to distributed and parallel database
systems [DeWitt et al. 1993]. The naive
way to execute pointer-based joins is to
scan through the Emp table and follow the
Dept references of all Emps of age > 50. In
a centralized database system, this naive
approach is very expensive because it
involves a great deal of random disk I/O to
fetch the individual Dept objects from the
disk. In a distributed database system,
the naive approach incurs even higher
costs because it involves a round-trip
message to chase the Dept reference of
every old Emp in addition to random disk
I/O. An alternative to the naive approach
is to implement the pointer-based join as
an ordinary (relational) value-based join;
that is, as a join between the Emp and Dept
tables with Emp.DeptRef = Dept.address
as the join predicate. This approach works
if it is known that the Emp tuples only ref-
erence objects of the Dept table (i.e., scoped
references), and this approach typically
outperforms the naive approach because
it avoids random disk I/O and excessive
round trip messages. On the negative
side, however, this approach does not take
advantage of the fact that the Dept refer-
ences in the Emp tuples actually material-
ize which Emps and Depts belong together,
and thus, the “value-based join” approach
needs to recompute this matching.

The advantages of the “naive” and
“value-based join” approaches can in many
cases be combined by grouping the Emp
tuples using sorting or hashing [Shekita
and Carey 1990]. That is, all old Emps that
belong to Depts stored at the same site are
grouped together. Then the Dept objects
for these Emps are fetched from that site in
one batch. Like the naive approach, this
approach does not recompute the match-
ing between Emp and Dept objects, and like
the value-based approach, this approach

avoids random I/O and unnecessary round
trip messages. Random disk I/O can be
avoided by sorting the Dept references.
Another algorithm, the P (P M )∗M algo-
rithm, to implement pointer-based joins
was devised in Braumandl et al. [1999a].
The P (P M )∗M algorithm uses the same
partition-based (i.e., grouping) approach
as proposed by Shekita and Carey [1990],
but the P (P M )∗M algorithm also makes
sure that after the pointer-based join
is complete, the Emp tuples are in the
same order as before. This is useful, for
example, if the Emp tuples are already
in the right order as needed for the
query result, another join operation, or
a group-by operation. The P (P M )∗M
algorithm is particularly useful if the
pointer-based join is along reference sets
because it avoids the costs of unnesting
the reference sets before the join and then
regrouping the sets again after the join.

A special class of algorithms, object
assembly, becomes attractive if a query
involves several pointer-based joins or
tries to compute the transitive closure of
one or several root objects. Such queries
are beginning to become more and more
important in the context of the WWW: con-
sider, for example, Web crawlers that re-
cursively traverse references (http links)
of Web pages, or systems for semistruc-
tured data (e.g., XML data). Traditional
join processing takes a breadth-first
search approach to evaluate queries with
several pointer-based or ordinary joins.
The traditional way would be to order the
joins during query optimization and exe-
cute the joins in the specified order. Object
assembly takes a different approach com-
bining breadth-first and depth-first search
in a flexible way. Using object assembly
in a distributed system, a query involving
Emps, Depts, and Divisions, for example,
could be executed as follows [Keller et al.
1991; Maier et al. 1994]:

1. Group Emps such that the corresponding
Depts referenced by a group of Emps are
stored at the same site

2. Consider the first group of Emps and
visit the site that stores the Depts for
that group of Emps; at that site, fetch all
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the referenced Dept objects and, if any,
also fetch all Division objects that are
stored at that site and referenced by
the Dept objects; return the Dept and
Division objects

3. At the original site, the site of the Emp
objects, Emp-Dept-Division triplets can
be directly output; Emp-Dept pairs need
to be further expanded by grouping
them in such a way that the Divisions
referenced by a group of Emp-Dept pairs
are stored at the same site (i.e., the
grouping of Emp-Dept pairs is carried
out just as the grouping of Emps in
Step 1, and a group of Emp-Dept pairs
can be expanded just as in Step 2).

4. Repeat Steps 2 and 3 until all Emp and
Emp-Dept groups have been expanded.

As described in Maier et al. [1994], many
variants of this approach are conceivable
in a distributed system; unfortunately,
none of these variants has been imple-
mented, so experimental performance
results are not available.

2.3.8 Top N and Bottom N Queries. Top
N and Bottom N queries are another
particular kind of query. Examples are
“find the ten highest paid employees
that work in a research department”
or “find the ten researchers that have
published the most papers.” The goal is to
avoid wasted work when executing these
queries by isolating the top N (or bottom
N ) tuples as quickly as possible and then
performing other operations (sorts, joins,
etc.) only on those tuples. In standard
relational databases, stop operators can
be used to isolate the top N and bottom N
tuples. Query optimization issues and stop
operator implementation issues have been
discussed in Carey and Kossmann [1997;
1998]. The techniques proposed in this
work have been developed primarily for
centralized relational database systems,
but they can again be directly applied to
distributed databases as well. To give a
very simple example of how these tech-
niques could be used in a distributed sys-
tem, consider the plan shown in Figure 7.
The given plan computes the top ten tuples

Fig. 7 . Example plan for a top N query.

of Table A if A is horizontally partitioned
over three sites. The stop operators at
Sites 1, 2, and 3 make sure that every site
ships at most ten tuples to Site 0, and the
stop operator at Site 0 makes sure that no
more than ten query results are produced.

Different algorithms need to be used in
multimedia database systems [Chaudhuri
and Gravano 1996; Fagin 1996] or for
meta-searching [Gravano and Garcia-
Molina 1997; Gravano et al. 1997]. As
an example, consider a query that asks
for “ten different kinds of birds that
have black feathers and a high voice”
using an image database that stores
pictures of birds and a sound database
that stores recordings of birds’ singing.
In fact, this query is a top 10 query
because the image and sound databases
are fuzzy: rather than returning a set of
recordings with high voices, the sound
database system assigns a score(voice) to
every recording indicating how high the
voice of the corresponding bird is, and
it returns the recordings in descending
order of score(voice). In the same way, the
image database returns pictures of birds
in descending order of score(looks) that
indicates how black the corresponding
bird is. The top ten birds are then de-
termined by an overall scoring function
that computes the total score of a bird; in
this case, min{score(voice), score(looks)}
would be an appropriate overall scoring
function. Other scoring functions have
been described and discussed in Fagin
[1996] and Fagin and Wimmers [1997].
The goal is to evaluate such a query in
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such a way that the number of images and
recordings probed and returned by the
image and sound databases is minimized.
If the overall scoring function is min or
any other “monotonic” function,1 then
this task can be done using the following
algorithm devised in Fagin [1996]:

1. Continuously ask the image and sound
databases for the bird with the next
highest (component) score until the
intersection of the sets of birds returned
by the two databases contains at least
ten birds.

2. Probe the image and sound databases
to evaluate the overall scoring function
for all the birds which were returned by
one but not both of the two databases in
the first step.

This simple algorithm works because
the top 10 birds are within the union of
the two sets of birds returned by the two
databases in the first step: every other
bird has definitely lower overall score
than the ten birds of the intersection, if
the scoring function is monotonic. The
second step is necessary because the ten
birds of the intersection are not neces-
sarily the overall winners; it is possible,
for example, for a bird that is very black
and has a mediocre voice to be among the
overall top 10, but not in the intersection
because of its mediocre voice.

The algorithm above can easily be
extended to more than two databases.
Similar and slightly more complicated
algorithms have been proposed for
meta-searching in the WWW. In this
environment users are interested in
combining the scores for Web pages
returned by search engines such as Al-
taVista, Infoseek, or Lycos in order to
find Web pages with a high total score
according to all search engines. The
algorithm above is not applicable in this
environment, and different algorithms
are necessary because the second step of
the above algorithm (i.e., probing) cannot
be carried out using today’s WWW search

1 A scoring function f is defined as monotonic
if s1(a)< s1(b) ∧ s2(a)< s2(b) implies that f (s1(a),
s2(a))< f (s1(b), s2(b)).

engines [Gravano and Garcia-Molina
1997].

3. CLIENT-SERVER DATABASE SYSTEMS

We now turn to specific classes of
distributed systems: systems with a
client-server architecture. We will first
characterize different kinds of client-
server systems and then deal with one of
the crucial questions for query-processing
in these systems: if and how to exploit the
resources of client machines. We will then
discuss query optimization and query
execution issues, and present several
techniques that are popular for query
processing in a client-server environment.
Some of the techniques presented in
this section are also applicable to other
system architectures. These techniques
are presented in this section because they
are mostly used by client-server database
systems.

3.1 Client-Server, Peer-to-Peer,
and Multitier Architectures

In general, client-server (or master-slave)
refers to a class of protocols that allows
one site, the client, to send a request
to another site, the server, which sends
an answer as a response to this request
[Tanenbaum 1992]. Using this mecha-
nism, it is possible to implement a variety
of different database architectures.

Peer-to-peer. This is the most general ar-
chitecture. In peer-to-peer systems every
site can act as a server that stores parts
of the database and as a client that exe-
cutes application programs and initiates
queries.

(Strict) client-server. In a strict client-
server system every site has the fixed role
of always acting either as a client (query
source) or as a server (data source). In such
a strict client-server architecture, not all
the sites can communicate with each
other: typically, two clients do not interact
and often servers do not interact either.

Middleware, multitier. In such an archi-
tecture, the sites are organized in a hier-
archical way. Every site plays the role of a
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server for the sites at the upper level and
the role of a client for the lower-level sites.
Thus, a site in one of the middle tiers can
only communicate with its clients at the
level above or its servers at the level be-
low; typically, a site cannot communicate
with sites at the same or any other level.

Many examples for distributed
database systems with these kinds of
architecture can be found. SHORE [Carey
et al. 1994] is an example of a system
with a peer-to-peer architecture; SHORE
is an experimental distributed database
system developed at the University of
Wisconsin. Most commercial database
systems today have a strict client-server
architecture. Compared to a peer-to-peer
architecture, one advantage of a strict
separation between client and server
machines is that only server machines
need to be administered (i.e., backed up).
Also, security issues can be addressed by
controlling the server machines and the
client-server communication links. An-
other advantage is that client and server
machines can be equipped according to
their specific purposes. Client machines
are often PCs with good support for
graphical user interfaces whereas server
machines are usually more powerful with
multiple processors, large disks (possibly
RAID), and very good I/O performance.
An example for a three-tier middleware
system is an Intranet with clients run-
ning a WWW browser and one or several
WWW servers that are connected to
database back-end servers. Another ex-
ample of a middleware system is SAP R/3
[Buck-Emden and Galimow 1996]. SAP is
the market leader for business application
software (ERP). SAP R/3 installations
consist of at least three tiers: (1) pre-
sentation servers, which drive the GUIs
of the users’ desktops, (2) application
servers, which implement the business
application logic, and (3) database back-
end servers, which store all the data.
Integrating functionality from different
vendors is one reason to use a middleware
architecture (i.e., different functionality is
provided at different layers of the system).
Scalability can be another reason to use
a middleware architecture: at every tier,

additional sites (i.e., processors) can be
added in order to deal with a heavier load.

In the remainder of this section, we will
describe query processing techniques that
are applicable for all three architectures.
For easier presentation and to avoid con-
fusion with the terms client and server, we
will concentrate on the strict client-server
architecture and assume that every site
has the fixed role of acting either as a client
or as a server while processing a query.
Nevertheless, all techniques are applica-
ble to all three architectures because all
three architectures are based on the same
paradigm in which query sites and data
sites can be different.

3.2 Exploiting Client Resources

The essence of client-server computing is
that the database is persistently stored by
server machines and that queries are ini-
tiated at client machines. The question is
whether to execute a query at the client
machine at which the query was initiated
or at the server machines that store the
relevant data. In other words, the ques-
tion is whether to move the query to the
data (execution at servers) or to move the
data to the query (execution at clients).
Another related question is whether and
how to make use of caching (e.g., to tem-
porarily store copies of data at client ma-
chines). In this section we will present and
discuss the trade-offs between alternative
approaches which are commonly used in
existing systems today.

3.2.1 Query Shipping. The first approach
is called query shipping. Query shipping
is used in many relational and object-
relational database systems today (e.g.,
IBM DB2, Oracle 8, and Microsoft SQL
Server). The principle of query shipping
is to execute queries at servers (i.e., at
the lowest level possible in a hierarchy of
sites). Figure 8 illustrates query shipping
in a system with one server. A client ships
the SQL (or OQL) code of a query to the
server; the server evaluates the query
and ships the results back to the client. In
systems with several servers, query ship-
ping works only if there is a middle-tier
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Fig. 8 . Query shipping.

site that carries out joins between tables
stored at different servers or if there are
gateways between the servers so that
intersite joins can be carried out at one of
the servers.

3.2.2 Data Shipping. The exact opposite
of query shipping is data shipping, which
is used in many object-oriented database
systems (e.g., ObjectStore and O2). In this
approach, queries are executed at the
client machine at which the query was
initiated and data is rigorously cached
at client machines in main memory or
on disk [Franklin et al. 1993]. That is,
copies of the data used in a query are
kept at a client so that these copies can
be used to execute subsequent queries at
that client. Caching is typically carried
out in the granularity of pages (i.e., 4K or
8K blocks of tuples) [DeWitt et al. 1990],2
and it is possible to cache individual
pages of base tables and indices [Lomet
1996; Zaharioudakis and Carey 1997].
To illustrate data shipping, consider the
example shown in Figure 9, where some

2 Caching in the granularity of individual tuples, for
example, has been studied in Kemper and Kossmann
[1994].

Fig. 9 . Data shipping.

pages of Tables A and B are already
cached at the client (represented by the
dashed boxes in the figure). The scan
operators at the client use these cached
copies of pages and fault in all the pages
of A and B that are not cached.

3.2.3 Hybrid Shipping. Neither data ship-
ping nor query shipping is the best policy
for query processing in all situations. The
advantages of both approaches can be
combined in a hybrid shipping archi-
tecture [Franklin et al. 1996]. Hybrid
shipping provides the flexibility to exe-
cute query operators on client and server
machines, and it allows the caching of data
by clients. The approach is illustrated in
Figure 10, where the scan(A) and join op-
erators are carried out at the client
whereas the scan(B) operator is carried
out at the server. The scan(A) operator
uses the client’s cache as much as possible
and ships to the client only those parts of
A that are not in the cache. In contrast, the
scan(B) operator neither uses nor changes
the state of the client’s cache. (Section 5.
contains more information about the im-
pact of query operators on caching.) Today,
hybrid shipping is used in some database
products such as UniSQL [D’Andrea and
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Fig. 10 . Hybrid shipping.

Janus 1996], application systems such as
SAP R/3, database research prototypes
such as ORION-2 [Jenq et al. 1990]
and KRISYS [Dessloch et al. 1998], and
to some extent, in heterogeneous sys-
tems such as Garlic [Carey et al. 1995],
Mind [Dogac et al. 1996], TSIMMIS
[Papakonstantinou et al. 1995a], and
DISCO [Tomasic et al. 1998] (Section 4.).

3.2.4 Other Hybrid Shipping Variants. For
application programs that carry out SQL-
style queries and C++-style methods, one
special and restricted variant of hybrid
shipping is to execute the SQL-style
queries at the servers, without caching,
and the C++-style methods at the clients,
using caching. Such an approach has
been proposed, for example, as part of
the KRISYS project [Härder et al. 1995].
Persistence is a product that supports
this approach [Keller et al. 1993]. This
approach is reasonable because caching
and client-side execution are particularly
effective for methods that repeatedly
access the same objects in order to carry
out complex computations. Queries that
involve a great deal of data, on the
other hand, can often be executed more

efficiently at server machines without
making use of client-side caching.

Another variant of hybrid shipping is
used by certain decision support prod-
ucts (e.g., products by MicroStrategy).
These products have a three-tier archi-
tecture. The bottom tier is a standard
relational database system that stores
the database and carries out join pro-
cessing and other standard relational
operations. The middle tier then carries
out nonstandard operations for decision
support like (moving averages, roll-
up, drill-down, etc.) [Gray et al. 1996;
Kimball and Strehlo 1995]. Again, such
an architecture is a special hybrid ship-
ping variant because query processing is
carried out at servers and at middle-tier
machines, and the difference from full-
fledged hybrid shipping is that not all
operations can be carried out at all the
machines/tiers.

3.2.5 Discussion. The performance trade-
offs of query, data, and hybrid shipping
have been studied in Franklin et al.
[1996]. Many of the effects are obvious.
Query shipping performs well if the
server machines are powerful and the
client machines are rather slow. On
the negative side, query shipping does
not scale well if there are many clients
because the servers are potential bottle-
necks in the system. Data shipping scales
well because it uses the client machines,
but data shipping can be the cause of
very high communication costs if caching
is not effective and a great deal of unfil-
tered base data must be shipped to the
clients. Obviously, hybrid shipping has
the potential at least to match the best
performance of data shipping and query
shipping by exploiting caching and client
resources such as data shipping if that is
beneficial, or otherwise by behaving like
query shipping. In some situations, hybrid
shipping will show better performance
than both data and query shipping by
exploiting client and server machines and
intraquery parallelism to execute a query.
The price for this improved flexibility is
that query optimization is significantly
more complex in a hybrid shipping system
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Table I. Site Selection Options for Data, Query, and Hybrid Shipping
Data Shipping Query Shipping Hybrid Shipping

display client client client
update client server client or server

binary operators consumer producer of consumer or producer of
(e.g., join) (i.e., client) left or right input left or right input

unary operators consumer consumer
(e.g., sort, group-by) (i.e., client)

producer
or producer

scan client server client or server

than in a query or data shipping system
because the optimizer must consider more
options. The experiments of Franklin
et al. [1996] and other studies demon-
strate three other less obvious effects for
hybrid shipping systems:r Sometimes it is better to read data from

the servers’ disks in a hybrid-shipping
system even if the data are cached at
the client. Consider, for example, a join
query that involves two tables that
are stored at two different servers and
assume that these tables are cached on
the client’s disk and that the network
is fast. The best way to execute this
query might be to read both tables from
the servers’ disks (rather than from the
client’s disk cache) and to execute the
join at the client. This way, reading the
data from the servers’ disks and join
processing with the client’s disk(s) do
not interfere with each other.r Sometimes the best strategy to execute
a query in a hybrid shipping system in-
volves shipping cached base data or in-
termediate query results from the client
to a server. Such a strategy, for example,
is useful in situations in which the data
are cached in the client’s main memory,
the network is fast, and join operations
can be carried out most efficiently at the
server.r Transactions that involve several small
update operations should be carried
out at clients, thereby putting the
new versions of tuples into the client’s
cache. Such an approach, for exam-
ple, is used extensively by SAP R/3
[Buck-Emden and Galimow 1996; Kem-
per et al. 1998]. The advantage is that
such transactions can be rolled back
at clients without affecting the server

and that the updates can be propagated
to the server in one batch with fairly
little overhead [Bogle and Liskov 1994;
O’Toole and Shrira 1994]. Transactions
that involve updating large amounts of
data (e.g., give all Emps a 10% salary
increase), on the other hand, should be
carried out directly at the server(s) that
store the affected data. This way, the
original Emp table need not be shipped
from the server to the client and the
updated Emp table need not be shipped
back to the server either.

In all the experiments presented
in Franklin et al. [1996], the other
hybrid shipping variants described in
Section 3.2.4 perform just like query
shipping and perform poorly in many
situations. In general, these restricted
hybrid shipping variants may perform
well for some workloads, just like data
or query shipping, but only full-fledged
hybrid shipping is able to perform well for
any kind of workload.

3.3 Query Optimization

Having described query, data, and hybrid
shipping as fundamentally different ap-
proaches for query processing, we will now
show how query optimizers for query, data,
and hybrid shipping systems can be built
and describe several alternative query op-
timization strategies.

3.3.1 Site Selection. From the perspective
of a query optimizer, data shipping, query
shipping, and hybrid shipping can be
modeled by the options they allow for site
selection. Every operator of a plan has a
site annotation, which indicates where the
operator is to be executed. Table I shows
the possible site annotations for different
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classes of query operators and the three al-
ternative approaches. The table shows the
possible annotations for client-server and
peer-to-peer systems; analogous annota-
tions can be used for multitier systems.
In all three approaches, display operators
that pass the results of select queries to
application programs obviously need to be
carried out at the client which issued the
query. For all other operators, the options
of the three approaches are different.
Data shipping carries out all operators at
the client (i.e., at the site at which the data
is consumed). In contrast, query shipping
carries out all the operators at servers (i.e.,
at sites at which the data is produced).
Hybrid shipping allows the optimizer to
annotate operators in any way allowed by
data or query shipping. The special hybrid
variant for decision support and OLAP
could be characterized by specifying that
scans have server site annotations, joins
and other standard relational operators
have producer site annotations like query
shipping, and all the other operators
(e.g., moving average) have consumer site
annotations like data shipping.

All site annotations are logical. A client
site annotation indicates that the opera-
tor is to be carried out by the client that
issues the query; such an annotation does
not indicate that the operator is carried
out by a specific Machine x. Likewise, a
consumer (producer) annotation indicates
that the operator is carried out at the
same site as the operator that processes
the operator’s results (input). A server
annotation for a scan indicates that the
scan is carried out at one of the servers
that store a copy of the scanned data. A
server annotation for an update indicates
that the update is carried out at all the
servers that store a copy of the affected
data.3 These logical site annotations are
translated into physical addresses when
a plan is prepared for execution. As a
result, the same plan can be used to
execute a query at different clients so
that a query need not be recompiled for
every client individually. If there is repli-

3 Here, a “read-one-write-all” (ROWA) protocol is
assumed.

cation, translating a server annotation
for a scan involves selecting one specific
server machine. This selection can be
done heuristically (e.g., the server closest
to the client) or in a cost-based manner
(Section 3.3.3).

3.3.2 Where and When to Optimize. There
are two questions of particular interest
for query optimization in a client-server
environment. The first question is where
a query should be optimized. Hagmann
and Ferrari [1986] studied alternative
approaches in an environment with many
clients and one server. They propose car-
rying out certain steps of query processing
at the client at which a query originates
and other steps at the server. For exam-
ple, parsing and query rewrite could be
carried out at the client whereas query
optimization and plan refinement could
be carried out at the server. This approach
makes sense because operations such as
parsing and query rewrite can very well be
executed at the clients so that they do not
disturb the server, whereas steps such as
query optimization require a good knowl-
edge of the current state of the system
(i.e., the load on the server) and should,
therefore, be carried out by the server.
In systems with many servers, no single
server has complete knowledge of the
whole system. In such systems, one server
needs to carry out query optimization (e.g.,
the server located closest to the client).
This server needs to either guess the state
of the network and other servers based
on statistics of the past, or try to discover
the load of other servers by asking them
for their current load. While asking is
obviously better than guessing in terms of
generating good plans, asking involves at
least two extra messages for every server
that is potentially involved in a query.

The second question, which is related to
the above question, is when to optimize a
query. Again, the answer to this question
determines the accuracy, in this case the
recency, of the information about the state
of the system that the optimizer receives.
This question arises for canned queries,
that are part of application programs
and evaluated during the execution of an
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application program. As already stated
in Section 2.1, the traditional approach
is to compile and optimize these queries
at the time the application program is
compiled, store plans for these queries in
the database, and retrieve and execute
these plans whenever the application
program is executed. When something
drastic happens that makes the execution
of the plan impossible (e.g., when an
index used in the plan is dropped), the
plan stored in the database is invalidated
and a new plan must be generated before
the application program is executed
[Chamberlin et al. 1981]. Obviously, this
approach cannot adapt to changes such as
shifts in the load of sites, and the compiled
plans show poor performance in many
situations.

More dynamic approaches were pro-
posed by Graefe and others in Graefe and
Ward [1989], and Cole and Graefe [1994],
and by Ioannidis et al. [1992]. The idea
is to generate several alternative plans
and/or subplans at compile time of the
application, store these alternative plans
and subplans in the database, and choose
the plan or subplans that best matches
the current state of the system just before
executing the query. Even more dynamic
approaches optimize queries on the fly.
The idea is to start executing a compiled
or dynamically chosen plan and observe
whether intermediate query results are
produced and delivered at the expected
rate. If the expectations are not met,
then the execution of the plan is stopped,
intermediate results are materialized,
and the optimizer is called to find a new
plan for those parts of the query that
still need to be carried out. Urhan et al.
[1998] show how such a reoptimization
approach can be very useful to improve
the response time of queries in situations
in which the arrival of data from certain
servers is delayed or bursty because
those servers are heavily loaded or the
communication links are congested. For
this purpose, the approach reorders and
reschedules operations at the client so
that the client carries out other operations
while waiting for the delayed data. In
another paper, Kabra and DeWitt show

how such a reoptimization approach helps
in situations in which the initial plan
performs poorly because it was based on
wrong estimates of the size of tables and
intermediate query results [Kabra and
DeWitt 1998].

Ozcan et al. [1996; 1997] proposed
another dynamic/on-the-fly query opti-
mization approach. In that approach,
queries are optimized and executed in
two phases. First, a query is decom-
posed. This means that the query is
divided into a set of subqueries that
can each be executed by a single server.
The final query result is composed by
joining the results of the subqueries
by the client or a middle-tier machine.
Query decomposition for this purpose is
described in Evrendilek et al. [1997]. The
subqueries are processed by the servers
in parallel. The order (i.e., schedule) in
which the results of the subqueries are
joined at the client depends on the speed
in which the servers produce subquery
results and the selectivity and cost of
the joins which need to be carried out
to combine the subquery results. Ozcan
et al. propose a heuristic approach to
decide whether to join the subquery
results produced by two fast servers
immediately or to delay a join and wait
for the delivery of other subquery results
from slower servers first. The goal is to
parallelize work at the client with work
at slow servers as much as possible, as in
the reoptimization work of Urhan et al.
[1998], and also to avoid the execution of
very expensive joins that may result from
poor join ordering.

3.3.3 Two-Step Optimization. Two-step
query optimization is an approach that
has become popular for both distributed
and parallel database systems [Carey and
Lu 1986; Du et al. 1995; Ganguly et al.
1996; Hasan and Motwani 1995; Hong
and Stonebraker 1990; Stonebraker et al.
1996; Thomas et al. 1995]. Two-step opti-
mization is an alternative to the dynamic
approaches presented in the previous
section because it carries out certain
decisions just before a query is executed.
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(a) 2-Step Plan at Compile Time (b) 2-Step Plan at Run Time (c) Optimal Plan

Fig. 11 . Increased communication cost due to two-step optimization.

Two-step optimization also reduces the
overall complexity of distributed query
optimization. Several variants of two-
step optimization exist. For distributed
systems, the basic variant of two-step
optimization works as follows:

1. At compile time, generate a plan that
specifies the join order, join methods,
and access paths.

2. Every time just before the query is exe-
cuted, transform the plan and carry out
site selection (i.e., determine where ev-
ery operator is to be executed).

Both steps can be carried out by dynamic
programming or any other enumera-
tion algorithm (Section 2.2.1). Two-step
optimization has a reasonable complexity
because both steps can be carried out
with reasonable effort. The first step has
essentially the same, mostly acceptable,
complexity as query optimization in a cen-
tralized database system. The second step
also has acceptable complexity because
it only carries out site selection. Further-
more, two-step optimization is useful to
balance the load on a distributed system
because executing operators on heavily
loaded sites can be avoided by carrying
out site selection at execution time [Carey
and Lu 1986]. Two-step optimization is
also useful to exploit caching in a hybrid
shipping system because query operators
can dynamically be placed at a client
if the underlying data is cached by the
client [Franklin et al. 1996]. On the nega-
tive side, two-step query optimization can
result in plans with unnecessarily high

communication cost. To see why, consider
the example shown in Figure 11. The plan
in (a) shows the join ordering carried out
in the first step of two-step optimization;
the plan in (b) shows the result of site se-
lection in the second step; and the plan in
(c) shows an optimal plan for this query. In
the second and third plans, the site anno-
tations are indicated by the shading of the
operators. Tables A and D are colocated
at one server (the darkly shaded server),
Tables B and C are colocated at another
server (the lightly shaded server), and the
result of the query must be displayed at
a client workstation (the unshaded site).
The second plan, obtained using two-step
optimization, has a higher communication
cost than the optimal plan because the
first step of two-step optimization was
carried out ignoring the location of data
and the impact of join ordering on com-
munication cost in a distributed system.

3.4 Query Execution Techniques

Most of the query execution techniques
presented in Section 2.3 are useful in a
client-server environment as well as in
any other distributed database system.
Row blocking, for example, is essential
to ship data from servers to clients and
from clients to servers, and it has been
implemented in almost all commercial
database systems. Also, it is often attrac-
tive to carry out operations at the client
in a multithreaded way. In fact, Web
browsers like Netscape’s Navigator load
individual components such as text and
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images of a Web page in a parallel and
multithreaded way.

One particular issue that arises in hy-
brid shipping systems is how to deal with
transactions that first update data in a
client’s cache and then execute a query at
a server that involves the updated data.
For example, consider a transaction that
first updates the salary of John Doe and
then asks for the average salary of all em-
ployees. The update is likely to be exe-
cuted at the client at which the transac-
tion was started in order to batch updates
as described in Section 3.2.5. On the other
hand, the optimizer will probably decide to
execute the second query at the server that
stores the Emp table in order to avoid the
cost of shipping the whole Emp table to the
client. The point is that the computation of
the average salary must consider the new
salary of John Doe, which is known at the
client but not at the server. There are two
possible solutions:r Propagate all relevant updates such as

John Doe’s new salary to the server just
before starting to execute the query at
the server [Kim et al. 1990].r Carry out the query at the server and
pad the results returned by the server
at the client using the new value of
John Doe’s salary—for example, such an
approach can be carried out using one of
the techniques proposed in Srinivansan
and Carey [1992].

In either case, carrying out the query
at the server involves additional costs;
these additional costs should be taken
into account by a dynamic or two-step
optimizer in order to decide whether it
is cheaper to carry out the query at the
server or at the client. Such issues do not
arise in query shipping and data shipping
systems. Query shipping systems do not
support client-side caching and batched
updates, and data shipping systems carry
out all query operators at the client using
the latest cached versions of data.

4. HETEROGENEOUS DATABASE SYSTEMS

This section shows how queries can be
processed in heterogeneous database

systems.4 The purpose of such systems is
to enable the development of applications
that need to access different kinds of
component databases (e.g., image and
other multimedia databases, relational
databases, object-oriented databases, or
WWW databases). One characteristic of
heterogeneous database systems is that
the individual component databases can
have different capabilities to store data,
carry out database operations (e.g., joins
and group-bys), and/or communicate with
other component databases of the system.
For example, a relational database is capa-
ble of processing any kind of join whereas
a WWW database is typically only capable
of processing a specific predefined set of
queries. One of the challenges, therefore,
is to find query plans that exploit the
specific capabilities of every component
database in the best possible way and to
avoid query plans that attempt to carry
out invalid operations at a component
database. Another challenge is to deal
with semantic heterogeneity [Sheth and
Larson 1990], which arises, for example,
if an application needs the total sales and
one component database uses DM as a cur-
rency while another component database
uses Euro. Furthermore, every component
database has its own specific interface
(API), decides autonomously when and
how to execute a query, and might not be
designed to interact with other databases.

There has been a great deal of work on
various aspects of the design and imple-
mentation of heterogeneous databases. In
fact, there have even been excellent tutori-
als in the past [ACM Computing Surveys
1990], and some commercial systems
are described in IEEE Data Engineering
Bulletin [1998]. In this section, we will
therefore concentrate on basic technology
and recent developments in this area. We
will present the architecture that is used
for most heterogeneous database systems
today and discuss how queries can be opti-
mized and executed in heterogeneous sys-
tems. Again, keep in mind that we are only

4 Sometimes, the terms federated or multidatabase
system are used in the same way as we use the term
heterogeneous database system.
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Fig. 12 . Wrapper architecture of heterogeneous
databases.

interested in query processing in this pa-
per. Issues such as transaction processing
in heterogeneous database systems are
beyond the scope of this paper and have
already been described, for example, in
Breitbart et al. [1992].

4.1 Wrapper Architecture for Heterogeneous
Databases

In order to construct heterogeneous
database systems, several tools have
been developed in recent years; examples
are DISCO [Tomasic et al. 1998], Garlic
[Carey et al. 1995], Hermes [Adali et al.
1996], TSIMMIS [Papakonstantinou et
al. 1995b], Pegasus [Shan et al. 1994],
and Junglee’s VDB technology [Gupta
et al. 1997]. Furthermore, a number of
tools have been designed for the specific
purpose of integrating data from different
relational and object-oriented databases
(e.g., IBM’s Data Joiner, MIND [Dogac
et al. 1996], and IRO-DB [Gardarin
et al. 1996]). An older example is HP’s
MultiDatabase product [Dayal 1983].
Essentially, all of these tools have a three-
tier software architecture as shown in
Figure 12. Clients connect to a mediator
[Wiederhold 1993]. The mediator parses
a query, carries out query rewrite and
query optimization, and executes some of
the operations of a query. The mediator
also maintains a catalog to store the
global schema of the whole heterogeneous
database system (i.e., the schema used
in queries by application programs and
users), the external schema of the com-

ponent databases (i.e., which parts of the
global schema are stored by each compo-
nent database), and statistics for query
optimization. Thus, the mediator has very
much the same structure as the “textbook”
query processor described in Section 2.1.
The difference is that an extended query
optimization approach needs to be used
(see Section 4.2) and that certain query
execution techniques are particularly at-
tractive in the mediator that might not be
attractive in other distributed database
systems (see Section 4.3). Also, a mediator
is designed to integrate any kind of com-
ponent database. That is, a mediator does
not contain any code that is specific to any
one component database and as a result,
a mediator cannot directly interact with
component databases.

To encapsulate the details of component
databases, a wrapper (or adaptor) is asso-
ciated to every component database. The
wrapper translates every request of the
mediator so that the request is understood
by the component database’s API, and the
wrapper also translates the results re-
turned by the component database so that
the results are understood by the medi-
ator and are compliant with the external
schema of the component database and
the global schema of the heterogeneous
database. For example, a wrapper of a
WWW database (e.g., amazon.com) that
returns html pages (e.g., lists of books)
must filter out the useful information (e.g.,
author, title, price, order information)
from the html pages. Another example
is the wrapper for a sales database that
uses DM as currency. This wrapper must
convert DM into Euro, if Euro is the
currency used in the global schema of the
heterogeneous database. In some cases,
wrappers also implement special tech-
niques such as row blocking or caching
to improve performance. In addition, as
described in the next section, wrappers
also participate in query optimization.

Obviously, wrappers are fairly complex
pieces of software, and it is not unusual
for it to take several months to develop
a wrapper. The TSIMMIS and Garlic
projects have specifically addressed the
question of how to make wrapper design
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plan access(T, C, P ) = R Scan(T, C, P, ds(T ))

ds(T ) returns the ID of the relational component database that stores T .

Fig. 13 . Access plan enumeration rule for relational component databases.

as cheap as possible [Papakonstantinou
et al. 1995b; Roth and Schwarz 1997].
Nevertheless, wrapper development is
expensive. The good news is that similar
wrappers work for many different kinds
of component databases so that it is
quite easy to adjust an existing wrapper
in order to obtain a wrapper for a new
component database. Also, as shown in
Figure 12, it is possible for several com-
ponent databases to be handled by the
same wrapper. Furthermore, with the
growing importance and demand for het-
erogeneous systems, it is quite likely that
wrappers will be commercially available
in the future for many common classes of
databases.

One feature of the architecture shown
in Figure 12 is that it is extensible. At any
time, wrappers and component databases
can be upgraded or new component
databases can be integrated without
changing the mediator or adjusting exist-
ing wrappers. Furthermore, the architec-
ture is a software architecture. Wrappers
and the mediator can be installed at any
machines in the system. It is even possible
that the mediator is distributed (i.e., that
separate cooperating instances of the me-
diator are installed at different machines).

4.2 Query Optimization

This subsection shows how query opti-
mization can be carried out in a hetero-
geneous database system. As stated at
the beginning of this section, one of the
challenges of query optimization in a het-
erogeneous system is that the capabilities
of the component databases are different.
The optimizer of a heterogeneous system
must therefore be generic and be able to
understand what capabilities component
databases have.

Several alternative approaches for
query optimization in heterogeneous
database systems have been proposed in
the literature. One approach is to de-

scribe the capabilities of the component
databases as views, store the definitions of
these views in the catalog, and see during
query optimization how a query can be
subsumed by the views registered in the
catalog [Levy 1999]. While this approach
is quite flexible, it is very difficult to
implement. Other work has proposed the
use of capability records [Levy et al. 1996]
or context-free grammars to describe
the capabilities of queries and the use
of various new cost-based and heuristic
algorithms to generate plans for a query
[Papakonstantinou et al. 1996; Tomasic
et al. 1998]. In this section, we will focus
on an approach that is based on existing
and well-established query optimization
techniques. In this approach, the capa-
bilities of the component databases are
described by enumeration rules, which
are interpreted by the optimizer, and this
approach uses either dynamic program-
ming or iterative dynamic programming
(Section 2.2.1) in order to find a good
plan for a query with reasonable effort.
This approach was described in full detail
in Haas et al. [1997]. It was implemented
for the Garlic system at IBM.

4.2.1 Plan Enumeration with Dynamic
Programming. The idea is quite simple.
Every wrapper provides a set of plan-
ning functions, which are called by the
optimizer’s accessPlan and joinPlan
functions in order to construct subplans,
(i.e., wrapper plans), which can be han-
dled by the wrapper and its component
databases. In other words, query opti-
mization is carried out using the same
dynamic-programming-based algorithms
as described in Section 2.2.1 with the only
difference being that the accessPlan and
joinPlan functions call planning func-
tions defined by wrapper developers in
order to enumerate subplans rather than
constructing such subplans themselves.

Conceptually, planning functions can
be seen as enumeration rules, and we will
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plan join(S1, S2, P ) = R Join(S1, S2, P )

Condition: S1.Site = S2. Site

Fig. 14 . Join plan enumeration rule for relational component databases.

give several example rules to illustrate the
process. Figure 13 shows the plan access
rule of a wrapper for relational component
databases. This rule generates an R Scan
operator to read table T from the compo-
nent database that stores T (i.e., ds(T)),
apply predicates P to the tuples of T , and
project out columns C of T . This rule is
called by the optimizer’s accessPlan func-
tion for every table used in a query that is
stored by a component database which is
associated to the relational wrapper. Con-
sider, for instance, the following query:

SELECT e.name, e.salary, d.budget

FROM Emp e, Dept d

WHERE e.salary > 100,000 AND

e.works in = d.dno;

If Emp and Dept are both stored in the
relational component database D1, then
the plan access rule of Figure 13 is
instantiated twice as follows:

plan access(Emp, {salary,works in,name},
{salary > 100,000}) =

R Scan(Emp, {salary,works in,name},
{salary > 100,000}, D1)

plan access(Dept, {dno,budget}, {}) =

R Scan(Dept, {dno,budget}, {}, D1)

The R Scan operator generated with
every application of the plan access rule
is specific to and used internally by the re-
lational wrapper; neither other wrappers
nor the mediator need to know about the
existence or semantics of such an R Scan
operator. Likewise, the relational compo-
nent databases do not need to know about
R Scan operators. To execute plans that
involve R Scan operators, the wrapper
translates R Scan(T, C, P, D) into select
C from T where P and submits this query
to the relational component database D.

Figure 14 shows the enumeration rule
that generates join plans for relational
component databases. This rule is called
by the optimizer’s joinPlan function dur-
ing join ordering and receives as input two

subplans and a set of join predicates. The
rule generates a plan with an R Join op-
erator that specifies that the intermediate
query results produced by the two sub-
plans should be joined by the relational
component database. The rule is only
applicable if both subplans are executed
by the same relational database; this fact
is modeled by the condition S1.Site =
S 2.Site. To evaluate this rule the top-level
operator of all plans and subplans is an-
notated as described in Section 3.3.1; for
query optimization with heterogeneous
data sources, however, the site annota-
tions must always be physical.5 For the
Emp 1 Dept example, the rule from Fig-
ure 14 would produce the following plan:

R Join(R Scan(Emp,{salary,works in,name},
{salary > 100,000}, D1)

R Scan(Dept, {dno,budget}, {}, D1)

{Emp.works in = Dept.dno})
To execute a plan with an R Join op-
erator, the relational wrapper would
translate the plan into an SQL query that
involves all the tables and all the join
and non-join predicates specified by the
operators of the plan.6

To give another example, consider the
BigBook database on the Web (http://
www.BigBook.com). BigBook takes a name
or business category and a city or state
as input and returns the exact address,
telephone number, and so on of all match-
ing businesses. For example, it is possible
to ask for all the attorneys in Arkansas.
Figure 15 shows the enumeration rules
defined by the wrapper for BigBook. All

5 Other annotations that may be used by rules in-
clude the tables, columns, and predicates involved
in a subplan or the sorting order in which the top-
level operator produces its output [Haas et al. 1997;
Lohman 1998].
6 Precisely, the wrapper would construct the SQL
query taking into account the table, column, predi-
cate, and sorting order annotation of the root opera-
tor of the plan.
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plan access(T, C, P ) = B Fetch({category = c, city = t})
Condition: {category = c, city = t} ⊆ P

plan access(T, C, P ) = B Fetch({category = c, state = s})
Condition: {category = c, state = s} ⊆ P

plan access(T, C, P ) = B Fetch({name = n, city = t})
Condition: {name = n, city = t} ⊆ P

plan access(T, C, P ) = B Fetch({name = n, state = s})
Condition: {name = n, state = s} ⊆ P

Fig. 15 . Plan enumeration rule for the BigBook database.

these rules generate a B Fetch operator,
which is translated by the BigBook wrap-
per into an http call to www.BigBook.com.
Independent of the query, the wrap-
per fetches all the columns (i.e., name,
category, address, telephone), and de-
pending on the predicates of the query, the
wrapper applies a pair of name/category
and city/state predicates. Only name,
category, city, and state predicates
can be applied. To find all the attorneys
in Fruitdale Ave., San Jose, the wrap-
per would generate a plan that returns
all attorneys in San Jose (i.e., apply the
category and city predicates) and the ad-
dress like “%Fruitdale Ave.%” predicate
would be applied in the mediator. Either
a name or a category predicate can be ap-
plied. If a query involves a name and a
categorypredicate, the enumeration rules
of Figure 15 would enumerate two alter-
native plans, one for each predicate. The
optimizer would use the cheaper plan,
usually; the other predicate would be ap-
plied in the mediator. Furthermore, cer-
tain queries cannot be handled although
they might be syntactically correct. For
example, it is not possible to find all the
attorneys in the United State, using the
BigBook database because this query is
lacking a city or state predicate. The
optimizer would abort processing such a
query in a controlled way because the rules
of Figure 15 generate no plan to execute
such a query. Furthermore, BigBook and
its wrapper are not capable of processing

joins, so the wrapper provides no plan join
rules.

Just like wrappers, the mediator pro-
vides a set of rules that enumerate por-
tions of plans that are to be executed by
the mediator. For example, the mediator
provides a rule to generate plans that ap-
ply predicates such as the address like
“%Fruitdale Ave.%” predicate, which can-
not be applied by the component database.
The mediator also provides a rule that
says that any kind of join can be carried
out by the mediator, regardless of where
the tables involved in the join are stored.
So, an Emp1 Dept operation could be car-
ried out by the mediator or by the rela-
tional component database. The optimizer
enumerates both alternatives by calling
the mediator and wrapper join enumera-
tion rules, and the overall cheaper plan is
selected.

The full details and a description of a
more elaborate example can be found in
[Haas et al. 1997]. Having presented the
basic idea, we will just briefly summarize
the major advantages of this approach.

1. This approach relies on well-
established distributed database
technology; the use of dynamic pro-
gramming or iterative dynamic pro-
gramming will generate good plans
with reasonable effort just as in any
other distributed database system.
Using the same technology as most
existing database products also gives
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vendors an easy migration path to
adapt products for heterogeneous
database systems.

2. This approach is very flexible so
that the capabilities of the component
databases can be modeled very accu-
rately. For example, it is possible to
write enumeration rules that model
gateways between different component
databases or replication of tables at dif-
ferent component databases.

3. It is usually fairly easy to implement
the enumeration rules of a wrapper.
The simple enumeration rules shown
in Figures 13 through 15 are actually
used in the Garlic project in order to
integrate relational databases and Web
databases such as BigBook. Enumera-
tion rules and planning functions for
wrappers can be very simple because
these enumeration rules describe what
kind of operations can be carried out by
a component database rather than ex-
actly how these operations are to be car-
ried out.

4. It is possible to define very simple enu-
meration rules for a new wrapper at
the beginning and to add more sophisti-
cated enumeration rules once the wrap-
per is operational. In fact, some very
simple generic rules exist that can be
used to integrate any new wrapper and
component database [Haas et al. 1997].

5. New wrappers with any kind of enumer-
ation rules can be integrated into the
system and the enumeration rules of an
existing wrapper can be altered with-
out adjusting the enumeration rules of
other wrappers or the mediator and
without adjusting any other component
of the system.

4.2.2 Cost Estimation for Plans. Having de-
scribed how alternative query evaluation
plans can be enumerated in a heteroge-
neous database system, we now turn to the
question of how to estimate the cost or re-
sponse time of these plans. Both the clas-
sic and the response time cost models pre-
sented in Section 2.2.2 can be used for this
purpose, and the cost or response time of
the individual operators that are to be car-

ried out by the mediator can be estimated
just as in any other distributed database
system because the mediator uses stan-
dard, well-understood algorithms to exe-
cute joins, group-bys, and so on. The chal-
lenge is to estimate the cost or response
time of wrapper plans that are to be car-
ried out by the component databases be-
cause the details of how a component
database executes such a plan (i.e., a sub-
query) might not be known.

Estimating the cost of wrapper plans in
heterogeneous database systems is still an
open research issue. There are three alter-
native approaches, which differ in the ac-
curacy of the estimates and in the amount
of required effort by wrapper developers.
We will briefly describe these three ap-
proaches below. Experiments that demon-
strate the importance of accurate cost esti-
mations have been presented in Roth et al.
[1999].

Calibration Approach. The first approach
is called the calibration approach. The
idea is to define a generic cost model for
all wrappers and adjust certain param-
eters of this cost model for every indi-
vidual wrapper and component database
by executing a set of test queries. This
way, the specific hardware and software
characteristics of a wrapper and a compo-
nent database can be taken into account.
For example, a very simple generic model
would be to estimate the cost of a wrapper
plan as

c ∗ n

where n is the estimated number of tu-
ples returned by the wrapper plan (i.e.,
n depends on the query) and c is the
wrapper/component database specific pa-
rameter, which would be small for very
fast component databases and large for
slow component databases or component
databases that are only reachable by a
slow communication link.

To date, several generic cost models
and sample queries have been proposed
to implement the calibration approach for
heterogeneous databases (e.g., Du et al.
[1992], Zhu and Larson [1994], Gardarin
et al. [1996], and Roth et al. [1999]).
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The generic cost models described in that
work are significantly more complex than
the simple example we gave above. These
cost models typically define special cost
formulas for single-table queries, multi-
table queries, indexed and nonindexed
queries, and so on. The big advantage of
the calibration approach is that wrapper
developers need not worry much about
costing issues when they design a new
wrapper and/or integrate a new com-
ponent database into the heterogeneous
database. The generic cost model is prede-
fined as part of the mediator, and the cali-
bration of the generic cost model for a new
wrapper and component database can be
carried out automatically or semiautomat-
ically using the predefined test queries.
The big disadvantage of the calibration ap-
proach is that not all component databases
can be tweaked into a generic cost model.
The generic cost models proposed in Du
et al. [1992], Zhu and Larson [1994], and
Gardarin et al. [1996], for example, are
mostly based on observations made with
relational or object-oriented database sys-
tems, and they are not likely to be a good
match for the cost of queries executed, say,
by the BigBook database.

Individual Wrapper Cost Models. An alter-
native to the calibration approach is to de-
fine a separate cost model for every wrap-
per. In this approach, the developer of the
wrapper not only provides enumeration
rules as described in the previous sub-
section, but also a set of cost formulas.
One cost formula is associated with every
enumeration rule in order to estimate the
cost of the plan(s) generated by that rule.
Obviously, the big advantage of this ap-
proach is that the cost of all wrapper plans
can be modeled as accurately as possible
or desired. On the negative side, how-
ever, this “do-it-yourself” approach puts a
heavy burden on developers of wrappers.
To combine the advantages of the calibra-
tion approach and this do-it-yourself ap-
proach, Naacke et al. [1998] proposed an
approach in which costing is done by de-
fault using the calibration approach and
wrapper developers are free to overwrite
the default and define their own cost func-

tions for their specific wrappers if they feel
that the calibration approach is not suf-
ficiently accurate for their wrappers and
component databases. Such a hybrid ap-
proach has also been adopted for Garlic
[Roth et al. 1999].

Learning Curve Approach. The third ap-
proach to estimate the cost of wrapper
plans is based on monitoring the system
and keeping statistics about the cost to ex-
ecute wrapper plans [Adali et al. 1996].
In this approach, for example, the sys-
tem would observe that the last three
plans that involved Tables A and B had
costs of, say, 10 sec, 20 sec, and 9 sec.
Based on these statistics, the cost model
would estimate that the next plan involv-
ing A and B costs 13 sec. Similar and
more sophisticated ideas of query feedback
have also been studied in the standard
relational context [Chen and Roussopou-
los 1994]. Like the calibration approach,
this approach releases wrapper develop-
ers from the burden of worrying about
costing issues, but it can be very inaccu-
rate. One particular advantage of this ap-
proach is that it automatically and dynam-
ically adapts to changes in the system that
impact the cost of operations (e.g., growing
tables, hardware upgrades, different load
situations).

4.3 Query Execution Techniques

We will now discuss two techniques which
have become popular for executing queries
in heterogeneous database systems. In
theory, of course, we would like to take ad-
vantage of all the possible ways to execute
a query, and many of the basic techniques
described in Sections 2.3 and 3.4 are appli-
cable and useful in the mediator of a het-
erogeneous system (e.g., batching updates
or multithreaded query execution). The
wrappers and component databases, how-
ever, have limited capabilities, which sig-
nificantly restricts the possible ways to
execute a query. For instance, two com-
ponent databases may not be capable of
participating in a semijoin program with
duplicate elimination. Also, it is usually
not possible to place query operators at
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component databases; instead, operators
must be translated into queries that are
understood by the APIs of the component
databases.

4.3.1 Bindings. The first technique simu-
lates a nested-loop join in a heterogeneous
system. In System R∗, a similar technique
was called fetch as needed [Mackert and
Lohman 1986]. This technique exploits
the fact that many component databases
take input parameters (i.e., bindings), as
part of their query interfaces. The Big-
Book database on the Web, for example,
takes as input a city and business cate-
gory and finds the addresses of all match-
ing companies in that city. To illustrate
how bindings can be exploited for query
processing in heterogeneous systems, con-
sider a heterogeneous system with two re-
lational component databases, D1 and D2,
that store Tables A and B, respectively.
One way to execute A1 B with join predi-
cate A.x = B. y would be as follows:r the mediator asks D1 to execute the

query

select ∗ from A

in order to scan through Table A.r The wrapper of D1 returns tuples of Ta-
ble A to the mediator, one by one or in
blocks using row blocking. For every tu-
ple of Table A, the mediator asks the
wrapper of D2 to evaluate the following
query in order to find the matching B’s:

select ∗ from B where B.y= ?

Here, ? denotes the binding parameter
and is instantiated with the A.x value of
the current tuple of A.

This approach shows good performance if
A is fairly small or a predicate restricts
the number of tuples of A that need to be
probed. This approach is also useful be-
cause it might be the only possible way
to execute A1 B. BigBook, for example,
only allows queries that restrict the busi-
ness category and city of companies, us-
ing predicates with bindings, so that join
queries that involve BigBook need to be
processed in this way.

Certain component databases accept
blocks of tuples as parameters (e.g., re-
lational databases). Such capabilities can
be exploited to process joins by passing a
block of tuples of the outer table or even
the whole outer table to the component
database, thereby reducing the number of
messages. Adapting the example, the me-
diator would ask the wrapper of D2 to eval-
uate the query

select ∗ from ? a where B.y = a.x

in the second step. Here, ? is instanti-
ated with a block of tuples from A or the
whole A table. Since this blocking reduces
the number of messages, it is usually sig-
nificantly faster than the tuple-at-a-time
approach and should therefore always be
used if applicable. Blocking corresponds
roughly to a block-wise nested-loop join
or to a special kind of semijoin program,
depending on whether all the columns or
only the x column of A are passed to D2.

4.3.2 Cursor Caching. There are many
workloads for which the mediator sub-
mits the same query, with different
parameters, many times to a component
database. To implement the tuple-at-a-
time, binding-based nested-loop join, for
example, the same query is submitted
for every tuple of A. In addition, only
four different kinds of queries can be
submitted to the BigBook database. The
idea of cursor caching is to optimize a
query only once in order to reduce the
overhead of submitting the same query to
the same component database repeatedly.
For component database systems that
understand JDBC [Hamilton et al. 1997],
cursor caching can be implemented by
using JDBC’s prepareStatement com-
mand to optimize the query, the set
command to pass the binding parame-
ter(s) every time the query is executed,
and the executeQuery command to exe-
cute the query. Cursor caching is another
technique that is extensively used by
database application systems such as
SAP R/3 [Doppelhammer et al. 1997].
Similar ideas have also been integrated
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into several DBMS products (e.g., Oracle8
[Lahiri et al. 1998]).

Cursor caching has the same trade-
offs as static query optimization (Sec-
tion 3.3.2): on the positive side, cursor
caching reduces overhead for query
optimization; on the negative side, the
(cached) plan might not always be the
best plan to execute a query. In particular,
the best plan can depend on the value of
the query parameter. This effect has been
studied for SAP R/3 in Doppelhammer
et al. [1997].

4.4 Outlook

While query processing for homogeneous
and client-server databases is fairly well
understood (Sections 2. and 3.), this is not
true for heterogeneous systems. Writing
wrappers is a tedious task and query
optimization is more difficult because the
component databases are autonomous,
have different capabilities, and incur costs
which are hard to predict. Nevertheless,
products from database vendors (e.g.,
IBM’s Garlic [Carey et al. 1995] or HP’s
Pegasus [Shan et al. 1994]) as well as new
start-up companies (e.g., Junglee [Gupta
et al. 1997]) are already appearing on
the market because the management
of heterogeneous database systems is
extremely important in practice. Fur-
thermore, academic research projects are
developing new ways in which database
and application components interoperate
(e.g., Relly et al. [1998], and Braumandl
et al. [1999b]).

This section presented a small fraction
of the existing work in this area, and there
is definitely a great deal of new work
to come. However, this section showed
the most important trend. When design-
ing a heterogeneous database, the goal is
to encapsulate the heterogeneity of the
component databases and to use existing
homogeneous distributed database tech-
nology as much as possible.

5. DYNAMIC DATA PLACEMENT

The previous three sections answered the
following question: given a query and
the location of copies of data and other

parameters, how can this query be exe-
cuted in the cheapest or fastest possible
way. In this section, we will look at this
question from a different perspective and
show where copies of data should be placed
in a distributed system so that the whole
query workload can be executed in the
cheapest or fastest possible way.

Traditionally, data placement has been
carried out statically. With static data
placement, a system administrator de-
cides where to place copies of data, specu-
lating what kind of queries might be car-
ried out at what locations in the system.
To support static data placement, several
models and tools that take the expected
query workload and system topology as
input and decide where to place copies
of data have been devised (e.g., [Apers
1988]). Obviously, static data placement
has several weaknesses: (1) the query
workload is often not predictable; (2) even
if the workload can be predicted, the work-
load is likely to change, and the work-
load might change so quickly that the sys-
tem administrator cannot adjust the data
placement quickly enough; (3) the com-
plexity of a sufficiently accurate model
for static data placement is too big. (The
problem is N P -complete [Apers 1988].)
This section is, therefore, focussed on dy-
namic data placement approaches. These
approaches keep statistics about the query
workload and automatically move data
and establish copies of data at different
sites in order to adjust the data placement
to the current workload. These approaches
do not aim to be perfect, but they try to
improve the data placement with every
move.

As in the rest of this paper, concur-
rency control and consistency issues are
not addressed. Concurrency control issues
that are relevant for dynamic data place-
ment have been addressed in, for exam-
ple, Davidson et al. [1985], Franklin et al.
[1997], Lomet [1996], and Zaharioudakis
and Carey [1997]. Also, this section only
presents techniques that decide where
copies of base tables or parts thereof
and of indices or parts thereof should be
placed. Techniques that place copies of en-
tries of the catalog at different sites are
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Replication Caching
target server client or middle-tier

granularity coarse fine
storage device typically disk typically main memory

impact on catalog yes no
update protocol propagation invalidation

remove copy explicit implicit
mechanism separate fetch fault in and keep copy after use

Fig. 16 . Differences between replication and caching.

not discussed; such techniques have been
specifically studied in Eickler et al. [1997].

5.1 Replication vs. Caching

First, we would like to establish some ter-
minology. In principle, there are two dif-
ferent mechanisms to establish copies of
data at different sites of a distributed sys-
tem: replication and caching. Seen from a
high level, replication and caching share
the same goals: both establish copies of
data at different sites in order to reduce
communication costs and/or balance the
load of a system. As shown in Figure 16,
however, there are a number of subtle dif-
ferences between replication and caching.
First of all, replication takes effect at
server machines (i.e., data sources) in a
client-server environment. That is, repli-
cation establishes copies of data at servers
based on statistics that are kept at servers
with the purpose of better meeting the re-
quirements of a potentially large group
of clients. Caching, on the other hand,
takes effect at clients or at middle-tier ma-
chines (i.e., query sources),7 and caching
is based on statistics kept at these ma-
chines. Only one client or a small group
of clients, therefore, benefit from a cached
copy of a data item, but on the positive
side, caching establishes copies of data
directly at the places where the data is
needed. Also, caching exploits client ma-
chine resources which might remain un-
used without caching (Section 3.2).

7 In a multitier environment, caching can be estab-
lished at all tiers. Caching data at several levels
(i.e., hierarchical caching), is also carried as part of
the Internet. Furthermore, many institutions pro-
vide proxy caches in order to serve a group of clients
[Luotonen and Altis 1994].

The second difference between replica-
tion and caching lies in the granularity of
the copies of the data. Replication is typi-
cally coarse-grained: only a whole table, a
whole index, or a whole (horizontal) parti-
tion of a table or index can be replicated.
Replicating data in a coarse granularity is
acceptable because a large group of clients
benefit from replication (as stated above),
and it is quite likely that most parts of a
table or index will be used by this group
of clients. Caching, on the other hand, is
typically fine-grained: individual pages of
a table or index can be cached by a client
machine, and some systems even allow
the caching of individual rows of a table.
Caching in a fine granularity is important
because caching supports the queries of a
single client or of a fairly small group of
clients, and clients tend to be only inter-
ested in a small fraction of the data stored
in a specific table.

The next four differences listed in Fig-
ure 16 are based on the observation that
replication decisions are usually more
long-term than caching decisions. Again,
the background for these differences is
that replication is intended to support a
large group of clients whose overall ac-
cess behavior does not change as rapidly
as the access behavior of a single client.
First, replication typically involves plac-
ing data on servers’ disks (in part because
of the coarse-grained nature of replica-
tion), whereas a client’s working set of
data typically fits in the client machine’s
main memory.8 Second, server replicas are

8 Note that WWW browsers like Netscape cache data
on a client’s disk, and disk caching has also been
shown to be useful in the general database con-
text [Franklin et al. 1993].
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registered in the system’s distributed cat-
alog so that they can be used by all clients,
while caching does not affect the cat-
alog. Third, propagation-based protocols
are used to keep replicas of data consis-
tent and accessible at servers at all times.
For caching, on the other hand, it was
shown that the best way to maintain con-
sistency is to use a protocol that is based
on invalidation and removes out-of-date
copies from a client’s cache so that copies
of data are only available in a client’s
cache as long as the data has not been
updated [Franklin et al. 1997]. Finally,
replicas are kept at servers until they are
explicitly deleted whereas copies of data
are kept in a client’s cache until they are
replaced by copies of other and more in-
teresting data using a replacement policy
such as LRU or until they are removed
from the cache because of invalidation.

The last difference between replication
and caching concerns the mechanism used
to establish copies of data. Replicas are es-
tablished by a separate process that copies
a table, index, or partition and moves it
to the target server. Caching, on the other
hand, is a by-product of query execution:
when a table scan or index scan is exe-
cuted at a client, the client faults in all
the pages of the table or index that the
client has not cached and, after the scan
is complete, the client keeps all the used
pages of the table or index in its cache, if
the cache is large enough (Section 3.2.2).
In other words, replication can occur at
servers even if no queries are processed by
these servers, whereas the cache of a client
is empty if no queries have been processed
by that client. As a consequence, caching
decisions need to be made by the query
processor while replication decisions can
be made by a separate component that is
established at every server and works in-
dependently of the query processor.

Having listed all these differences,
one may ask whether one technique is
more useful than the other and whether
both techniques are needed. We know
of no study that answers this question
completely, but from the discussion it
should have become clear that caching and
replication are complementary techniques

and that both should be implemented.
Replication helps to move data near to a
large group of clients so that these clients
can access the data cheaply the first time
they need the data. Caching makes it pos-
sible to access data cheaply when the data
are used repeatedly by the same client.
In fact, both replication—also called
mirroring—and caching are techniques
that are frequently used in the WWW
and Internet. Another difference between
caching and replication is that replica-
tion is often used in order to improve
the reliability of a system in the presence
of server or network failures. Due to its
volatile nature, caching cannot serve this
purpose. In this section, however, we will
concentrate on the performance implica-
tions of replication and caching. Finally,
migration is a particular form of replica-
tion in which a new copy is established at
the target server and the old copy is re-
moved from the original server.

5.2 Dynamic Replication Algorithms

Several dynamic replication algorithms
have been proposed in the literature
[Bestavros and Cunha 1996; Copeland
et al. 1988; Ferguson et al. 1993; Gwertz-
man and Seltzer 1994; Sidell et al. 1996;
Wolfson et al. 1997]. These algorithms
can be classified roughly into two groups:
(1) algorithms that try to reduce commu-
nication costs in a WAN by moving copies
of data to servers that are located near
clients that are likely to use that data,
and (2) algorithms that try to replicate
hot data in order to balance the load on
servers in a LAN or in an environment in
which communication is cheap (i.e., high
bandwidth and low delay). Furthermore,
some replication algorithms work par-
ticularly well if the network is a tree or
has some other simple structure, whereas
other algorithms work well in any kind
of network. In this subsection, we will
briefly describe one specific algorithm,
the ADR algorithm [Wolfson et al. 1997],
that is targeted to reduce communication
costs and works particularly well in tree-
shaped networks. The ADR algorithm
is a good representative of this class of
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Fig. 17 . Replication scheme of the ADR algorithm.

algorithms. The ADR algorithm is very
simple, has provably good performance in
certain environments, and can easily be
integrated into most distributed systems.
Other replication algorithms that help
balance the load of a system and that are
based on completely different ideas are
presented in Section 6.1.

The ADR algorithm is based on the fol-
lowing observation which holds if a propa-
gation based “read-one-write-all” (ROWA)
protocol is used to synchronize updates
and keep replicas consistent:

The replication scheme of an object—table, in-
dex, or partition thereof—should be a connected
subgraph in order to minimize the communica-
tion costs in a tree-shaped hierarchical network.

To illustrate this principle, Figure 17
shows a network with ten servers. In
this network, an object is replicated at
Servers 5, 6, and 7 (shaded in Figure 17).
Even if the object is rarely accessed by
the clients of Server 6, the object should
nevertheless be replicated at Server 6 if it
is replicated at Servers 5 and 7. When the
object is updated by a client of Server 5,
then this update must be propagated via
Server 6 to Server 7 so that the extra
copy of the object at Server 6 can be
kept consistent without any additional
communication cost. Likewise, Server 6’s
copy of the object can be kept consistent
with no additional communication cost
if the update originates at a client of
Server 7, 8, 9, or 10. If the object is read
regardless where, the copy of the object at
Server 6 does not hurt either.

Based on this principle, the ADR algo-
rithm expands and contracts the replica-
tion scheme of an object at the borders of
the replication scheme. In the example of
Figure 17, Servers 5 and 7 would keep read

and write statistics for the object and pe-
riodically decide whether the replication
scheme should be expanded to Servers 2,
3, 4, 8, 9, or 10, be contracted, removing
the replicas at Servers 5 or 7, or remain
unchanged. Specifically, Servers 5 and 7
periodically carry out the following tests
based on their statistics:

Expansion Test. For each of their neigh-
bors that is not part of the replication
scheme add the neighbor to the replica-
tion scheme if more read requests origi-
nate from clients of that neighbor or from
clients connected to servers of the subtree
rooted in that neighbor than updates orig-
inate at other clients. For example, if more
read requests originate from clients of
Servers 1 and 2 than write requests from
clients of all other servers, then Server 2
should be added to the replication scheme.

Contraction Test. Drop the copy if more
updates are propagated to that copy than
the copy is read. If, for example, more up-
dates originate at clients of Servers 6, 7,
8, 9, 10 than read requests originate at
Servers 1, 2, 3, 4, 5, then Server 5 should
drop its copy of the object.

If the replication scheme consists of only
one server, then this server carries out a
“switch test” in addition to the expansion
test in order to find out whether it might
be better to store the only copy of the ob-
ject at a different server (i.e., carry out
migration). Of course, to prevent the only
copy of the object from being dropped, the
contraction test must not be carried out if
the replication scheme consists of only one
server.

5.3 Cache Investment

We will now turn to caching and a method
called cache investment [Kossmann et al.
2000]. Like the ADR algorithm, cache in-
vestment keeps statistics and establishes
copies of data at clients only if these copies
promise to be beneficial. Since replication
and caching are different, however, there
are a number of important differences be-
tween the ADR algorithm and cache in-
vestment, and the ADR algorithm is not
directly applicable to support caching.
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There are two basic ideas behind cache
investment. The first idea is to carry
out what-if analyses in order to decide
whether it is worth caching parts of a ta-
ble or index. More precisely, what-if analy-
ses are applied in order to (1) compute the
cost (i.e., investment) of loading a client’s
cache with parts of a table and/or index,
and (2) to compute the benefits of caching
parts of a table or index. The second idea
is to extend the optimizer so that the opti-
mizer decides to execute queries at clients
if these queries involve data that should
be cached at these clients. This way, copies
of the data are faulted in at these clients
and subsequent queries can be executed
using the cache. Queries that involve data
that should not be cached should be exe-
cuted preferably at servers without extra
cost for faulting in data.

To illustrate cache investment, consider
a client that asks for all Empswith salary >
100,000:

SELECT e.name, e.manager

FROM Emp e

WHERE e.salary > 100,000;

Section 3.2.3 mentions that there are es-
sentially two ways to execute this query in
a hybrid-shipping system: at the client or
at the server. Assuming that there is an
index on Emp.salary and that the client’s
cache is initially empty, evaluating this
query by using an index scan operator
at the client involves faulting in, say, 10
pages of the Emp.salary index in order to
evaluate the predicate and, say, another
20 pages of the Emp table in order to re-
trieve the name and manager fields of the
Emps that qualify. As a result, the overall
communication costs are 30 pages if the
index scan is carried out at the client. If
the index scan is executed at the server,
the name and manager fields of the result-
ing Emp tuples need to be shipped from the
server to the client—let’s assume a total of
10 pages. As a result, a traditional query
optimizer will always decide to execute the
index scan at the server.

In this example, cache investment takes
effect if the client repeatedly asks queries
that involve Emps with high salaries. In
this case, cache investment advises the op-
timizer at one point to generate a plan that

executes the index scans for these Emps at
the client. That plan is suboptimal (as de-
scribed above), but the execution of that
plan brings the relevant Emp index and ta-
ble pages into the client’s cache so that
subsequent queries asking for Emps with
high salaries can be carried out at the
client with no communication cost. With-
out cache investment, the optimizer would
execute all queries at the server, no data
would be cached at the client, and ev-
ery query would involve some communi-
cation cost to ship query results from the
server to the client. Taking a closer look,
cache investment makes the following two
calculations for every query issued at a
client:

1. The investment to load the cache with
the relevant index and table pages for
highly paid Emps is 20 pages for our
example query; 20 is the difference in
cost between the suboptimal, client-
side plan that brings the pages to the
client’s cache and the optimal, server-
side plan. The investment might be
higher or lower for other queries de-
pending on, among others, the selectiv-
ity of the predicates of the WHERE clause
and the number of columns of the query
result.

2. The benefit of caching all relevant pages
to extract the highly-paid Emps is 10
pages for our example query; 10 is the
difference in cost between the best plan
for the query given that none of the rel-
evant pages are cached, and the cost of
the best plan assuming that all relevant
pages are cached. Again, the benefit of
caching might be higher or lower de-
pending on the selectivity of the pred-
icate and the target columns of the
query.

As a result of these calculations, cache in-
vestment discovers that after three “high-
salary” queries, the benefits of caching out-
weigh the investment. After three queries,
cache investment will thus advise the op-
timizer to generate a suboptimal plan in
order to load the cache with the relevant
Emp data.

Quite a few more details need to
be taken into account to make cache
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investment work properly; for instance,
the exact interaction of cache investment
and query optimization, dealing with up-
dates, limitations in the size of a client’s
cache, lightweight strategies to estimate
the benefits and investment of caching, cost
formulas for clustered and unclustered in-
dices, considering response time rather
than communication costs in the calcula-
tions, and keeping statistics in the pres-
ence of rapidly changing client workloads.
All these details have been described in
Kossmann et al. [2000], so we will not dis-
cuss them here. To conclude, here again
are the differences between caching with
cache investment and replication with the
ADR algorithm:r Caching is fine-grained, making it possi-

ble to cache only a few, frequently used
pages of large tables or indices as in the
example above. Shipping, caching, and
keeping consistent copies of the whole
Emp table at all the clients that fre-
quently ask for Emp information is usu-
ally not practical.r The investment to establish a copy is
significantly lower with caching than
with replication because caching takes
effect when data is read from disk and
shipped to the client in order to execute
a query. In our example, the investment
was 20 pages although 30 pages had to
be shipped to the client. Replication al-
ways pays the full price of 30 pages (or
even more due to its coarse granularity)
to establish a copy because the replica-
tion process does not overlap with the
execution of queries.r As mentioned in Section 5.1, however,
probably both replication with the ADR
algorithm (or some other algorithm) and
caching with cache investment (or some
similar technique) should be used be-
cause caching and replication take effect
at different “ends” of the system.

5.4 View Caching, View Materialization,
and Data Warehouses

At the end of this section, we would like
to comment on the kinds of data that can
be cached and replicated. So far, we as-

sumed that only base data can be cached
and replicated (i.e., base tables or indices
or parts of them). We now turn to systems
that cache or replicate (i.e., materialize)
derived data or views. Such systems could,
for example, cache the average salary of all
Emps that work in a research department
instead of or in addition to the complete
salary information of all Emps.

View caching and materialization has
been addressed in a number of research
projects (e.g., Roussopoulos et al. [1995],
Keller and Basu [1994], Dar et al. [1996];
Deshpande et al. [1998], and Dessloch
et al. [1998]). View materialization has
also been implemented in Oracle 8 [Bello
et al. 1998]. Data warehouses are the
most prominent example of commercial
systems that materialize and/or cache
views [Widom 1995]. Data warehouses are
typically established for decision support
in companies or as product catalogs and
classified ads for electronic commerce on
the Web. They are usually installed in a
three-tier environment. The data ware-
house is located in the middle tier, it is
connected to one or more data sources, and
it keeps materialized views over the base
data stored at those data sources in order
to answer queries from clients without in-
teracting with the data sources. In fact,
a huge industry has already been formed
around this concept, and data warehous-
ing definitely deserves more attention
than we give it in this small section. From
our narrow perspective, a data warehouse,
the data sources, and the clients are part
of a distributed system in which views are
materialized or cached in the warehouse.

Compared to the replication and caching
of base data, the benefits of materializing
and caching views are significantly larger.
Caching the result of a join or aggregate
query, for example, might completely elim-
inate the cost of join or group-by pro-
cessing for subsequent queries in addi-
tion to savings in communication costs
and potential load balancing effects. View
caching and view materialization, how-
ever, are significantly more complex to im-
plement. First, keeping cached or mate-
rialized views consistent in the presence
of updates is complex and often expensive
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[Roussopoulos 1991; Quass and Widom
1997], and it is unclear how invalidation-
based protocols, which have proven to be
very useful to implement cache consis-
tency, can be applied to view caching. Sec-
ond, the ADR algorithm obviously can-
not be applied to decide what views to
materialize, and algorithms that carry
out such decisions are just beginning to
emerge [Harinarayan et al. 1996; Scheuer-
mann et al. 1996; Yang et al. 1997]. Cache
investment can be used, but there is an
explosion in the number of “what-if” anal-
yses that need to be carried out for every
query so that a naive application of cache
investment is impractical. Third, query
optimization is more complicated and
more expensive in the presence of cached
and/or materialized views [Levy 1999].
The optimizer must determine whether
a cached or materialized view is applica-
ble—this is known as the containment or
subsumption problem [Levy 1999]. After
that, the optimizer must decide which of
the applicable views to use. To this end,
the optimizer must be extended in order to
enumerate read(view) plans for all appli-
cable views just like other access and join
plans and carry out cost-based optimiza-
tion using dynamic programming or itera-
tive dynamic programming (Section 2.2.1).
If, for example, a materialized view in-
volves Tables Emp and Dept and was shown
to be applicable for a query that involves
the Emp, Dept, and Division tables, the
view can be used as an access plan for the
Emp table, as an access plan for the Dept ta-
ble, and as a Emp 1 Dept join plan. In other
words, the view, if it is applicable, can be
seen as a component database that stores
copies of the Emp and Dept tables and is
capable of processing joins, and query op-
timization in the presence of views can be
carried out in the same way as query opti-
mization in the presence of heterogeneous
component databases as described in
Section 4.2.

6. NEW ARCHITECTURES FOR
DISTRIBUTED QUERY PROCESSING

The previous sections presented a com-
prehensive set of techniques to imple-

ment distributed database and informa-
tion systems. While this set of techniques
is sufficient for most of today’s appli-
cations, the advent of the Internet has
sparked a large number of new applica-
tions and led to systems with an ever
growing number of clients and servers.
In such an environment, the conventional
query processing approach presented in
the previous sections might be too rigid.
In this section, we will describe recent
trends and developments. Specifically, we
will give a brief overview of economic
models for distributed query process-
ing and dissemination-based information
systems.

6.1 Economic Models for Distributed
Query Processing

A large variety of economic models for var-
ious aspects of distributed computing have
been studied since the mid-1980s (e.g., eco-
nomic models for resource allocation, load
balancing, flow control, and quality of ser-
vice). A good survey of such techniques can
be found in Ferguson et al. [1996]. The mo-
tivation to use an economic model is that
distributed systems are too complex to be
controlled by a single centralized compo-
nent with a universal cost model. Systems
based on an economic model rely on the
“magic of capitalism.” Every server that of-
fers a service (data, CPU cycles, etc.) tries
to maximize its own profit by selling its
services to clients. The hope is that the
specific needs of all the individual clients
are best met if all servers act this way.

Mariposa is the first distributed
database system based on an economic
paradigm [Stonebraker et al. 1996].
Mariposa processes queries by carrying
out auctions. In such an auction, every
server can bid to execute parts of a query,
and clients pay for the execution of their
queries. More precisely, query processing
in Mariposa works as follows (more
details can be found in Stonebraker et al.
[1996]):

1. Queries originate at clients, and clients
allocate a budget to every query. The
budget of a query depends on the im-
portance of the query and how long the
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client is willing to wait for the answer.
A client in Las Vegas could, for exam-
ple, be willing to pay $5.00 if the client
gets the latest World Cup football re-
sults within a second, but only 10 cents
if the delivery of the results takes one
minute.

2. Every query is processed by a broker.
The broker parses the query and gen-
erates a plan that specifies the join
order and join methods. For this pur-
pose, the broker may employ an ordi-
nary query optimizer for a centralized
database system based on, for example,
dynamic programming.

3. The broker starts an auction. As part
of this auction, every server that stores
copies of parts of the queried data or is
willing to execute one or several of the
operators specified in the broker’s plan
is asked to give bids in the form of

〈Operator o, Price p, Running Time r,
Expiration Date x〉

In other words, with such a bid a server
indicates that it will be willing to ex-
ecute Operator o for p dollars in t
seconds, and that this offer is valid until
the expiration date x.

4. The broker collects all bids and makes
contracts with servers to execute the
queries. Doing so, the broker tries to
maximize its own profit. If, for exam-
ple, the broker finds a way to execute the
Las Vegas query from above in a second,
paying only $1.00 to servers, the broker
will pursue this way and keep $4.00 of
the budget as profit. If the query can-
not be evaluated with acceptable cost
in one second, the broker will try to
find a very cheap way to execute the
query in a minute and keep a couple of
cents as profit. If the broker finds no way
to execute the query within the time/
budget limitations, the broker will re-
ject the query. In this case, the client
must raise the budget, revise the re-
sponse time goals, or just be happy with-
out the answer.

At first glance, Mariposa’s query pro-
cessing approach does not appear to be

very different from the techniques pre-
sented in Sections 2. and 3.. Mariposa
carries out two-step optimization as de-
scribed in Section 3.3.3, making it possi-
ble to avoid heavily loaded or slow servers.
The beauty of Mariposa is that different
servers can flexibly establish different bid-
ding strategies in order to achieve high
revenue. For instance, a server might spe-
cialize in high-end or low-end services.
Using an example from real life, there
are expensive restaurants for people that
like to eat well and fast-food restaurants
for people with other needs. This diver-
sity makes it possible to meet the eating
habits of a large group of people. Mariposa
supports such a diversity in the ser-
vices provided by a distributed database
system.

Another advantage of Mariposa is that
dynamic data placement fits nicely into
Mariposa’s economic approach. In addi-
tion to the revenue for executing query
operators, servers can make a profit by
buying and selling copies of data [Sidell
et al. 1996]. The soccer WWW server lo-
cated in Paris, for example, was not able
to handle all the requests from all over
the world during the World Cup finals in
1998. Using Mariposa, that server could
have allowed other servers, say, in Brazil
or Nigeria to replicate the results of the
soccer matches and have gotten additional
revenue for selling the original copy of
the Results table and for propagating
all the updates. Servers in Brazil and
Nigeria would have bought copies of the
Results table to bid for queries that in-
volve that data and/or sell copies of that
data to other servers (e.g., in Argentina or
Cameroun).

While all these concepts sound very
promising and a version of Mariposa is al-
ready available commercially (distributed
by Cohera), it is still unclear how well
Mariposa and other systems with eco-
nomic models will work in practice. There
is a significant amount of research re-
quired to find out how to configure the
bidding and data buying/selling strategies
of servers and how to keep the overheads
of the bidding protocols within reasonable
limits.
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6.2 Dissemination-Based
Information Systems

Throughout this paper, a request-driven
data delivery model was assumed. In this
model, users or application programs (i.e.,
clients) are active and initiate queries;
servers are passive and process queries
upon request. Lately, there has been a
great deal of interest in push technol-
ogy. In this model, servers are active
and disseminate data to clients before the
clients ask for the data. An early incar-
nation of push is TeleText, provided by
most European TV stations since the mid-
1980s. Furthermore, both Netscape’s Nav-
igator and Microsoft’s Internet Explorer
provide features to allow clients to pas-
sively listen to data that is disseminated
by WWW servers. Pointcast’s screensaver,
which displays news and commercials
based on a user’s profile of interests, is
another product in this domain. A good
overview of these and other push-based
systems is given in Franklin and Zdonik
[1998].

One reason for this interest is that many
people like to obtain all the information
they are interested in with virtually no ef-
fort. In addition, there are a number of
technical reasons in favor of push—in
particular, if data is dissiminated in net-
works that support broadcasts or 1:N
multicasts. Most importantly, push-based
systems scale better than traditional
request-driven systems. Rather than pro-
cessing every request individually, push-
based systems satisfy the requests of sev-
eral users by disseminating the results
only once [Aksoy and Franklin 1998]. Data
push and request-driven access to data
can also be combined in order to achieve
high scalability and satisfy unusual user
requests at the same time [Acharya
et al. 1997]. Other interesting aspects
are client-side caching in push-based sys-
tems [Acharya et al. 1995; 1996], and mul-
titier architectures for data dissemina-
tion [Franklin and Zdonik 1998].

Unfortunately, SQL-style query pro-
cessing has not yet been studied in the con-
text of push-based systems. For example,
it is still unclear which of the techniques

presented in this paper would be applica-
ble for a push-based system. A great deal
of future work remains to be done in this
area.

7. CONCLUSION

In the last decade, the landscape of dis-
tributed database and information sys-
tems has changed tremendously. Network
technology has become mature, and as
a result, businesses rely more and more
on distributed and on-line data process-
ing architectures as opposed to monolithic
and batch-oriented architectures. In addi-
tion, a whole new generation of distributed
database applications is appearing, ex-
ploiting, for example, the Internet or wire-
less communication networks for mobile
clients. Furthermore, most systems today
have a client-server or a multitier archi-
tecture, and many complex systems are
composed of several subsystems from po-
tentially different vendors with hetero-
geneous data processing capabilities and
APIs.

In this paper an overview of the state
of the art in distributed query processing
was given. This paper discussed various
query processing techniques developed for
recent products and research prototypes
and showed how they can be applied to
different types of distributed systems.
Many different architectures and ap-
plications can be found today, but all
these architectures can roughly be char-
acterized by their communication paths
(client-server, peer-to-peer, or multitier)
and by the capabilities of the sites of the
system (homogeneous or heterogeneous).
For each category, the paper presented
and discussed that set of query process-
ing techniques which are particularly
effective. For instance, the paper showed
how to exploit client resources in a strict
client-server system and how to exploit
the query capabilities of individual sites
in a heterogeneous system.

Independent of the specific architecture,
all distributed database and information
systems today are based on the following
two principles:
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r Best effort: the query processor always
tries to execute a query as fast as pos-
sible or with as little cost as possible.
At the heart of this strategy is a query
optimizer, which decides for every query
which query execution methods to use
(e.g., which join method), where to ex-
ecute these methods, and in which order
to execute these methods. The optimizer
can be used statically in order to compile
a query once and for all times. The opti-
mizer can also be used dynamically just
before a query instance is executed or on
the fly while the query is executed in or-
der to adjust to the current state of the
system.r Flexible data placement: in order to im-
prove the performance of a whole query
workload, caching and/or replication can
be used in order to place data at or near
sites where the data are frequently used.

Both query optimization and caching/
replication are extensively studied in this
paper.

Combined, the set of techniques pre-
sented in this paper should be suffi-
cient to support most of today’s database
applications. Nevertheless, there are a
number of avenues for future work:r No vendor has implemented all or even a

significant portion of the techniques de-
scribed in this paper. Conceptually, the
pieces fit together well, but it is nev-
ertheless not always easy to integrate
a new technique into an existing sys-
tem. For example, it is possible to ex-
tend a query optimizer to consider a new
query evaluation algorithm, but doing
so might substantially increase the run-
ning time of the optimizer. As a result,
a tricky compromise must be found that
extends the optimizer so that the new
algorithm is supported reasonably well
and the increase in optimization time is
tolerable.r The techniques described in this pa-
per can be implemented as part of a
distributed database management sys-
tem or as part of a database applica-
tion system. Preferably, of course, the
techniques should be implemented as

part of a database management system
so that any kind of application can di-
rectly benefit from them. In fact, how-
ever, several of the techniques presented
in this paper have been implemented
as part of the SAP R/3 business appli-
cation system [Kemper et al. 1998] be-
cause standard, off-the-shelf database
management systems have not yet im-
plemented these techniques. This situa-
tion might be the cause for a great deal of
confusion, and ultimately certain appli-
cation systems might not work well with
certain database management systems
if conflicting techniques are carried out
on both ends or important techniques are
not carried out at all. Coordinating all
the different query processing activities
is a difficult task in such systems. The
situation is getting worse with the cur-
rent trend to design and market appli-
cation and database management mod-
ules that can be freely plugged together
and may interact in unpredictable
ways.r Scalability remains a major concern. It is
still unclear whether query optimization
and the “best effort” approach work in
a system with ten thousands of servers
and millions of clients because so far
nobody has been able to simulate query
processing in such a large scale. In addi-
tion, further research is necessary in or-
der to find out how well economic models
and data dissemination models work for
large-scale query processing.r Most of this paper was focused on struc-
tured (i.e., relational) data. There is still
a great deal of work to be done in order to
integrate other types of data (e.g., XML,
text, images, etc.). Furthermore, it is im-
portant to deal with approximate or par-
tial answers on the Internet; on the In-
ternet, failure is the rule rather than the
exception.
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