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Abstract—Large-scale component-based enterprise applica-
tions that leverage Cloud resources expect Quality of Service
(QoS) guarantees in accordance with service level agreements
between the customer and service providers. In the con-
text of Cloud computing, autoscaling mechanisms hold the
promise of assuring QoS properties to the applications while
simultaneously making efficient use of resources and keeping
operational costs low for the service providers. Despite the
perceived advantages of autoscaling, realizing the full potential
of autoscaling is hard due to multiple challenges stemming
from the need to precisely estimate resource usage in the
face of significant variability in client workload patterns. This
paper makes three contributions to overcome the general
lack of effective techniques for workload forecasting and
optimal resource allocation. First, it discusses the challenges
involved in autoscaling in the cloud. Second, it develops a
model-predictive algorithm for workload forecasting that is
used for resource autoscaling. Finally, empirical results are
provided that demonstrate that resources can be allocated and
deallocated by our algorithm in a way that satisfies both the
application QoS while keeping operational costs low.

Keywords-autoscaling; workload forecasting; predictive mod-
els.

I. INTRODUCTION

Large enterprise software systems such as (e.g., eBay,

Priceline, Amazon and Facebook), need to provide high

assurance in terms of Quality of Service (QoS) metrics such

as response times, high throughput, and service availability

to their users. Without such assurances, service providers

of these applications stand to lose their user base, and

hence their revenues. Typically customers maintain Service

Level Agreements (SLAs) with service providers for the

QoS properties. Failure to comply with satisfying these QoS

metrics leads to a major loss of revenue in the form of

decreased user base [1].

Catering to the SLA while still keeping costs low is

challenging for such enterprise systems due primarily to

the varying number of incoming customers to the system.

For example, consider Figure 1 which depicts a real-world

scenario wherein workload of the FIFA 1998 soccer world

cup website in the number of incoming clients to such

a website is highly varying depending upon a number of

factors such as time of day, day of week and other seasonal

factors. Such a workload is very typical of all commercial

websites and planning capacity for such workload is not

easy. Capacity could be planned for the average load as

shown in Figure 1 or for the peak load. Each approach has

its disadvantages, however.
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Figure 1. World Cup Soccer 1998 Workload

When planned for the average load, there is less cost

incurred due to less hardware used but performance will be a

problem when peak load occurs. Bad performance will dis-

courage customers and revenue will be affected. On the other

hand if capacity is planned for peak workload, resources will

remain idle most of the time. Autoscaling supported in Cloud

computing environments overcomes these challenges. Cloud

computing providers such as Amazon EC2 provide access

to hardware which can be allocated or deallocated at any

time. Images of client software can be created before hand

which can be loaded on to the machine. When not required,

the same machines can be released. Machine usage costs on

an hourly basis. Amazon EC2 provides an API which can

be used to automate this process.
A problem with such a resource allocation scheme is

the chance of thrashing where due to frequent variation of

workload, machines can be added and released on every

sample – a process that involves significant overhead as

described in Section III. A desirable solution would require

an ability to predict the incoming workload on the system

and allocate resources a priori. This capability in turn will

enable the application to be ready to handle the load increase

when it actually occurs. A corollary requirement is the need

to identify how many machines should actually be provi-

sioned and started to handle the predicted load. For example,

consider a situation where there are N number of machines

already running and handling M customers for a given

application. Suddenly, the number of customers increases

to M + 100 and processor utilization also increases in the

running nodes. Naturally, this situation requires increasing
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the number of machines allocated, but how by how much is

unknown. Anything less will provide degraded performance;

anything more implies cost incurred by the customer for

resources not actually used by the application.

In summary, autoscaling the resources in a cloud environ-

ment is not an easy and straightforward task. Overcoming

these challenges will require algorithms which take into

account the following: (i) overheads related to state tran-

sition when number of resources are changed, (ii) ability

to accurately predict future workload, and (iii) compute the

right number of resources required for the expected increase

or decrease in workload. This paper describes a resource

allocation algorithm based on model predictive techniques

which allocates or deallocates machines to the application

based upon optimizing the utility of the application over a

limited prediction horizon.

The rest of the paper is organized as follows: Section II

compares related research to our work; Section III described

the challenges in workload prediction and relating it to

autoscaling; Section IV describes our solution approach;

Section V provides empirical evaluation of our algorithm;

and finally Section VI provides concluding remarks.

II. RELATED WORK

We have surveyed related work that investigates resource

allocation and workload prediction, which are geared to-

wards satisfying Cloud user requirements. We also focus

on related work on optimizing resources, which is geared

towards the Cloud provider. These dimensions of research

are most appropriate for the work presented in this paper.

(1) Heuristics-based virtual machine allocation and mi-
gration: Urgaonkar et. al. [2] have used virtual machines

(VM) to implement dynamic provisioning of multi-tiered

applications based on an underlying queuing model. For

each physical host, however, only a single VM can be

run. Wood et. al. [3] use a similar infrastructure as in [2].

They concentrate primarily on dynamic migration of VMs

to support dynamic provisioning. They define a unique

metric based on the consumption data of the three resources:

CPU, network and memory to make the migration decision.

Cunha et. al. [4] develop a comprehensive queuing model to

model virtual servers. They assign each class of jobs in an

application onto a virtual machine. They introduce a pricing

model which gives rewards for throughput to be within SLA

limits and penalty for throughput going above.

(2) Autonomic management of virtual computing envi-
ronment using control-theoretic approaches: Padala et.

al. [5] provide a control-theoretic solution where each tier

of the application is executed on each virtual machine.

Authors carry out black box profiling of the applications

and build an approximated model which relates performance

attributes such as response time to the fraction of processor

allocated to the virtual machine running the application.

Wang et. al. [6] describe a two-level control architecture for a

virtualized environment. A load balancing controller ensures

that the virtual machines are all load-balanced and the

response time of the applications in all the virtual machines

are the same. Moreno et. al. [7] recommend an architecture

for elastic management of cluster-based services. It consists

of a virtualized infrastructure layer that works with a VM

manager and a cloud service provider. This approach helps in

autoscaling resources with the least amount of perturbations

to the user. Waheed et. al. [8] propose a reactive algorithm

to allocate extra resources to a cluster farm when workload

increases, while Yang et. al [9] propose a profile-based

approach to the problem of just-in-time scalability in a cloud

environment.

Limitations in related work: The work in [2] and [3] do

not relate the placement mechanism to an overall utility

value to the Cloud provider. They attempt at increasing

the throughput of the application only. The applications

considered do not have multiple classes, which is unrealistic.

Although the work in [4] has a good utility model of the

data center and multiple classes are considered, they assign

every class onto a single virtual machine, which may not

be cost-effective in a situation where an application has

numerous classes. Although the utilization model given in

[10] maps resource utilization to application utility, finding

such a mapping is difficult [11]. Instead it is straightforward

to relate throughput with utility and then map resource

allocation to throughput. Such an approach, however, will

need a robust analytical model for relating throughput with

resource allocation.

III. CHALLENGES TO ELASTIC RESOURCE

PROVISIONING IN CLOUD ENVIRONMENTS

This section discusses the challenges to realizing elas-

tic resource provisioning in large-scale component-based

systems. Many of the challenges that are faced in elastic

resource provisioning using autoscaling can be highlighted

from the workload pattern in Figure 1.

A. Challenge 1: Workload Forecasting

The autoscaling strategy in a cloud environment will

involve the acquiring and release of resources as workload

imposed by the application changes with time. Both these

tasks require programming to an API. Releasing resources

is easy, however, acquiring resources incurs performance

overheads stemming due to the following reasons. First,

there is a need to make a call on the Cloud API which

starts the acquisition process. The machines will then be

needed to boot up with the specified image, the application

need to be started, and there also might be the need for state

update. Thus, it is desirable if the resources can be acquired

earlier than the time when workload actually increases. This

outcome can be possible only if the future workload can be

predicted, possibly using historical data. Section IV-A shows
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our solution to predict workload in the next interval by using

the workload patterns up to the current interval.

B. Challenge 2: Identify Resource Requirement for Incom-
ing Load

Figure 1 plots the number of customers who use the

system every hour. Since the number of customers vary

every hour, the number of resources required also varies. The

required number of resources is a function of the number

of customers, the nature of the application, and also the

type of calls that each customer makes on the application.

The resources required need to be estimated properly so

that they can be provisioned within the cloud infrastructure.

The resource estimation also needs to be very accurate.

If it is not accurate then there is the potential of under-

or over-provisioning of resources, each of which has its

pitfalls. Section IV-B describes our solution to determine

the accurate number of resources needed.

C. Challenge 3: Resource Allocation while Optimizing Mul-
tiple Cost Factors

To optimize resource usage and/or minimize idle re-

sources, an ideal solution is to define a time interval and

change resources as many times as possible as workload

changes. In the limit this interval could be made infinites-

imally small and resources are changed continuously in

accordance with the change in load, assuming we can always

at least over estimate the load. This extreme will obviously

ensure that the optimum number of resources are always

used. Obviously, such as scheme is not possible since chang-

ing resources is not spontaneous. Challenge 1 highlights

the overhead in allocating a resource. Thus, scaling up or

down resources also involves cost and needs to be optimized.

Section IV-C describes our approach to avoid thrashing and

system instability by planning a resource allocation strategy

based on a limited future horizon.

IV. AUTO-SCALING RESOURCES USING LOOK-AHEAD

OPTIMIZATIONS

Control theory offers a promising methodology to address

the challenges described in Section III. It allows systemati-

cally solving a general class of dynamic resource provision-

ing problems using the same basic control concepts, and to

verify the feasibility of a control scheme before deployment

on the actual system. In more complex control problems

a pre-specified plan called the feedback map becomes in-

flexible and does not adapt well to constantly changing

operating conditions. Therefore, researchers have studied

the use of more advanced state-space methods adapted

from model predictive control [12] and limited look-ahead

supervisory control [13] to manage such applications [14]–

[16]. These methods offer a natural framework to accom-

modate the above-described system characteristics, and take

into account multi-objective non-linear cost functions, fi-

nite control input sets and dynamic operating constraints

while optimizing application performance. The autonomic

approach proposed in [16], [17] describes a hierarchical

control based framework to manage the high level goals for

a distributed computing system by continuous observation

of the underlying system performance. The key differences

between these previous works and our work is in the nature

of the performance models.

The autoscaling algorithm presented in this paper does

not use a reactive strategy. Instead it provides a predictive

solution leveraging concepts proposed by Sherif, et. al. [18],

[19], which is applicable to systems that exhibit a hybrid

behavior comprising both discrete-event and continuous dy-

namics and have a possibly large but finite set of control

options. Formally, it has been shown before in the literature

that dynamics of such systems can be captured using the

model of switching hybrid systems. It is known that for such

systems a multi objective control problem can be solved by

using a limited look-ahead controller algorithm [18], [19],

which is a type of model predictive control. This is done

by selecting actions that optimize system behavior over a

limited prediction horizon.

The rest of this section describes our approach and shows

how we resolve the three challenges described in Section III.

A. Workload Prediction

To apply model predictive control ideas to the problem

discussed in this paper we predict the workload on the appli-

cation and estimate the system behavior over the prediction

horizon using a performance model. The optimization of

the system behavior is carried on by minimizing the cost

incurred to the application. This cost is a combination of

various factors such as cost of SLA violations, leasing cost

of resources and a cost associated with the changes to the

configuration. The advantage of such a method is that it can

be applied to various performance management problems

from systems with simple linear dynamics to complex ones.

The performance model can also be varied and corrected

with system dynamics as conditions in the environment like

workload variation or faults in the system change.

In our strategy, workload prediction is needed to estimate

the incoming workload of the system for future time periods.

Thankfully a number of techniques already exist in literature

that can be applied for forecasting the traffic incident on

a service. We used a second order autoregressive moving

average method (ARMA) filter for the workload shown in

Figure 1. The equation for the filter used is given by

λ(t+1) = β×λ(t)+γ×λ(t−1)+(1−(β+γ))(λ(t−2)) (1)

The value for the variables β and γ are given by the values

0.8 and 0.15, respectively. Figure 2 shows the predicted

workload compared to the actual workload.
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Figure 2. Predicted vs. actual workload shown over a single look-ahead
horizon.

B. Performance Model

The next challenge we resolve is identifying resource

requirements for the predicted workload. The right number

of resources is the one that will provide the desired response

times (or other performance metrics) of the applications. For

the above look-ahead framework we focus on response times

of the application under different hardware configurations.

The workload used in this work is the number of users

currently in the system. It also depends upon what each

user does. For example, some users could be browsing

while some users could be entering data in a form. In our

prior work [20] we have used Customer Behavior Modeling

Graphs (CBMG) to model the overall behavior of customers.

A CBMG is built from a log of previous customer behavior

and computes the probability of a typical user to visit each

page. Using this information, we can calculate the number

of visits to a single page from the total number of customers

in the system. The number of visits to each page helps in

calculating the average load on each page.

Our prior work also developed analytical models to ac-

curately estimate response times, which are used in Algo-

rithm 1. This algorithm accepts the amount of workload

given by a vector of client populations, each member

representing the number of clients in each job class. The

number of machines provided, the service demand of the

components and the think time for clients is also given

as input. Algorithm 1 initially creates a default placement

strategy whereby it places each tier of the application onto

a particular machine. Purposefully we start off with a low

number of machines (2) and gradually increase the load

to identify the right number of resources required. This

approach helps to avoid a situation where we need to reduce

the number of machines (M − 1) on each iteration, the

algorithm makes a call onto the Mean Value Analysis (MVA)

algorithm. The MVA returns the utilization of each tier

which can be used to find the bottleneck machine (the

machine with the highest utilization). The tier present in that

machine is then replicated and placed in a new machine

which is introduced in that iteration. In this manner, the

iteration continues until the total number of machines equal

the given maximum machines.

Algorithm 1: Response Time Analysis (RTA)
Input:

Ld Predicted Workload
Hw Total Machines available
SD Service Demand for the job classes
Z Think Time

Output:
Response Time R← Vector of response times for all job classes

1begin
2 // start with one machine per tier (2 in this case)
3 M = 2;
4 while M <= Hw do
5 // Get response time and server utilization by running MVA on

analytical model presented in [20]
6 [R, U] = MVA (SD, Ld, Z);
7 i = maxUtil (U); // Get the index of the bottleneck tier
8 // Add a machine and replicate tier i on it to balance the load
9 M = M + 1

10 M ← i

C. Optimizing Resource Provisioning
To optimize resource usage and minimize idle resources,

the best way would be to define a time interval and change

resources as many times as possible as workload changes.

In the limit this interval could be made infinitesimally small

and resources are changed continuously, however, as noted

earlier such an extreme solution is not feasible. The intuition

therefore is to identify the right number of time intervals

in which to make these adjustments with the requirement

that the time interval is neither too small nor too large. Our

solution works on the principles of receding horizon control

also known as look-ahead optimization [19].
This form of controller, iteratively solves an optimiza-

tion problem, Costopt starting from t0, over a predefined

horizon (t = 1...N ) taking into account current and future

constraints. Once a feasible sequence is found, only the

first input in the sequence is applied and the rest are

discarded. Effectively, the optimization search results in the

construction of a tree with branching factor K and N + 1
levels. Here K is the total number of finite input choices.

Formally, at time t0, given state xt0

Costopt = min{Cost({xt}, {ut})} {} denotes a set

xt+1 = f(xt, ut), t = t0, · · · , tN−1
ut ∈ Ufinite input choices

XN is the set of final goal states

Cost({xt}, {ut}) = (

t=t0+N−1∑

t=t0+1

J(x(t), u(t))

where J is a utility function

A sequence {ut} = {u0, · · · , uN−1} and{xt} =
{x0, · · · , xN−1} are the feasible input sequence and the
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resulting states that trace a path from the root to the lead

node in this search tree such that the net cost across the sum

of all branches is minimum and the leaf node is closest to

the final destination state.

Given that this method needs finite input choices, we use

a finite range of machines that can be increased, decreased,

or kept the same. The next challenge is the choice of the

look-ahead period. A small look-ahead period will neglect

trends, while a very large period will increase computational

complexity and lead to a larger prediction error, which will

yield any control decision ineffective. Thus, the number

of look-ahead periods need to balance out the different

tradeoffs.

To implement the receding horizon control algorithm in

our setting we make the following observations. The actual

algorithm is not described here because the implementation

requires recursive data structures and is difficult to describe

in the limited space available.

Number of Look-ahead steps N

SLA response time bound R∗
State Variable Machines Used, M

Control Options u, range of change

Workload W

Service Demand for the job classes SD
Thinktime Z

Cost Function Equation 5

State Advance Function Equation 2

Our algorithm uses the receding horizon control and

iterates over the number of look-ahead steps and calculates

the cumulative costs. For every future time step, it computes

the cost of selecting each possible resource allocation. To

compute the cost of a particular allocation, it uses Algo-

rithm 1 to compute the estimated response time for that

particular machine configuration. Once the response time is

calculated, it is used to calculate the cost of the allocation

which is a combination of how far the estimated response

time is from the SLA bounds, cost of leasing additional

machines and also a cost of re-configuration.

Wt = β ×Wt−1 + γ ×Wt−2 + (1− β − γ)×Wt−3 (2)

Mt = Mt−1 + ut (3)

Rt = ResponseT imeAnalysis(Wt,Mt, SD,Z) (4)

The cost of reconfiguration is computed based on the

number of machines that need to updated. Obviously re-

configuration will incur some costs and thus the algorithm

will try to reduce the amount of reconfiguration. Each of

these cost components will have weights attached to them

which may be varied depending on the type of application

and its requirements. Applications are required to specify

which factors are more important to them, and our auto-

scaling algorithm will honor these specifications in making

the decisions. Section V illustrates different behaviors re-

sulting from different choices for these weights.

V. EXPERIMENTAL EVALUATION

This section presents results evaluating our look-ahead

algorithm. We first show how the algorithm determines the

number of resources to be allocated in a just-in-time manner

so that the overall cost is minimized. Next, the effects of

different cost weightage is studied.1 This study is important

since different applications may impose different weightage

combinations. The data used in this study is acquired from

the 1998 soccer world cup web site shown in Figure 1.

We use the number of customers visiting that site as an

indication of the amount of workload that typically can be

experienced by such a globally popular topic.

A. Just-in-time Resource Allocation

To evaluate the strength of our just-in-time resource

allocation, we have used a cost function shown in Equation 5

comprising the three components. Recall that the three com-

ponents of the cost function refer individually to the penalty

for violation of SLA bounds, cost of leasing a machine,

and cost of reconfiguring the application when machines are

either leased or released. Each of these components has a

weight attached to it and the system can be made to always

minimize a certain component by increasing the attached

weight to it to an arbitrary high value. Table I describes the

components of the cost function.

Cost = Wr×(Rsla−R)+Wc×Mk+Wf×‖(Mk −Mk−1)‖
(5)

Table I
COMPONENTS OF COST FUNCTION

Component Description Unit

Wr Penalty for SLA violation $/sec
Wc Cost of Leasing a Machine per hour $/machine
Wf Cost of reconfiguring application $/machine
Rsla SLA given response time sec
R Maximum response time of application sec

Mk Number of machines used in the kth interval Numeric

Mk−1 Number of machines used in the k − 1th interval Numeric

For this experiment, the weights on each component of the

cost function is the same, which means all factors are equally

important. Figure 3 shows how the look-ahead algorithm

determines changes in the resources required as the incoming

load changes. The computation is done on the basis of

predicted workload which is done with the help of the

ARMA filter given in Equation 1. Figure 3 clearly shows that

the base resources required are 2 machines and it increases to

3 or 4 when the load is increased. The prediction of the look-

ahead algorithm based on a selected number of time intervals

closely matches the incoming load. It prescribes resource

increase whenever there is high load and less resources when

there is less load. Thus Figure 3 shows the effectiveness of

1Due to space restrictions we are unable to showcase a variety of different
configurations.

504



the look-ahead algorithm and how it can save cost while also

assuring that the performance of the application is assured.
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Figure 3. Just-in-time Resource Allocation with Changing Load

B. Resource Usage under Different Cost Priorities

The results in this section demonstrate the alloca-

tion/deallocation of resources stemming from using different

cost ratios among the three competing factors in the cost

function of Equation 5. The resource allocation determined

by our algorithm in the different time intervals will depend

upon the weights assigned to the various components of the

cost function. The rest of the section studies the different

trends of resource allocation and how they are influenced

by the varying weights of the cost function.

1) SLA violation against Resource Cost: We first show

the results when considering the effect of SLA violation

against cost of resources, i.e., the ratio of the cost of SLA

violation against the cost of machines are varied while the

application reconfiguration cost is assumed to be zero. We

assume that the application can be easily reconfigured with

varying machines. The ratio of SLA penalty to machine cost

is varied from 4 : 1 (which means SLA violation is higher

priority than cost of the machine) to 1 : 13 (which means

that the machine cost is higher priority than SLA violation).

Figures 4, 5 and 6 show how the resources are allocated

every hour over the entire time period. The corresponding

cost values are also shown in the bottom graph for each

of these figures. The intervals over which there are SLA

violations are also shown. The algorithm always tries to

keep the cost to a minimum. It is seen that there is signifi-

cant difference in resource allocation between the different

configurations. An application with high SLA violation

penalty has stronger performance assurance whereas one

with low SLA penalty has lesser performance assurance.

The priorities of the application determine the difference

in resource allocation. For a low performance assurance and

high machine cost, the number of machines used is only 2
over the entire time interval. The cost of machines exceeds

the cost of SLA violations and such a configuration will

have to tolerate a number of SLA violations (Figure 4).

Contrary to this configuration, for an application that can

tolerate some SLA violations (medium SLA violations),

Figure 5 shows how there are many intervals in which 3
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Figure 4. Resource Allocation for Low SLA Violation Cost and High
Machine Cost
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Figure 5. Resource Allocation for Medium SLA Violation Cost

machines are used. This balances the cost of machines and

cost of SLA violations. For the highly assured application of

Figure 6, there is much variation in resource usages with a

number of intervals having 3 machines and also some having

4 machines. Here the priority is in assuring performance and

the cost of machines is much lower.

Finally, Figure 7 shows the distribution of number of

machines required for a variety of systems ranging from

highly assured systems (ratio of SLA violation penalty to

machine cost being 4 : 1) to very weakly assured systems

(ratio of SLA violation penalty to machine cost being

> 1 : 13). In this figure, each point on the X-axis is a

ratio of cost of SLA violation to the cost of machine. The

Y-axis plots the number of intervals in which each type of

Figure 6. Resource Allocation for High SLA Violation Cost
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machine is used. For example, for the point corresponding to

cost ratio of 1:4, 359 intervals use 2 machines and the other

143 intervals use 3 machines. The ratio of SLA violation

cost to machine cost increases as we move further down the

X-axis. The figure shows the use of more 3 machines than 2
machines as we move to the right. This outcome is because

the relative cost of machines decreases to the right and the

penalty of SLA violation increases.
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Figure 7. Resource Allocation for Variety of Systems

2) Including the Cost of Reconfiguration: Figure 6

showed how resource allocation is done when there is high

SLA violation cost compared to machine cost. For this

configuration, in every interval, the mean response time

is below the SLA bound and the machines are allocated

whenever they are needed. A machine is released again since

there is cost of machine but only making sure that the SLA

is maintained. When there is a cost of reconfiguration intro-

duced, the algorithm will resist the changing of resources.

This phenomenon can be related to inertia in physical bodies.

Inertia resists changes to its current physical condition such

as a body in rest resists movement while a body in motion

resists slowing down. Thus the cost of reconfiguration will

similarly resist the dynamic nature of resource allocation.

Higher this cost, higher will be its resistance to the

changes. This cost is expressed as the third component of

Equation 5. The weight Wf represents the level of inertia

and it is multiplied by the change level which is the number

of machines allocated or released. Initially when a small

amount of reconfiguration cost is introduced, it does not

effect much as shown in Figure 8. The resource allocation

is similar to Figure 6. There are small deviations, where the

spikes in resource changes are a little wider in Figure 8 than

in Figure 6. This is due to the inertia in change introduced

due to some cost associated with change.

The effect of the cost of reconfiguration is more pro-

nounced when it is prioritized slightly higher. Figure 9 shows

a distinct change in resource allocation over the hourly

intervals compared to Figures 6 or 8. In Figure 9, the

number of machines increases to 3 at around the 40th hour

and remains steady. Somewhere around the 350th hour it

increases to 4 machines since the workload increased at that
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Figure 8. High SLA violation with Low Reconfiguration cost

time. Subsequent to that, the workload decreased but the ma-

chines were never released since the cost of reconfiguration

is considered much higher compared to the cost of machines.

The changes of the machines around 40 and 350 hours was

warranted because of the high SLA violation cost and the

machines were never released even though the workload

lessened since the cost of reconfiguration was higher.
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This behavior of resisting change is further pronounced in

Figure 10 where there is even higher cost of reconfiguration.

Here again there is an increase of machines to 3 at around the

40 hour mark and the machine is never released. The change

to 4 machines which was seen in Figure 9 does not occur

here because the cost of reconfiguration is much higher that

the cost of SLA violation. Thus even though there is SLA
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violation, it is only of a short duration (the peak workload

around 350 hour) and is of lesser cost than the cost of

changing resources. That the SLA violation near 300 hour

was of a short duration can be understood from Figure 8

where there is a very short spike of machine allocation to 4
around that time. When the cost of reconfiguration becomes

high, the look-ahead algorithm decides not to expend in the

extra cost of reconfiguration to cover up that short SLA

violation.

VI. CONCLUSION

Autoscaling of resources helps Cloud service providers

operating modern day data centers to support maximal num-

ber of customers while assuring customer QoS requirements

in accordance with service level agreements, and keeping

cost of using resources low for customers. However, current

autoscaling mechanisms require user input and programming

of APIs to adjust resources as workloads change. Reactive

scaling of resources imposes performance overheads while

also making the programming of Cloud infrastructure te-

dious. To address these problems, this paper describes a

look-ahead resource allocation algorithm based on model-

predictive control which predicts future workload based on

a limited horizon and adjusts resources allocated to users

ahead-of-time. Empirical results evaluating our approach

shows significant benefits both to Cloud users and providers.

The work presented demonstrates the feasibility of our

approach in the context of small number of machines used.

Our future work will explore the scalability of our algorithms

in the context of modern day workloads and large number of

resources, which are typical of contemporary applications.
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