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ABSTRACT
Cloud-based data management platforms often employ mul-
titenant databases, where service providers achieve economies
of scale by consolidating multiple tenants on shared servers.
In such database systems, a key functionality for service
providers is database migration, which is useful for dynamic
provisioning, load balancing, and system maintenance. Prac-
tical migration solutions have several requirements, includ-
ing high availability, low performance overhead, and self-
management. We present Slacker, an end-to-end database
migration system at the middleware level satisfying these re-
quirements. Slacker leverages off-the-shelf hot backup tools
to achieve live migration with effectively zero down-time.
Additionally, Slacker minimizes the performance impact of
migrations on both the migrating tenant and collocated ten-
ants by leveraging ‘migration slack’, or resources that can be
used for migration without excessively impacting query la-
tency. We apply a PID controller to this problem, allowing
Slacker to automatically detect and exploit migration slack
in real time. Using our prototype, we demonstrate that
Slacker effectively controls interference during migrations,
maintaining latency within 10% of a given latency target,
while still performing migrations rapidly and efficiently.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational DBs;
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed systems
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Figure 1: A multitenant database server with 4 tenants.

1. INTRODUCTION
Modern cloud platforms are designed with the aim of

compactly servicing many users on a large number of ma-
chines. At the lowest level, cloud providers may simply lease
raw machine time to customers (Infrastructure as a Service),
or may provide a ready-to-use stack on top of the underly-
ing hardware to customers (Platform as a Service). Cloud
platforms are targeted not only to large customers requiring
vast computing resources but also to smaller customers that
do not require the full resources of even a single server. To
increase resource utilization in the presence of smaller cus-
tomers, providers employ multitenancy, in which multiple
users or applications (server ‘tenants’) are collocated on a
single server. Multitenancy is attractive both to the cloud
provider, who is able to serve more customers with a smaller
set of machines, and to customers, who do not need to pay
for the full capacity of a server. Ideally, each tenant on a
multitenant server is both unaware and unaffected by other
tenants operating on the machine, and is afforded the same
high performance it would receive on a dedicated server.

1.1 Database Multitenancy
Database multitenancy is of particular interest due to

the ubiquity of database-oriented applications. Nearly all
web applications, analytic applications, or other types of
data-intensive applications interact heavily with a database,
which makes provisioning multitenant servers specifically for
databases particularly attractive. A multitenant database
server is essentially a specialized type of multitenant server
in which all tenants are operating database applications on
the server (typically interacting with other servers running
application logic). This stands in contrast to other multi-
tenancy approaches, such as provisioning a virtual machine
(VM) for each tenant in which to run applications, which
impose higher overhead. An example multitenant database
server is depicted in Figure 1.
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Figure 2: SLA violations due to dynamic workloads: (a) a
stable multitenant database server, (b) a tenant’s workload
changes, and (c) the server becomes overloaded.

1.2 Service Level Agreements
Database multitenancy introduces its own challenges. In

order to maximize profits, providers wish to pack many ten-
ants onto each server. On the other hand, tenants wish to
be guaranteed a certain level of performance, typically as
specified by service level agreements (SLAs). An SLA
may specify metrics of guaranteed service, such as system
uptime and query latency. From the service provider point
of view, these competing goals (packing many tenants and
satisfying the SLAs) must be balanced against each other
given the resources of the multitenant server.

Each tenant database imposes a resource footprint, con-
sisting both of data (e.g., the size of the database) as well as
a workload (e.g., queries per second). The resource footprint
of each tenant is dynamic — data may be added or deleted,
and the amount of load imposed by the tenant may change
over time. This can lead to resource hotspots such as shown
in Figure 2, where a previously stable server becomes over-
loaded and begins incurring SLA violations. Such a situation
is undesirable both to the provider (who pays a monetary
penalty) and to the tenant (who experiences unacceptable
performance degradation). Additionally, it is important to
note that violations may occur not only for the problem-
atic tenant but for other tenants on the server as well, who
may begin experiencing problems even they do not have any
workload changes themselves.

1.3 Database Migration
To prevent a system overload as shown in Figure 2c from

happening, a practical solution is to proactively move one
or more tenants to another machine, once tenant workload
changes are detected (Figure 2b). Such a technique is called
database migration, and refers to entirely relocating the
tenant to an alternate machine. Database migration can
be used not only to alleviate hotspots on a heavily loaded
machine but also to consolidate multiple tenants onto a rel-
atively idle server, thereby freeing extra servers that may be
shut down or re-purposed for other uses.

However, the benefits of migration come with several
costs. Assuming a conventional shared-nothing architec-
ture [10] (in which each machine has one or more dedi-
cated disks), the unavoidable cost is that of copying the
tenant’s data to the target machine. In addition, migration
has other costs such as SLA-related costs (e.g., SLA penalty
due to system downtime and unacceptable query latency)
and human-related costs (e.g., costs for experienced DBAs).
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Figure 3: A hotspot caused by migration.

Therefore, in order to minimize these costs, a database mi-
gration solution must make judicious decisions such as when
to migrate, which tenant to migrate, where to migrate, and
finally how to migrate. In this paper, we focus on the final
question: how to migrate databases in an efficient way.

We believe a practical migration solution for multitenant
database systems should achieve the following objectives:

Zero System Downtime. If the migration requires shut-
ting down the server before moving it, then all queries
routed to the migrating tenant will be either signifi-
cantly delayed or lost. This is clearly undesirable to
the migrating tenant.

Controlled Tenant Interference. The resource over-
head of migration (such as reading from disk, consum-
ing network bandwidth, and processing overhead) may
have a negative impact on the rest of the tenants, even
if a hotspot did not exist beforehand. This possibility
is depicted in Figure 3, in which processing the migra-
tion itself creates a hotspot and therefore tenant SLA
violations. This impact must be controlled so as to
remain within acceptable limits.

Minimum Human Intervention. The migration should
be both fast and automatically managed. Human in-
tervention is both costly and less responsive to chang-
ing system conditions during migration than an auto-
mated system.

1.4 Contributions
In this paper, we present Slacker, a system for per-

forming rapid database migrations in such a way that mini-
mizes the costs of migration mentioned above, namely, sys-
tem downtime, tenant interference, and human intervention.
Slacker is a component of our comprehensive data manage-
ment platform for the cloud, CloudDB [11, 23]. Our primary
contributions are fourfold:

1. We present and evaluate a technique for performing
live (zero-downtime) database migration using stan-
dard database backup tools. While other techniques
for live database migration have been proposed [8, 10],
our approach is unique in that it operates on off-the-
shelf database systems using readily available open-
source tools. Our approach does not require modifica-
tions in the database engine and can be implemented
completely outside of a database product.
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2. We present the idea of ‘migration slack’, which refers
to resources that can be used for migration without
seriously impacting workloads already present on the
database server. We demonstrate the existence of this
slack and show how it can be used to minimize inter-
ference through the use of migration throttling.

3. We present an automated algorithm for performing the
live migrations in Slacker within available migration
slack. Our approach is based on the use of a PID
controller and represents a novel application of control
theory to this domain. We demonstrate the efficacy of
this approach in Slacker and show that it is effective
in managing migrations in a wide variety of scenarios.

4. We present a full prototype implementation and ex-
perimental evaluation of our end-to-end system. We
demonstrate that our system maintains database query
latencies within 10% of the designated target, while
achieving higher overall migration speeds than naive
migrations at equivalent latencies.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the architecture and building blocks in
Slacker. In Section 3, we demonstrate the existence of mi-
gration slack, and discuss the use of throttling to perform
migrations with minimal interference. In Section 4, we apply
control theory to the idea of migration slack to present an
algorithm for efficiently performing migrations using avail-
able slack within the Slacker framework. An evaluation of
our approach is presented in Section 5, parameters and nat-
ural extensions are discussed in Section 6, related work is
summarized in Section 7, and we conclude in Section 8.

2. SLACKER ARCHITECTURE
Slacker is implemented as a middleware that sits atop

one or more MySQL tenants. Each server running an in-
stance of Slacker operates a single server-wide migration
controller that migrates MySQL instances on the server be-
tween other servers running Slacker. In addition to migrat-
ing existing tenants, the middleware is also responsible for
instantiating (or deleting) MySQL instances for new ten-
ants. Each Slacker node operates in an autonomous fashion
and only communicates with other nodes for the purpose of
migrating tenants. An example Slacker cluster with three
nodes is depicted in Figure 4.

2.1 Database Backend
Slacker interacts with MySQL backend databases using

InnoDB tables. Our multitenancy model is process-level —
that is, each tenant collocated on the server is provided a
dedicated MySQL daemon listening on a dedicated port.
Each tenant has full control over its daemon and is free to
create arbitrary databases, tables, and users. Adding a ten-
ant creates a new data directory containing all MySQL data,
including table data, logs, and configuration files. Similarly,
deleting a tenant simply stops the server process and deletes
the tenant’s data directory. From Slacker’s perspective, each
tenant is simply a directory containing all data and a corre-
sponding MySQL process. Slacker is transparent to tenants,
who need not be aware of Slacker at all and simply interact
directly with their MySQL server on the assigned port.

Our choice of process-level multitenancy rather than a
single, consolidated database server (housing all tenants)
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Figure 4: The Slacker architecture.

has two primary advantages. The first is increased isola-
tion between tenants, since each database server treats its
tenant on a best-effort basis. This prevents situations such
as buffer page evictions due to competing workloads — we
avoid any situations in which buffer allocations overlap by
never overprovisioning memory. The second is ease of engi-
neering, since resources belonging to each tenant are cleanly
separated on the server. These advantages come at the cost
of modest per-tenant memory overhead and decreased maxi-
mum throughput relative to a consolidated DBMS [6]. How-
ever, we consider such a tradeoff worthwhile, since the flex-
ibility in database migration is our main focus. We discuss
other multitenancy levels in Section 6.

2.2 Tenant Management
Slacker itself is implemented as a Java framework to cre-

ate, delete, and migrate database tenants. The migration
controller on each server monitors all tenants located on the
machine and manages any in-progress migrations. Tenants
are represented by globally-unique numeric IDs, which are
used to issue commands to Slacker (such as ‘migrate tenant 5
to server XYZ’). Communication between Slacker migration
controllers occurs in a peer-to-peer fashion using a simple
format based on Google’s protocol buffers [17]. Migrations
are performed on-demand by connecting to another control
node and initiating the migration of a specific tenant.

For customer applications, communication with a spe-
cific tenant database requires only knowledge of the machine
on which the tenant is located and the tenant ID, since the
database port is a fixed function of the ID. This approach
is only problematic after a migration is performed, since the
tenant no longer resides on the original server. This issue
can be resolved cleanly by issuing an ARP packet advertising
a new IP address (as in [12]) — in our prototype, we sim-
ply resolve the issue by adding a lightweight frontend server
that maintains an up-to-date mapping of tenants to servers.
Machines issuing queries to a given tenant register with the
frontend to receive updates when the tenant migrates.

2.3 Migration Framework
Slacker provides two forms of migration. The first is a

standard ‘stop-and-copy’ migration, while the second is a
live migration making use of live backup tools. We overview
each method below.
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2.3.1 Stop-and-Copy
Stop-and-copy is the simplest form of migration, and

simply consists of shutting the database server down (or oth-
erwise freezing it, as with a global read lock), copying the
data to the target source, and restarting it. For MySQL, one
way to do this is by exporting all data with a tool like mysql-
dump, copying the resulting file, and importing it into the tar-
get server. This approach is very slow, however, largely due
to the overhead of reimporting the data [9]. In Slacker, we
avoid this by taking advantage of per-process multitenancy,
which cleanly separates the data files for each tenant. To
perform a stop-and-copy, Slacker simply acquires a read lock
on the tenant database, performs a file-level copy of the ten-
ant data directory to the target machine, then starts a new
MySQL instance on the target server pointing to the copied
data directory. Since the data stays in the internal format
used by MySQL, no importing or exporting overhead is in-
volved in this approach (the same approach has also been
applied at the level of virtual machine disks, such as in [4]).
Once the new server is running, it is immediately up-to-date
(since no write queries have executed on the source in the
meantime) and begins handling the tenant workload, while
the source tenant may be deleted.

The obvious downside of stop-and-copy is the downtime
resulting from stopping the server. As verified in our own
experimentation, the length of this period is proportional
to the database size, and during this period, no queries (or
at least, no queries that modify the data) may be executed
against the database. Due to this serious limitation, we do
not further consider the stop-and-copy solution here.

2.3.2 Live Migration
In comparison with stop-and-copy, live migration per-

forms the migration without interrupting the server, allow-
ing it to continue serving clients while the migrations pro-
ceeds. To implement live migration in Slacker, we make use
of Percona XtraBackup [25], which is an extended, open-
source version of the commercial MySQL Enterprise Backup
program. Mainly for the purpose of hot backup, XtraBackup
produces a consistent-in-time snapshot of the database with-
out interrupting transaction processing. Slacker leverages
this hot backup function to obtain a consistent snapshot for
use in starting a new MySQL instance.

Note that while our prototype is specific to MySQL (via
XtraBackup), equivalent hot backup functionality exists in
most modern databases, such as Tablespace Hot Backup in
Oracle and similar functions in Microsoft SQL Server and
PostgreSQL. These tools could easily be used to implement
Slacker for another DBMS, as our design has minimal re-
quirements of the backup tool besides liveness.

Migration in Slacker is performed in three steps. In
the initial snapshot transferring step, Slacker streams the
snapshot generated by XtraBackup to the target server on-
the-fly, then prepares the snapshot on the target while the
source continues to service queries. During preparation,
XtraBackup applies crash recovery against the copied data.

Due to the time spent preparing the snapshot, once the
target server is running, it may be somewhat behind the
still authoritative source server. To handle this, in the delta
updating step, Slacker applies several ‘rounds’ of deltas from
the source to the target by reading from the MySQL binary
query log of the source tenant. Each delta brings the target
up-to-date at the point where the delta began executing,

then the subsequent delta handles queries executed during
the application of the previous delta.

Once deltas are sufficiently small, in the handover step,
a very brief (well under 1 second in all experiments) freeze-
and-handover is performed in which the source is frozen, the
final delta is copied, and the target becomes the new au-
thoritative tenant. It is worth mentioning that XtraBackup
can perform its own deltas during snapshotting — our own
snapshots are only employed to avoid downtime while the
snapshotted tenant is prepared for use on the target server.

Our snapshot-delta-handover approach is similar to the
VM migration technique employed in [12], which also dis-
cusses some edge cases such as workloads with very high
write turnover. Their solutions to these issues equally apply
to migrations in Slacker.

In practice, applying deltas usually represents only a
very small portion (a few seconds) of the entire migration
process. In the following, we focus on the initial snap-
shot transfer, which is by a large margin the most time-
consuming step in Slacker.

3. MIGRATION SLACK
Database servers have a finite amount of resources with

which to serve queries. In a multitenant database server,
available resources are shared among all tenants on the server.
Furthermore, resources must be sufficient for tenants to achieve
their SLA guarantees (such as certain percentile latencies;
e.g., the 95th percentile of queries has a max latency of 1
second). Assume a physical server has fixed resources R
and is servicing n tenant workloads consuming resources
T = {T1, T2, . . . , Tn}. Assume that there exists a resource
usage threshold R0, where R0 ≤ R, such that for the server
to reliably satisfy its SLA, it must be the case that:

f(T1, . . . , Tn) ≤ R0, (1)

where f() is the function that maps the resource usage of all
the tenants to the total resource usage.

If this does not hold, then the server is overloaded and
will begin incurring SLA violations (resulting in dissatisfied
customers and costs to the cloud provider). Migration can
be used as a tool for distributing all tenants between servers
such that Equation (1) holds. A migration process involv-
ing the server (either an incoming or an outgoing tenant)
adds an extra workload — largely disk I/O for reading or
writing data, but also including processing overhead, net-
work throughput, and so forth. If the server is handling a
migration process with corresponding workload M , then we
require the following:

f(T1, . . . , Tn,M) ≤ R0. (2)

That is, the additional migration process should not bring
the server to an overloaded condition.

Finally, given the constant resource allocation R0 and
a set of point-in-time workloads T , we can define the cur-
rent migration slack S as the resources we can allocate to
migration without incurring violations:

S = argmax
m

{s.t. f(T1, . . . , Tn,M = m) ≤ R0} . (3)

As a simplified but illustrative example, assume CPU is
the critical resource and that CPU usage is additive (i.e.,
f(T1, . . . , Tn,M) =

∑n
i=1 Ti +M), which has been observed
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(c) Migration throttled at 8M/sec
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Figure 5: Transaction latency over time with no migrations (a) and under different migration rates (b)–(d).

in previous studies [7]. Then we have for the migration slack

S = R0 −
n∑

i=1

Ti. (4)

There are many challenging issues in measuring migra-
tion slack, such as identification of the critical resource, mon-
itoring of that resource, and derivation of the resource usage
model (specifying the f() function). Fortunately, it turns
out that we do not have to explicitly identify and model the
slack. Since we mainly care about the impact of the mi-
gration on system performance (e.g., query latency), we can
indirectly observe and exploit available slack.

3.1 Migration Throttling
We illustrate the slack by showing the system perfor-

mance under different migration rates. The technique we
use to control M (the cost of each migration) is throttling,
or limiting the rate of transfer. Since the majority of the
resource cost in migration is from reading, writing, or send-
ing a large amount of data (roughly equal to the size of the
database), we can effectively limit the workload of a migra-
tion by simply limiting the rate of data transfer.

In Slacker, we implement throttling by employing the
Linux utility pv, which allows for limiting the amount of
data passing through a Unix pipe. To throttle a live mi-
gration, we stream the output of XtraBackup (the database
snapshot) into a pv process that limits the transfer rate ap-
propriately, before passing the stream to the nc utility (or
ssh if security is desired), which actually transfers the data
across the network to the target machine. Since XtraBackup
only processes the database as quickly as allowed by pv, this
strategy effectively limits the resource usage of both CPU
and I/O (both network and disk). Finally, pv allows for
changing the throttling rate of an existing process, which
allows us to dynamically change the throttling speed on a
second or even sub-second level granularity.

3.2 Slack Case Study
Here we present a case study that demonstrates both the

existence of migration slack as well as the ability of throt-
tling to exploit it. Our performance focus is transaction-
level latency, which is a common SLA metric in real systems
[21]. We examine a fundamental case — a server with a
single tenant and client workload, running a migration of
that tenant to a second server. The workload consists of a
mix of read and write queries against a 1 GB database —
we defer a more thorough discussion of our benchmark and
experimentation framework to Section 5.

First we execute the workload against the tenant with-
out any migration — this provides us with a baseline per-
formance measure. A time series of transaction latencies
(averaged over a sliding 3 second window to provide mod-
est smoothing) is shown in Figure 5a. The baseline latency
fluctuates around a mean of 79 ms, mostly depending on
the amount of disk I/O that transactions are incurring vs
the number of cache hits. However, it is clear from the over-
all trajectory that latency is flat and that performance is
stable around the average latency.

Next, we rerun the experiment while simultaneously mi-
grating the tenant and observe how its performance changes.
Using Slacker, we perform a live migration to a second ma-
chine and throttle the transfer speed, first to 4 MB/sec.
While performing the migration, we execute the same work-
load against the migrating tenant as before. The results of
this run are shown in Figure 5b. Average latency increases
modestly from 79 ms to 153 ms, but remains stable overall.
For example, despite the brief latency blips present, this run
satisfies an SLA specifying a max 500 ms latency in the 99th
percentile. Thus, with such an SLA, we can say that this
migration speed is below the available migration slack.

Next, we increase the migration speed to 8 MB/sec and
repeat the experiment, the results of which are shown in
Figure 5c. Average latency again increases from 153 ms to
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Figure 6: Transaction latency with a 16 MB/sec migration.

410 ms, and the magnitude of the brief latency peaks again
increases, but latency is still fairly stable overall. As before,
whether this new speed falls within available slack depends
on the application SLA. For example, while this no longer
satisfies the more restrictive 500 ms, 99th percentile SLA
mentioned in the 4 MB case, a slightly relaxed SLA such as
1000 ms latency in the 90th percentile is still satisfied.

If we increase the speed yet again to 12 MB/sec, the
same trends continue. As shown in Figure 5d, average la-
tency again increases significantly to 720 ms, but even more
notable are the large peaks and valleys, which swing between
200 ms and upwards of 1500 ms multiple times during the
roughly 2 minute migration. At this migration speed, the to-
tal resource usage is very close to the server capacity, result-
ing in a query backlog during short-lived traffic bursts that
recovers during the relatively idle periods between bursts.

Finally, we increase the speed once more to 16 MB/sec.
As seen in Figure 6, this migration speed results in an over-
capacity server that can no longer handle the steady-state
query load over time. As a result, transactions queue faster
than they can be serviced, causing latency to continuously
increase until migration completes. This is a definitive sign
that slack is exceeded, and violations are guaranteed to oc-
cur under any reasonable SLA.

3.3 Slack Tradeoffs
As demonstrated in the previous section, it is straight-

forward to identify an upper bound on the resource allo-
cation that can be dedicated to migrations — this is the
point at which latency steadily increases, indicating that the
database is overloaded and cannot maintain both its work-
loads and migrations. However, as previously discussed, this
is not necessarily the slack that should be used, since remain-
ing under this limit presents a tradeoff between migration
speed and transaction performance, including both average
latency and latency stability. This tradeoff is demonstrated
in Figure 7, which plots the average transaction latency and
standard deviation of Figures 5a through 5d. This under-
scores the conclusion that increasing the migration speed
increases both average latency and latency instability.

As a summary, in the previous case study, we presented a
set of experiments demonstrating the existence of migration
slack using throttling. We observe that increasing migra-
tion speed via throttling significantly increases the demand
on the server, resulting in decreased database performance.
Above a certain migration speed, the server is overloaded
and latency becomes unbounded (a hard upper bound on
slack). Beneath this threshold, determining actual slack to
be exploited presents a tradeoff between migration speed and
database performance, both in terms of average transaction
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Figure 7: Trading off migration speed and workload perfor-
mance while still (depending on SLA) within slack.

latency and the stability of this latency. The particular re-
quirements of an SLA (e.g., acceptable latency levels) must
be considered when determining the ‘optimal’ level of slack
to exploit for migration.

However, note that while the total resource capacity R0

is fixed, T is not since tenant workloads may change over
time, even during the process of migration. This means
that in order to maintain Equation (2), we must be able to
adjust M on-the-fly. The method of adjusting M is a key
component of Slacker and is discussed below.

4. ADAPTIVE DYNAMIC THROTTLING
Here we apply the idea of migration slack to performing

actual migrations in Slacker. We do so with the use of an au-
tomated, dynamic throttle, which allows us to (a) determine
the speed of migration appropriate to the level of slack, and
(b) adjust the speed of migration as the level of slack changes
in real time. Control of the migration speed is managed by
a proportional-integral-derivative controller (or PID
controller), which is a widely-known feedback mechanism in
control theory. We detail our controller design in this section
and evaluate its performance within Slacker in Section 5.

4.1 Dynamic Throttling
The workload evaluated in Section 3 was effectively static

— as a result, the migration slack was also static. However,
real workloads are rarely static, where there may be both
long-term shifts and short-term bursts. Example causes of
dynamic workloads include: day-to-day traffic patterns, e.g.,
diurnal periods of high activity (long-term), flash crowds
resulting in a rapid increase and subsequent decrease in
database traffic (short-term), increased background work-
load due to an incoming tenant migration or newly added
tenant database (both short-term and long-term).

A well-chosen fixed throttle is a sound approach for a
static workload. However, for a dynamic workload, any op-
timal migration speed may become suboptimal in the long
term. If the server workload increases, the previous throt-
tling speed may exceed the new level of slack, while if the
server workload decreases, the migration may take longer to
complete than necessary. Similarly, short-term burst during
the duration of a migration process may render a pre-fixed
migration speed inappropriate.

Our solution to this issue is using a dynamic throttle
rather than a fixed throttle. By adjusting the migration
speed on-the-fly, we can follow a changing level of migration
slack while maintaining both high overall migration speed
and consistent workload performance.
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Figure 8: The architecture of the PID controller based dy-
namic migration in Slacker.

4.2 Throttle Control
Given the ability to dynamically vary the throttle, we

still need a technique to actually set and adjust the throttle
appropriately. Furthermore, it is important this technique
be as automated as possible — that is, we do not want
to require an operator such as a database administrator to
manually control the migration speed. For controlling the
throttle speed, we employ an automated technique based on
a proportional-integral-derivative (PID) controller.

4.2.1 PID Controller Overview
A PID controller [13] is a well-known algorithm in control

theory for driving a system actuator such that the system
stabilizes around a particular setpoint. At a high level, a
PID controller operates as a continuous feedback loop that,
at each timestep, adjusts the output variable (the actuator)
such that a dependent variable (the process variable) con-
verges towards a desired value (the setpoint value). A sim-
ple example of a PID controller application is maintaining
the temperature in a room. In such a scenario, the output
variable is the amount of heat applied (e.g., run a heater
at 25% or 50% strength), the process variable is the cur-
rent room temperature (e.g., 65 ◦F), and the setpoint is the
desired room temperature (e.g., 70 ◦F).

A block diagram of a PID controller is shown in the
dashed box in Figure 8. At each timestep, the current pro-
cess variable is compared against the desired setpoint. The
new output of the controller is determined by three compo-
nents of the error (the degree to which the process variable
does not match the setpoint): a proportional, integral, and
derivative component (scaled by parameters Kp, Ki, and
Kd, respectively). Roughly speaking, P corresponds to the
current error, I corresponds to the past error, and D cor-
responds to the predicted future error. The output of the
controller at time t with error e is given by the sum of the
three components:

out(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
(5)

The design, behavior, and tuning of general PID con-
trollers is a broad area in itself — we mention several rele-
vant references in Section 7.

4.2.2 PID Controller for Migration
We apply a PID controller to the problem of database

migration in the following way (illustrated in Figure 8). As
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Figure 9: Consuming slack with a PID controller.

discussed previously, the controller is in charge of determin-
ing the proper migration speed, so the output variable is the
throttling speed adjustment (either speeding up or slowing
down). For the process variable and setpoint, one approach
could be to target available slack (e.g., a setpoint of zero
unused slack). However, this approach would require calcu-
lating slack directly, a nontrivial problem in itself. Instead,
we use current transaction latency as a indicator of available
slack. The intuition behind this is as follows. As we increase
the migration speed, the total server load similarly increases.
So long as the migration remains under the available slack,
average transaction latency will increase only modestly as
the migration speed increases. However, around the point
at which all slack is being used, latency will begin to display
more significant increases. If we increase migration speed
past this, slack will be exceeded and latency will increase
very rapidly.

Thus, in order to ensure that we are using most slack
without exceeding it, we configure our PID controller to
target a certain average transaction latency. As shown in
Figure 9, the process variable is the current average trans-
action latency, and the setpoint is the target latency. The
setpoint indicates an efficient use of available slack while
still maintaining acceptable query performance. Thus, the
behavior of the PID controller is to ramp up the speed of mi-
gration until transaction latency is close to the setpoint, then
maintain that latency over time by adjusting the throttling
speed as necessary. In other words, using the illustration in
Figure 9, we observe the transaction latency (the y value)
and try to stay in the acceptable region (along the red curve
while staying within the green circle), which is achieved by
dynamically controlling the migration speed (the x value).

The controller will avoid migrating so fast as to cause
unacceptable performance (as determined by the setpoint),
but will aggressively migrate as fast as possible so long as
the current level of performance is within acceptable levels.
Of course, the efficacy of this approach depends heavily on
a suitable setpoint setting. More specifically, the setpoint
must be high enough to consume most available slack, but
low enough to maintain reasonable performance. We present
experiments demonstrating the importance and effects of the
setpoint in Section 5.

4.2.3 PID Controller Implementation
We implement the controller design shown in Figure 8

in Slacker to manage migration speeds. The input to the
controller at each timestep consists of the current average
transaction latency over a small sliding window of time. The
size of the sliding window provides some useful smoothing
to stabilize the controller input, since individual transac-
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tion latencies can vary significantly. We empirically found
3 seconds to be a reasonable window size, with a 1 second
timestep. In other words, once every second, the controller
is given the average transaction latency over the past 3 sec-
onds (this is the current ‘process variable’ value) and outputs
the new throttling speed as a percentage of the maximum
possible throttling speed.

Since the integral component of the controller takes past
error into account, problems can occur if the process vari-
able is far from the setpoint for an extended period. This can
easily happen in Slacker if the server is not heavily loaded
to begin with — it may be the case that, even running the
migration at full speed, transaction latencies stay well un-
der the setpoint. We prevent an accumulation of past error
(known as ‘integral windup’) by employing a PID velocity
algorithm — this is an alternative form of the classical al-
gorithm that outputs a delta rather than an absolute value
at each timestep and does not use a sum of past errors, thus
avoiding integral windup.

We manually tune the three parameters of the controller
scaling the three error components (Kp, Ki, andKd in Equa-
tion 5). We found that relative to Kp, Ki needed to be
relatively small and Kd relatively large owing to the slow
reaction speed of transaction latency to a change in the mi-
gration speed. A larger Kd and smaller Ki serve to both
slow the rate of change in the migration speed and help pre-
vent overshooting the ‘correct’ speed, stabilizing the overall
latency and reducing the degree of oscillations.

5. EVALUATION
We evaluate the performance of Slacker using our dy-

namic throttling technique on a live testbed. We have three
primary migration objectives:

1. Workload performance. First, we want Slacker
to maintain acceptable workload latencies while per-
forming simultaneous migrations. In the context of
Slacker’s dynamic throttling, this means that latencies
do not significantly exceed the setpoint latency.

2. Migration speed. Second, we want Slacker to achieve
a high migration speed by making efficient use of avail-
able migration slack. However, this should be subject
to (1), so that we minimally impact workload perfor-
mance.

3. Flexibility. Finally, we want Slacker to gracefully
handle a dynamic workload. We should be able to
quickly and efficiently adapt to a new workload envi-
ronment without significantly degrading (1) or (2).

To compare dynamic migrations with a simpler baseline,
we also evaluate migrations in Slacker using a fixed throttle.
For this, we manually set the throttle at the start of migra-
tion and do not adjust it for the duration of the migration.

5.1 Experimental Framework
Our experimental setup consists of a testbed running the

Slacker prototype and a database benchmark used as client
workloads during evaluation. We overview each piece below.

5.1.1 Prototype Testbed
Our testbed consists of quad-core 2.4 GHz Xeon servers

with dedicated local disks running CentOS 5.6 and Linux
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Figure 10: The Slacker/YCSB evaluation framework.

kernel version 2.6.18. Our database backend consists of mul-
tiple instances of MySQL 5.1.57, while Slacker itself runs on
Java 6 and uses XtraBackup 5.1 for database snapshotting
during migration. Each MySQL instance is provided a dedi-
cated block of memory to prevent competition between ten-
ants. During evaluation, the primary Slacker server initiates
migrations of local tenants to a second Slacker server, while
a third server executes benchmark workloads (discussed in
the following section) against the primary and/or secondary
server. All three servers are connected via gigabit Ethernet.

The PID controller operates as a module within Slacker
during migration, and continuously tunes the speed of mi-
gration by interacting with pv processes spawned by Slacker.

5.1.2 Tenant Database Benchmark
For benchmarking tenants during migration, we employ

a heavily modified version of the open-source Yahoo Cloud
Serving Benchmark (YCSB) [5]. YCSB was originally devel-
oped for benchmarking key-value stores rather than tradi-
tional relational databases, so we begin with a version aug-
mented for transactions used in [8] and [10]. Each trans-
action consists of a serial set of basic database operations
(SELECT, UPDATE, INSERT, etc.) selected from a preset
operation distribution. Our primary benchmark workload
consists of 10-operation transactions issued to a 1 GB pre-
populated database. Each operation is selected at random
with 85% reads and 15% writes applied to random table
rows. Since disk I/O (particularly random I/O) is both the
most difficult resource to partition and often a particularly
stressed resource in databases, we set the InnoDB buffer size
to only 128 MB to ensure a high degree of disk activity.

We further modify the YCSB benchmark by replacing
the included closed workload generator with an open work-
load generator [20]. Rather than coupling query generation
to query completion (in which a new query arrives each time
one completes), we instead generate queries according to a
Poisson distribution with mean inter-arrival time λ. By ad-
justing λ, we control the query arrival rate and thus the
workload intensity sent to the database. We fix the work-
load multiprogramming level (MPL) at 10 and queue re-
quests that arrive but cannot be immediately serviced by an
available client thread. The latency of a transaction is sim-
ply the sum of the time spent in queue and the transaction
execution time at the database (in practice, the queue time
is minimal unless the server is heavily overloaded).

For benchmarking a multitenant server, we create a sep-
arate database for each tenant, then run multiple paral-
lel instances of our benchmark (one benchmark per tenant
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Figure 11: (a) Latency with varying fixed throttling rate vs. dynamic migration speed with varying setpoints and (b) achieved
latencies compared to setpoint latencies.

database). Each benchmark is entirely independent and can
have its own query arrival rate, operation distribution, and
so forth. An example of the complete evaluation framework
(with three tenants) is shown in Figure 10.

5.2 Baseline Performance
To establish baseline performance, we first run the bench-

mark workload with a variety of fixed throttles ranging from
5 MB/sec to 30 MB/sec. This is similar to the case study
presented in Section 3.2, although the migration slack is dif-
ferent owing to a lower query arrival rate and smaller buffer
size. While the workload is running, we migrate the tenant
to a second server and record the transaction latency during
the migration. The results are shown in Figure 11a (the red
curve). As expected, latency is both low and stable at low
throttling speeds, and increases as the throttle is increased.
Around 25 MB/sec, migration slack is exceeded, and latency
variance (that is, the severity of latency spikes) increases
dramatically, followed by strictly increasing latency as trans-
actions queue.

5.3 Dynamic Slack Utilization
Next, we perform the same migration using Slacker’s dy-

namic throttle controlled by the PID controller. Here, we
do not set the throttling speed at the start of migration, but
simply let the PID controller adjust the speed on-the-fly and
record the average throttling speed over the entire duration
of migration1. We run the dynamic migration using latency
setpoints ranging from 500 ms to 5000 ms in 500 ms incre-
ments (recall that the setpoint is the latency targeted by
the PID controller). The results of these tests are shown in
Figure 11a (the lower curve).

As the setpoint is increased from 500 ms (the left-most
Slacker point), the average throttling speed increases dra-
matically at first – from 6.1 MB/sec at 500 ms to 12.6
MB/sec at 1000 ms, then gradually to 18.7 MB/sec at 2500
ms. This is because the lowest setpoints are not significantly
above the baseline transaction latency — as a result, throt-
tling must be very conservative to maintain the setpoint la-
tencies. However, once the setpoint is increased past around
3500 ms, the throttling speed stops noticeably increasing.
This is a good indication that this observed limit (roughly
23 MB/sec) is a near approximation of the true migration
slack (corroborated by the results of the fixed throttle), and

1For the PID controller parameters, we use Kp = 0.025,
Ki = 0.005, and Kd = 0.015. We discuss these parameters
in Section 6.

this slack is effectively captured by a setpoint of around 3500
ms. Lower setpoints do not capture quite as much slack but
will result in lower latencies (since the controller will by def-
inition act more conservatively).

In summary, increasing the setpoint results in higher mi-
gration speed to a point, since it provides a buffer against
query bursts. However, this ultimately provides only dimin-
ishing returns, since migration speed will never exceed the
available slack. This demonstrates that Slacker is able to op-
erate within the available slack regardless of the particular
setpoint latency.

5.4 Latency Maintenance
Finally, we examine how closely Slacker achieves (does

not exceed) the setpoint latencies. Figure 11b adds a third
line showing the actual latency (and standard deviation)
achieved for each of the setpoints. We observe that the
achieved latencies is very close to the setpoint latencies — in
all cases, the difference is less than 10%. This demonstrates
that Slacker’s PID controller is able to effectively match the
desired transaction performance without overshooting and
potentially causing SLA violations. Furthermore, we see
that the latency variance is lower in the case of Slacker than
in the case of a fixed throttle of the same overall speed —
this demonstrates that at a given migration speed, Slacker
both decreases the average latency during migration and sta-
bilizes latency as well, since the dynamic throttle responds
to query and/or resource usage bursts by temporarily de-
creasing migration speed.
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The reactivity of the PID controller to the workload be-
havior is shown in Figure 12, in which we show a time series
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Figure 13: (a) Slacker performance under dynamic workloads. (b) Slacker performance in a multitenant database server.

of the dynamic throttling speed during the 1000 ms setpoint
migration. Alongside the throttling speed, we plot the scaled
latency of current transactions and the controller setpoint.
It is evident that the throttling speed is roughly an inverse
of transaction latency. During brief bursts of high latency
(such as near the start of migration), Slacker decreases mi-
gration speed, sometimes even pausing migration entirely to
allow the database to recover. Similar, during periods of
low latency (such as in the middle of migration), Slacker
capitalizes on the opportunity to increase migration speed.

In summary, Slacker achieves actual transaction latencies
within 10% of the target setpoint latencies, while achieving
significantly higher migration speeds at these latencies than
when operating with a fixed throttle. Slacker also reduces
latency variance compared to a fixed throttle operating at
the same average speed. This demonstrates Slacker’s ef-
fectiveness at exploiting periods of lower activity to speed
migration and maintaining performance during periods of
higher activity by slowing migration.

5.5 Dynamic Workloads
Another important aspect of Slacker’s dynamic throttle

is its ability to adapt not just to short-term workload varia-
tions, but to longer-term variations as well. To evaluate this,
we begin a migration and workload as before, then increase
the query arrival rate by 40% after one minute (while the
migration is still in progress). We run this experiment both
with Slacker and a fixed throttle that achieves an equivalent
migration speed and plot the results in Figure 13a.

Before the workload increase, both approaches achieve
relatively stable latency. Afterward, however, the amount
of slack is significantly decreased, and only Slacker is able
to respond. In the case of the fixed throttle, performance
rapidly degrades as the database is unable to handle both
the migration and the new workload, and requests begin to
queue. In the case of Slacker, migration speed is simply de-
creased to fit within the reduced slack, and latency is main-
tained close to the setpoint (1500 ms) while the migration
completes.

In summary, we see that a fixed throttle may perform
poorly in the presence of a changing tenant workload by
failing to adjust to a new level of slack. In contrast, Slacker
quickly adapts to a changing workload and maintains the
desired level of performance while continuing the migration.

5.6 Multitenant Migrations
Although our experiments have focused on migration in

a single-tenant environment, there is nothing in Slacker that

is specific to this scenario. For a multitenant environment,
Slacker simply computes latency averages across all tenant
databases, including those both involved and not involved in
migration. This approach assumes that SLAs are assigned
per-server (as opposed to per-tenant), but this is not a par-
ticularly unrealistic assumption. We evaluate a 5-tenant sce-
nario by creating five tenant databases and running five in-
dependent workloads, one to each of the tenants. The total
server workload (the sum of the individual tenant workloads)
is the same as before. We then migrate only a single ten-
ant, while the other four continue to execute their workloads
and are oblivious to the migration taking place. The aver-
age performance across all tenants (for both Slacker and
the equivalent fixed throttle) is shown in Figure 13b. As
in the single tenant case, we see that Slacker performs well
— latency is maintained close to the setpoint, and absolute
latency is significantly below the fixed throttle case.

6. PARAMETERS AND EXTENSIONS
In this section, we discuss appropriate settings of param-

eter values as well as several natural extensions to Slacker
not previously discussed.

Choosing the Setpoint Latency
One important parameter in Slacker is the transaction la-
tency setpoint, As shown previously, a lower setpoint results
in a longer migration duration, which may suggest using
a setpoint equal to the maximum value allowed under the
SLA. However, there are two risks in such a greedy setpoint.
First, as we have shown in the previous section, higher set-
points do not expedite the migration process beyond a cer-
tain point due to the limited availability of migration slack.
Increasing beyond this point simply increases oscillations –
this ‘knee point’ effect is illustrated in Figure 9 as well as
empirically observed in Figure 11. A second risk is that,
as shown in Figure 11b, higher setpoints generally result in
higher variance in transaction latencies during the migra-
tion. This is undesirable since high variances will degrade
performance in terms of percentile latencies.

Therefore, to choose an appropriate setpoint, historic la-
tency distribution trends, SLA flexibility, and the relative
importance of rapid migration speed should all be consid-
ered. For example, an environment in which migrations
must be completed very quickly is more suited to an aggres-
sively high setpoint, while an environment in which latency
stability is most important is more suited to a conservatively
low setpoint.
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Choosing the PID Parameters
There are many standard approaches for choosing the pa-
rameters for a PID controller. We mention several of these
approaches in Section 7. In the implementation of Slacker,
we began with a well-known approach, the Ziegler-Nichols
method [28], and applied some manual tuning on top of this.
Slacker can easily incorporate more sophisticated control
methods for these parameters, which may be used as drop-
in replacements for the present fixed values. One model
is adaptive control, which has been used successfully in re-
source management for virtual machines [18]. This allows
PID parameters to be learned online and adapted to the
situation in real time.

Throttling Both Source and Target
A simple variant on the multitenant migration provided by
Slacker is one in which we consider both the source server
(on which the tenant currently resides) and the target server
(to which the tenant is moving). While we have focused only
on the source server thus far, a migration similarly impacts
the target server and may interfere with preexisting tenants.

We have implemented a version of Slacker that accounts
for this case by considering transaction latencies on both
the source and target server — at each timestep, the PID
controller is simply provided the max of the source and tar-
get latencies. This means that whichever server has the
least amount of slack will be responsible for determining the
throttling rate (and this may change during the course of
migration). Similar results have been obtained with this
version of Slacker but are omitted due to space constraints.

Other Multitenant Levels and Migration Solutions
In this paper, we focused on the shared-server-private-instance
level of multitenancy. Other levels are possible, such as
shared-process and shared-database [22, 27, 9, 26]. Slacker
can be easily extended to handle such sharing levels as long
as appropriate hot backup tools are available – e.g., the Per-
cona variant of MySQL offers table-level hot backup [25].

Slacker may also be used with other migration techniques
entirely, such as those proposed in [8, 10]. In particular, any
migration solution that permits throttling, and hence can
limit resource consumption by the migration process, can
potentially be substituted into the Slacker framework.

7. RELATED WORK

Migration Techniques
The concept of migration in computer systems is an old one
[19]. Process migration has seen limited practical use, how-
ever, due in large part to dependencies on largely immobile
resources, such as file descriptors and network connections
[16]. The increasing prevalence of virtualization has resulted
in renewed interest in migration at the virtual machine (VM)
level. An early technique for migrating VMs in a ‘live’ man-
ner was presented in [12], which proposed the use of iterative
‘rounds’ of copying disk and memory deltas while the source
VM continued to execute. Once the source and target were
closely in sync, a brief handover occurs and the final delta
is applied, resulting in minimal downtime. This basic tech-
nique has been shown to be robust in real scenarios, and has
been implemented in the popular Xen VMM [2] as a way to
migrate tenant VMs.

Database Migration
Since VM migration is heavyweight, a substantial amount
of work has also been done in migrating specific types of
applications, such as databases. The basic ‘stop and copy’
approach can be simply applied to a database by simply
copying data files to the target machine or using a tool such
as mysqldump [15]. This type of approach can also be ap-
plied to dynamic database provisioning, such as in Dolly [4].
More sophisticated database migration strategies that are
live include systems such as Zephyr [10] and Albatross [8].
Zephyr’s technique transfers a minimal ‘wireframe’ of the
database and then pulls pages on demand from the source to
the target, while executing transactions on both the source
and target, thereby avoiding any significant downtime.

Our work is differentiated from systems of these types
by focusing on the interference from migration both on the
moving tenant and neighboring tenants. We also consider
not only availability (i.e., minimizing downtime) but latency
guarantees as well with a dynamic workload. We are not
aware of other works that extensively study these issues, par-
ticularly when a full-speed migration may be harmful (even
though availability is unchanged). Finally, since Slacker op-
erates at the middleware level, it can easily be applied to an
off-the-shelf underlying DBMS.

Migration Throttling
Throttling a migration to reduce interference from the mi-
gration itself has been employed in a cursory manner but has
not been extensively studied. The VM live migration ap-
proach in [12] employs simple dynamic rate limiting but fo-
cuses on minimizing copy bandwidth and strictly increases,
hence ignoring the potential effects of a changing background
workload. The wide-area migration approach in [3] uses
a simple heuristic write throttle to handle write-intensive
workloads, but only considers an availability SLA rather
than also considering latency. The migration implementa-
tion in Xen was extended in [14] to throttle the migrating
tenant rather than the migration itself, thereby reducing
bandwidth and the final downtime period. The tradeoff of
migration speed with interference is mentioned briefly in [10]
but not studied. Additionally, one issue with on-demand
approaches such as in [10] is that throttling is problematic,
since slowing on-demand pulls exacerbates latency rather
than mitigating it as in a throttled background transfer.

PID Controllers
Proportional-integral-derivative controllers have a long his-
tory in industrial control systems, and are widely used in
many systems [13]. Common variants on the classical PID
controller include systems in which one or more of the com-
ponents are left out (e.g., a P controller or a PI controller).
Effective methods for tuning PID controllers are an active
area of work, with some methods dating back decades, such
as the well-known Ziegler-Nichols method [28]. A more re-
cent overview of PID control system design and tuning is
given in [1]. PID control systems are most often used in
systems with physical actuator, such as maintaining pres-
sure or temperature. In the database area, PID control has
been used in load shedding in stream databases [24]. We be-
lieve that our work presents a novel use of PID controllers
in conjunction with migration and system performance. We
are not aware of any other applications of PID controllers
to problems in this space.
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8. CONCLUSION AND FUTURE WORK
Database migration is an important technique to parti-

tion and consolidate databases and workloads in a multi-
tenant server environment. However, migration itself can
have negative impacts on tenant performance, since it con-
sumes resources that may be in use by tenant workloads.
We formalize this issue as ‘migration slack’, and demon-
strate how non-interfering migrations can be performed us-
ing throttling to exploit the available slack.

Our complete end-to-end migration system, Slacker, in-
telligently uses slack to perform rapid but safe live migra-
tions using a dynamic throttle. The throttle is managed on-
line by a PID controller that maintains acceptable latency of
database transactions while simultaneously performing the
migration. The controller also allows migration speed and
acceptable query latency (e.g., as determined by a tenant
SLA) to be traded off through the use of a target latency
setpoint, and is able to adapt to a varying workload envi-
ronment while maintaining good performance.

Slacker currently operates with a multi-process model
of multitenancy, but we are working on extending this to
other models, such as single-process (e.g., one MySQL dae-
mon handling all tenants rather than just one). We are also
considering other questions related to migration that may
be useful within a system like Slacker, such as when mi-
grations are necessary, which tenants should be migrated,
and where such tenants should be migrated to. These ques-
tions are synergistic to the techniques focused on in Slacker,
which provide an efficient and minimally disruptive method
of actually executing a given migration.
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