
Model-Driven Management of Docker Containers

Fawaz Paraiso, Stéphanie Challita, Yahya Al-Dhuraibi, Philippe Merle

University of Lille & Inria Lille - Nord Europe
CRIStAL UMR CNRS 9189, France
Email: firstname.lastname@inria.fr

Abstract—With the emergence of Docker, it becomes eas-
ier to encapsulate applications and their dependencies into
lightweight Linux containers and make them available to the
world by deploying them in the cloud. Compared to hypervisor-
based virtualization approaches, the use of containers provides
faster start-ups times and reduces the consumption of computer
resources. However, Docker lacks of deployability verification
tool for containers at design time. Currently, the only way to
be sure that the designed containers will execute well is to
test them in a running system. If errors occur, a correction is
made but this operation can be repeated several times before
the deployment becomes operational. Docker does not provide
a solution to increase or decrease the size of container resources
in demand. Besides the deployment of containers, Docker lacks
of synchronization between the designed containers and those
deployed. Moreover, container management with Docker is
done at low level, and therefore requires users to focus on
low level system issues. In this paper we focus on these issues
related to the management of Docker containers. In particular,
we propose an approach for modeling Docker containers. We
provide tooling to ensure the deployability and the management
of Docker containers. We illustrate our proposal using an event
processing application and show how our solution provides
a significantly better compromise between performance and
development costs than the basic Docker container solution.

Keywords-Cloud Computing; Container; Docker; Model
Driven Engineering; Models@runtime

I. INTRODUCTION

Nowadays, with the emergence of Docker1, lightweight
containers are gaining in popularity and they are adopted
by cloud providers such as Google, Azure, Amazon, and
Digital Ocean. Containers are a lightweight solution that
developers can use to deploy and manage applications.
Indeed, compared to hypervisor-based virtualization where
each Virtual Machine (VM) runs its own operating system
(OS), which increases the use of system resources, the
container technology has several advantages [10], [11]:

∙ Low resource consumption: containers share resources
with host operating system, which make them more
efficient. The stop and start actions on a container take
a few seconds while they take minutes for VMs. Ap-
plications running in a container have small overhead
compared to those running natively on the host OS.

1http://docker.io

∙ Portability: the portability of containers has the poten-
tial to eliminate whole kinds of bugs caused by subtle
changes in the running environment and the vendor
lock-in problem.

∙ Lightweight: the lightweight nature of containers per-
mits developers to run dozens of containers at the same
time, making it possible to emulate a production-ready
distributed system. Operation engineers can run many
more containers on a single host machine rather than
using VMs alone.

Despite the advances in using Docker, the verification
process related to the deployability of containers remains
a challenging task. Currently, the only way to be sure that
the designed containers will run correctly is to execute them
in a running system. In this context, when errors occur,
a correction is made and this operation can be repeated
several times before the deployment becomes operational.
Docker does not provide a solution to increase or decrease
the size of container resources in demand. For example, at
peak periods the container should scale resources up, and
similarly on off-peak periods the container should release
unneeded resources by scaling down.

Moreover, Docker is still lacking of supporting runtime
systems evolution. In particular, how to affect changes on
a deployed containers system? Besides the deployment of
containers, Docker lacks of synchronization between the
designed containers and those deployed. Container manage-
ment with Docker is done at low level, and requires users
to focus on low level system issues. Docker is lacking an
explicit model representation of underlying containers and
the relation between them. This makes it difficult to fix
design errors, to fold new decisions into a running system in
order to support controlled ongoing design. Obviously, there
is a need to represent a human understandable description of
some aspects of a running container. This can be represented
in a form that can be mechanically analysed is relevant for
many applications [16], as not only the content but also the
context in which they were created, determine its value.

In this paper we propose a model to manage Docker
containers. Our approach represents views of all aspects
of Docker containers and are thus abstractions of executed
phenomena. The model is not only used to design Docker
containers architecture but also used to represent the con-

2016 IEEE 9th International Conference on Cloud Computing

2159-6190/16 $31.00 © 2016 IEEE

DOI 10.1109/CLOUD.2016.98

718

tainers deployed in the target systems. The designed and
deployed containers need to provide views that are consistent
with each other. Our approach therefore provides a high-
level abstraction for Docker containers that is used for
reasoning and managing large container deployments in the
cloud.

The reminder of this paper is structured as follows. In
Section II we give an overview of some background concepts
we use in our proposal. Next, Section III presents the
motivation of our work. Then, in Section IV we describe
our model. Section V presents the validation of our solution.
In Section VI we discuss some related work. Finally, we
conclude our work in Section VII.

II. BACKGROUND

In this section we give a brief introduction to some of
the concepts and technologies about Docker that we use
throughout this paper, in order to facilitate the understanding
of this work.

A. Docker architecture

Figure 1. High-level overview of Docker architecture.

Basically Docker is a technology used for developing, de-
ploying and executing applications packaged into containers.
Docker defines a client/server architecture. In Figure 1, we
can see the major components of a Docker installation.

∙ At the center, the Docker host represents the physical
machine or VM in which Docker daemon and contain-
ers are deployed (cf., Figure 1). The Docker daemon
is responsible for creating, running, and monitoring
containers, as well as building and storing images. The
launch of Docker daemon is normally handled by the
host OS.

∙ The Docker client is on the left-hand side in Figure 1.
It communicates with the Docker daemon via sockets
through a RESTful API. The purpose of Docker client
is to control the host, create images, publish, execute
and manage containers corresponding to the instantia-
tion of these images. Communication via HTTP makes
it easiest the remote connections to Docker daemons.
The combination of Docker client and Docker daemon
is called Docker engine.

∙ Docker registry is on the right-hand side in Figure 1. It
stores and distributes images. The default registry is the
Docker Hub, which hosts thousands of public images.
Docker containers are created using base images. A
Docker image can include just the OS fundamentals,
or it can consist of a sophisticated pre-built application
stack ready for launching. To create an image, the most
convenient option is to write a script file composed
of various commands (instructions) named Dockerfile
and then execute it. Many organizations run their own
registry that can be used to store private images. The
Docker daemon will download images from registry in
response to requests.

B. Underline technologies

In this section, we provide some underline technologies
tied to Docker.

Docker [10], [11] uses the existing Linux container tech-
nology and extended it through portable images. The Docker
daemon uses an execution driver to create containers. The
Docker containers are running by using a tool called RunC.
RunC is very closely tied to the following kernel features:

∙ cgroups, which are responsible for managing resources
used by a container (e.g., CPU and memory usage).

∙ namespaces are responsible for isolating containers;
making sure that a container’s filesystem, hostname,
users, networking, and processes are separated from the
rest of the system.

C. Surrounding technologies

In this section we provide some surrounding technologies
supplied by Docker:

∙ Compose is a tool for building and running applications
composed of multiple Docker containers.

∙ Swarm is a clustering solution. Swarm can group
together several Docker hosts, allowing the user to
manage them as a unified cluster.

∙ Machine provides and configures Docker hosts on local
or remote resources.

III. DRAWBACKS OF DOCKER TECHNOLOGY

Despite the benefits [7], [10] Docker brings to teams,
its adoption across enterprises has not been without issues.
The problems with container adoption have little to do with
the technology itself. Rather, they relate to organizational
aspects that have not caught up to the technology [3].
The adoption of Docker in production is a real concern
and was identify in [3], [5]. This section describes four
key challenges that Docker containers should be faced:
Lack of verification, Resources management at runtime,
Synchronization between design and execution environment,
and Inconsistency use of containers across organization.

∙ Lack of verification: Docker provides tools such as
Docker Compose or Docker Swarm (cf. Section II) used

719

to design a set of containers connected together. How-
ever, once designed, the deployment of the containers
can face several problems such as misconfiguration of
links between containers, lack of resources on the hosts
in which the containers are deployed, human errors, etc.
Given the executable mechanism the Docker containers
are related, the only way to be sure that the containers
deployed will run or fail is to deploy them on the target
executing environment. Moreover, there is no way to
verify that deployed containers are conform with those
designed. The lack of verification tool can become
quickly painful and expensive when the deployment
task is repeated several times.

∙ Resources management at runtime: when creating
containers, Docker gives the possibility to set the re-
sources (cpu, memory, disk, network) limits. In other
words, Docker provides the possibility to set containers
resources at design time. In the cloud environment, the
container resources consumption fluctuates according
to their embedded application workload. In order to
provision the appropriate resources, if the workload
grows or shrinks, the containers resources should be
increased or decreased as required at runtime. Docker
does not provide a mechanism to reconfigure the con-
tainers resources at runtime.

∙ Synchronization between design and execution en-
vironment: in Docker context, the execution environ-
ment consists of the Docker engine and the containers
deployed. Conceptually, the deployed containers repre-
sent a predefined architecture. Thus, a major challenge
is how to synchronize the predefined architecture of
containers with the containers deployed in the execution
environment. When modifications occur in an existing
architecture, the update should be done in the executing
environment. Conversely, when changes occur in the
executing environment they should affect the existing
architecture. A modification can be the addition of a
new container, the retrieval of an existing container,
the addition of a link between a new container with an
existing one, etc.

∙ Inconsistency use of containers across organization:
container adoption has not been a carefully planned and
executed by companywide understanding and belief in
its virtues [3]. Instead, individuals or small teams of
developers have started using containers because they
are fast and convenient, enabling them to respond to the
increased pressure for quick turnaround coming from
their business units and thus making their jobs easier.
Each user relies on its familiar tools (e.g., Chef, Puppet,
and Ansible) which are used for building and deploying
containers. In this context, the problem of maintainabil-
ity remains unsolved due to the heterogeneity of tools
used by users.

This paper brings forward a solution to address these
challenges, using a model-driven approach. This approach
will allow Docker technology to have a complementary
tool to take better advantage of containers in production
environments.

IV. APPROACH

In this section we present our solution. We begin by giving
an overview of the solution architecture and then we present
how we model Docker containers. We also describe how the
generation of the appropriate artifacts are done.

Figure 2. Architecture overview.

A. Architecture overview

To understand the concepts that rely under our architec-
ture, we begin by giving an illustration of it in Figure 2.
This architecture is composed of three parts: Docker Model,
Connector, and Executing Environment. Conceptually, the
architecture depicted in Figure 2 presents a Docker Model
which provides an expressive model for containers. This
model provides an appropriate abstraction of Docker con-
tainers (cf. Section IV-B for more details). The Connector
defines the relationship between the Docker Model and
Executing Environment. This Connector provides tools that
are used not only to generate necessary Docker artifacts cor-
responding to the model actions (create, start, stop, restart,
pause, unpause, kill), but also to operate efficiently to make
online update for the Docker Model elements according
to the changes in Executing Environment. Every artifact
is handled in a seamless way thanks to the homogeneity
provided by modeling principles. Finally, the generated
artifacts are executing in the Executed Environment.

Our approach employs Model-Driven Engineering (MDE)
techniques [1], in order to handle and analyze Docker
containers at a higher level of abstraction compared to low
level that the actual Docker solution provides. Using MDE
techniques, our Docker Model describes explicitly certain
concerns or certain views on an Executing Environment
required to face the challenges discussed in Section III.

720

Figure 3. Docker Model.

B. Modeling Docker containers

This section describes how the modeling of Docker con-
tainers is achieved. Before we set out to design the Docker
Model, we investigate to identify the requirements. We begin
by examining the Docker containers with consideration of
the main concepts, its structure and the relationship between
each other. In this context, our model captures all necessary
information related to the characteristics and management of
Docker containers. This model is designed to be compliant
with Docker containers. As depicted by Figure 3, our model
is conceptually divided into three levels.

The top level represents the OCCIware2 metamodel
which is a precise metamodel of Open Cloud Computing
Interface (OCCI)3 [8], an OGF’s specification defining an
open interface for managing any kind of cloud computing re-
sources (IaaS, PaaS and SaaS). The OCCIware metamodel
is encoded with Eclipse Modelling Framework (EMF) [13].

The middle level named Infrastructure is based on our
OCCIware metamodel. The Infrastructure model abstracts
the cloud infrastructure resources (i.e, Compute, Network
and Storage).

The bottom level represents our Docker Model, which

2http://occiware.org
3http://occi-wg.org/

extends the Infrastructure Model. In Figure 3, our Docker
Model is simplified as it does not show, among others,
attributes, and enumerations. Based on the Infrastructure
Model, our Docker Model provides a comprehensive view on
Docker containers. Building a Docker Model means thinking
about structure of containers, their relationships with each
other, and the hosts in which they are deployed. In our
model, we explicitly provide a rich abstraction for describ-
ing, composing, and manipulating structured information
related to the containers and the hosts in which they are
deployed.

In the following, we present briefly the main concepts of
our Docker Model:

∙ Container represents a Docker container. Container has
a set of properties (name, image, command, etc.) related
to a Docker container.

∙ Link is a relation between two container instances.
Link references both source, and target containers, e.g,
when containers are linked, information about source
container can be sent to target container.

∙ Machine represents any physical or cloud VM that hosts
containers. Here, MDE allows to factorize common
pattern and reuse them. For instance, the class diagram
of Machine is extended to describe the specificities of
targets VM, e.g, Machine OpenStack is an extension of

721

Machine used to define the specificities (location, key,
type of machine, etc.) of VM belongs to OpenStack.

∙ Volumesfrom represents a block storage that is attached
to one or more container instances to persist data.

∙ Contains is used to define the relationships between
Machine and Container, e.i, a machine contains zero
to more container instances.

Our Docker Model is stored into a file in order to
facilitate its reusability anytime and everywhere. The Docker
Model provides the support for reasoning on architectural
constraints of containers. In fact, to analyze architectural
constraints, the Object Constraint Language (OCL) and
checkers like EMF OCL4 are used to define and check
constraints that are attached to the model elements. For
instance, among the constraints defined for the Docker
Model, one constraint states that bidirectional or closed loop
link is not permitted, etc. This is translated in OCL rule as:
context Container
inv NoCycleBetweenContainerLinks:
links->select(oclIsTypeOf(Link)).target->closure
(links->select(oclIsTypeOf(Link)).target)->excludes(self)

Listing 1. Descriptor for MyApp.

Unlike Docker solution, our model uses a constraint
validator at design time to validate the constraints defined
before the deployment. This validation guarantees the co-
herence of the containers and their relationships with each
other. By allowing the use of constraint validator, our Docker
Model provides a solution to the Lack of verification
challenge identified in Section III. On the other hand, the
use of an explicit model to represent containers allows us
to address the Inconsistency use of containers across
organization challenge identified in Section III.

C. Design tool for Docker

Our Docker Model comes with a tool to help designing,
editing, and building custom views. We have implemented5

this tool as Eclipse plug-ins, that can be downloaded from
here6. We provide a friendly user graphical interface to
assist users in modeling and deploying any containerized
applications with Docker. This tool is called Docker De-
signer. Docker Designer abstracts all Docker concepts for
designing, editing, validating, transforming, and deploying
containers. Once an application embedded in a container is
designed and validated, a user can register a cloud provider
to automate the provisioning of VMs on ten different cloud
providers: VMWare vSphere, OpenStack, Amazon Web Ser-
vices, Rackspace, Microsoft Azure, DigitalOcean, HP Public
Cloud, IBM SoftLayer, Google Compute Engine or local
hypervisors such as Virtual Box and VMWare Fusion. This
tool also allows us to import a running containers into
our Docker Model, where model elements are represented

4https://wiki.eclipse.org/OCL
5http://tinyurl.com/dockermodeler, accessed at February 22th 2016
6http://www.obeo.fr/download/occiware

graphically. A screenshot of the current Docker Designer is
depicted in Figure 4. Frame (a) in Figure 4 shows the Eclipse
Model Explorer used to navigate through a Docker project
containing a Docker Model. Frame (b) in Figure 4 gives
a perspective or a global view of the modeled containers.
Obviously, this view can be adjusted to provide the most
optimal perspective. Frame (c) displays the design area that
provides a graphical representation of Docker Model. As
shown in Frame (c), the model elements are green or red.
The green color of machine or container elements shows
the started state of containers and host machines. The
red color shows the stopped state of containers and the
host machines. Frame (d) in Figure 4 contains the Eclipse
properties editor for visualizing and modifying attributes of
a selected modeling element. All Docker Model elements
displayed in Frame (c) can be setted through their properties.
Frame (e) in Figure 4 displays the configuration pallet that
represents the Docker Model elements such as: container,
link, volumefrom, and machine.

Overall, our Docker Modeler assists users to design and
deploy large containerized applications. This tool can be
easily integrated into existing Docker environment. This
integration can be done easily by importing the deployed
containers as a well designed model on which users can
reason and interact.

D. Synchronization tool for Docker

As described in the previous section, our Docker Designer
tool is provided in order to assist users for modeling con-
tainers. Once modeled and validated, the containers will be
deployed in an executing system. Docker Connector is a
tool used to deploy and synchronize Docker Models with
the Executing Environment.

Our synchronization mechanism is bidirectional . More
precisely, the synchronization is done from Docker Model
to Executing Environment and conversely. In the first di-
rection (from Docker Model to Executing Environment),
the Docker Connector updates the model changes into the
running system by generating corresponding Docker artifacts
(Docker Client commands, Docker Compose file, Docker
Swarm configurations). These generated artifacts are used
for online deployment. In the second direction, when the
synchronization is performed from Executing Environment
to Docker Model, the Docker Connector updates the model
elements according to the Executing Environment changes.
This connector performs this update by means of a partial
reflection of the containers architecture using model intro-
spection.

Our Docker Connector is implemented using Docker-
Java API7 to interact with Docker daemon though HTTP.
This connector allows users to introspect an Executing En-
vironment in order to build corresponding Docker Model, or

7https://github.com/docker-java/docker-java

722

Figure 4. Docker Designer.

update an existing model and send changes back to the Ex-
ecuted Environment. To achieve appropriately the synchro-
nization between the Docker Model and the Executing En-
vironment, the Docker Connector checks first if the Docker
Model elements are still consistent with the corresponding
Executing Environment by navigating efficiently inside the
model. If this is not the case, the Docker Connector re-
establishes consistency by synchronizing containers states
(started, stopped, etc.), container attribute values, adjusting
links between container, deleting existing containers by
new ones. Thus, our Docker Connector synchronizes the
Docker Model and the Executing Environment incrementally.
This addresses the Synchronization between design and
execution environment challenge presented in Section III.

E. Connecting Docker Model online

To detect online modifications efficiently, we need to pro-
vide a mechanism that monitors both the Docker Model and
the Executed Environment. To detect model modifications,
the connector relies on a notification mechanism that reports
events when a model element has been changed. To this, we
use the EMF observer/listener design pattern. Concerning
the changes which occur in the Executed Environment, the
Docker Connector interacts directly with the Docker daemon
which provides a callback hook mechanism that gets called
whenever changes occur. In the online context, the Docker
Connector only reacts to change notifications.

As discussed in Section III, Docker does not provide the
possibility to modify the container resources (cpu, memory,
disk, network) at runtime. To achieve this, our Docker Con-

nector manages the Docker resources by manipulating their
corresponding Cgroups. In fact, as described in Section II,
Cgroups is a powerful tool for managing resources used by
a container. Thus, this addresses the Resource management
at runtime challenge presented in Section III.

V. VALIDATION

In this section we evaluate our approach with respect to
both performance and online model manipulation achieve-
ment.

A. Performance evaluation

To evaluate our Docker Model in cloud environments,
we run a distributed containerized application composed of
8 containers. This distributed application is a computation
system for processing large volume data. To focus on the
real performance of our Docker Model, all our experiment
were performed using Scalair8 private cloud provider with
twenty virtual machines (VMs), that uses VMware to build
their cloud infrastructure. The configuration of each VM
is: 1 VCPU, 20 G0 of Disk, 1Go of RAM, Ubuntu 12.04
Linux 3.13.0-66-generic. Our Docker Designer is running
using a Macbook Pro workstation with 2,2 GHz Intel Core
i7 processor, 16 Go 1600 MHz DDR3, OSX version 10.11.2
(15C50), and Oracle Java 1.7.

To evaluate our solution, we answer the following ques-
tions: (i) Does Docker Model introduce overhead? (ii) How
much time is taken to manipulate Docker Models online?
(iii) Does our Docker Model scale?

8http://www.scalair.fr

723

1) Overhead introduced by the Docker Model: To de-
termine the overhead introduced by our Docker Model,
we evaluate two of the scenarios where our distributed
containerized application were created, started, and stopped:
i) natively with Docker, and ii) with Docker integrating our
model. The scenario was executed hundred times on each
of the both implementations.

In Tables I, II and III, we present the results of the
average time for creating, starting, and stopping of height
containers for each implementation, as well as the mean
overhead introduced by the Docker Model.

The overhead introduced by our model when creating
containers is 1.11%, this creation phase consists of pulling
image once and the creation of the containers. Next, when
starting the containers, the overhead introduced by our model
is 2.12%. Then, the overhead introduces by our model
when stopping containers is 2.25%. The small overhead
fluctuation of the start and stop actions compared to the
creation action is due to the model elements manipulation.

Table I
CONTAINER CREATING TIME AND OVERHEAD.

Start action Avg. start time Docker Model overhead
Docker 168.509 sec -

Docker with Model 170.382 sec 1.11%

Table II
CONTAINER STARTING TIME AND OVERHEAD

Start action Avg. create. time Docker Model overhead
Docker 5.033 sec -

Docker with Model 5.04 sec 2.12%

Table III
CONTAINER STOPPING TIME AND OVERHEAD

Stop action Avg. stop time Docker Model overhead
Docker 84.12 sec -

Docker with Model 86.01 sec 2.25%

This experiment shows that there is an overhead intro-
duced by adding the Docker Model. The overhead is neg-
ligible regarding all advantages provided by our approach:
verification of containers, increasing resource at runtime (cf.
Section III).

B. Online model manipulation

When manipulating our model, we have evaluated the
time taken by our Docker Model to detect and integrate
the changes inside the model. In this context, we have
modified the model and evaluate the time taken by the
Docker connector to propagate changes in the Executing
Environment. Conversely, we operate modifications in Ex-
ecuted Environment and evaluate the time taken by Docker
Connector to operate the changes in the model.

When creating a new container from Executed Environ-
ment, our Docker Connector takes about 12 milliseconds
to detect the changes and spends about 290 milliseconds
to graphically represent a container into the model. Next,

when creating a new container in the model, it took about 10
milliseconds for the Docker Connector to detect the changes.
This experiments shows that our Docker Connector reacts
quickly to changes.

C. Scalability of model-handling at runtime

Model manipulation at runtime, as opposed to design
time, is subject to the same efficiency requirements as the
rest of the system because the execution of model operations
impacts overall system performance. To validate whether
our proposed approach scales to large systems, we quan-
tified this overhead for randomly updated and created large
model elements. These models started with fifty elements
(containers) and were populated with 50 new elements in
each iteration. After model population, we evaluated the
time taken to generate model elements. Even with 50,000
elements in the model, the average time taken to generate
each iteration of 50 elements was 14.30 seconds, which is
acceptable compared to the minimum time which is 12.02
seconds and the maximum time which is 16 seconds. As
shown in Figure 5, the generation time of 50 elements
(containers) is deterministic using our Docker Model.

Figure 5. Time taken to update and create model elements.

VI. RELATED WORK

In this section we will present some of the related work
from different fields of research that are relevant to our
approach.

Authors in [6] proposed a control architecture that dy-
namically and elastically adjust VMs and containers provi-
sioning. However, their work did not provide any solution
to verify the deployability of Docker. In this work, we
tackle the issue of deployability verification by using an
approach based on Model Driven Engineering. In contrast
to the existing solutions, our solution checks constraints

724

expressed in OCL which allows users to verify and guarantee
containers deployability at design time.

In the cloud computing context many works [12], [15],
[2], [14] have addressed resource management at runtime
with hypervisor-based solutions. A major difference between
their solution and ours is the baseline containerization tech-
nology adopted.

Model-driven approaches [16], [9] considering runtime
models, in contrast to ours, do not work incrementally to
maintain those models or they provide only one view on a
managed system.

The runtime model in [4] is updated incrementally. How-
ever, it provides a view focused on the configuration and
deployment of a system, but no other information, e.g.,
regarding management. All these approaches do not consider
the transformation of models specified by different meta-
models [16], [9].

VII. CONCLUSION

This paper presented our approach for the model-driven
management of Docker containers. It enables the verification
of containers architecture at design time. The synchroniza-
tion between Executed Environment and our model can
be done incrementally. Our approach leverages the use of
MDE for managing Docker containers combined with model
synchronization techniques at runtime.

We designed a graphical model-driven tool chain called
Docker Designer to design, reason, and deploy containers.
We also provide model-based generators that target Docker
commands, Compose, Swarm using Docker Connector.

Most existing solutions do not allow to verify the deploya-
bility of containers at design time. Instead of performing the
verifications of deployability of the containers at execution
time, we propose the use of constraint verifications using
our Docker Model at design time which avoid to lose time
and save development cost.

As future work, we will investigate the adaptation of
managed containers architecture, as a set of atomic changes
might have to be performed. Moreover, extending our ap-
proach to other container solutions will be considered.

ACKNOWLEDGMENT

This work is supported by OCCIware (www.occiware.org)
research and development project funded by French Pro-
gramme d’Investissements d’Avenir (PIA).

REFERENCES

[1] J. Bézivin. On the Unification Power of Models. Software
and System Modeling (SoSym), 4(2):171–188, 2005.

[2] J. Cáceres, L. M. Vaquero, L. Rodero-Merino, Á. Polo, and
J. J. Hierro. Service scalability over the cloud. In Handbook
of Cloud Computing, pages 357–377. Springer, 2010.

[3] J. F. Consulting. Maximize Container Benefits With
A Top-Down Approach. Website http://tinyurl.com/
redhadContainers, April 2015.

[4] J. Dubus and P. Merle. Applying OMG D&C Specification
and ECA Rules for Autonomous Distributed Component-
based Systems. In Workshop Models @ Runtime, in con-
junction with MoDELS / UML 2006, pages 242–251, Gênes,
Italy, Oct. 2006.

[5] A. Gerber. The State of Containers and the Docker Ecosys-
tem. Website http://offers.ruxit.com/rs/987-BEQ-874/images/
State of Containers Ruxit compressed V2.pdf, 2015.

[6] P. Hoenisch, I. Weber, S. Schulte, L. Zhu, and A. Fekete.
Four-Fold Auto-Scaling on a Contemporary Deployment Plat-
form Using Docker Containers. In Service-Oriented Comput-
ing, pages 316–323. Springer, 2015.

[7] M. Janakiram and M. Caroline. Is Docker a threat to the
Cloud ecosystem? Website https://research.gigaom.com/2014/
08/is-docker-a-threat-to-the-cloud-ecosystem, 2014.

[8] P. Merle, O. Barais, J. Parpaillon, N. Plouzeau, and S. Tata. A
Precise Metamodel for Open Cloud Computing Interface. In
2015 IEEE 8th International Conference on Cloud Computing
(CLOUD), pages 852–859, 2015.

[9] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Sol-
berg. Models@run.time to support dynamic adaptation.
Computer, 42(10):44–51, Oct. 2009.

[10] A. Mouat. Using Docker Developing and Deploying Software
with Containers. O’Reilly Media Pub., 2015.

[11] H. Philipp, W. Ingo, S. Stefan, Z. Liming, and F. Alan. Four-
Fold Auto-Scaling on a Contemporary Deployment Platform
Using Docker Containers. In Service-Oriented Computing
- 13th International Conference, ICSOC 2015, Goa, India,
November 16-19, 2015, Proceedings, pages 316–323, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[12] B. P. Rimal, A. Jukan, D. Katsaros, and Y. Goeleven. Ar-
chitectural requirements for cloud computing systems: an
enterprise cloud approach. Journal of Grid Computing,
9(1):3–26, 2011.

[13] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks.
EMF: Eclipse Modeling Framework 2.0. Addison-Wesley
Professional, 2nd edition, 2009.

[14] H. N. Van, F. D. Tran, and J. M. Menaud. Performance and
power management for cloud infrastructures. In 2010 IEEE
3rd International Conference on Cloud Computing (CLOUD),
pages 329–336. IEEE, July 2010.

[15] L. M. Vaquero, L. Rodero-Merino, and R. Buyya. Dynam-
ically scaling applications in the cloud. ACM SIGCOMM
Computer Communication Review, 41(1):45–52, 2011.

[16] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and
B. Becker. Incremental Model Synchronization for Efficient
Run-time Monitoring. In Proceedings of the 2009 Interna-
tional Conference on Models in Software Engineering, MOD-
ELS’09, pages 124–139, Berlin, Heidelberg, 2010. Springer-
Verlag.

725

