
Distributing an SQL Query Over a Cluster of Containers

David Holland∗ and Weining Zhang†
Department of Computer Science, University of Texas at San Antonio

Email: ∗david.holland@utsa.edu, †Weining.Zhang@utsa.edu

Abstract—Emergent software container technology is now
available on any cloud and opens up new opportunities to execute
and scale data intensive applications wherever data is located.
However, many traditional relational databases hosted on clouds
have not scaled well. In this paper, a framework and deployment
methodology to containerize relational SQL queries is presented,
so that, a single SQL query can be scaled and executed by
a network of cooperating containers, achieving intra-operator
parallelism and other significant performance gains. Results of
container prototype experiments are reported and compared to
a real-world RDBMS baseline. Preliminary result on a research
cloud shows up to 3-orders of magnitude performance gain for
some queries when compared to running the same query on a
single VM hosted RDBMS baseline.

Index Terms—Software container, deployment, SQL database,
query evaluation, intra-operator parallelism, cloud computing

I. INTRODUCTION

Container technology has become universally available on

all kinds of cloud platforms. Containers provide an OS-level

virtualization [8] that provide applications with an isolated

execution environment using cloud host resources. Running

applications inside containers, rather than in virtual machines

(VMs), on a cloud can provide many benefits: elasticity (fast

start-up and quick tear-down), scalability, host independence,

multi-tenant isolation, a smaller footprint and provides overall

better economy(cloud consolidation).

While many new applications have been designed to run

in containers, progress has been slow to adapt existing SQL

relational database systems to take full advantage of container

platforms. Recent published research on whether container

technology can be used for scaling relational queries across

many containers to achieve HPC level performance, concludes

that containers are more elastic and scalable than VMs[7]. It

is our contention that database queries can indeed be con-

tainerized and scaled, but containerization requires a special

container deployment architecture to meet specific needs of

SQL queries [20].

In this paper, the problems of containerizing SQL queries is

considered. To our knowledge, this has not been reported in the

literature. Specifically, a software framework to containerize

and deploy an SQL query is presented, permitting a single

SQL query to be executed by a network of cooperating

containers. This framework is a general methodology that is

cloud and container type agnostic. We build on established

distributed query concepts, e.g. partitioning and intra-operator

parallelism, (i.e. dividing execution of an operator concur-

rently across multiple processors and partitions of the original

relation [18]), but investigate a new problem, i.e., how to

distribute containers that collectively execute a SQL query

across a cluster of containers in a cloud. A feasibility study

of this with performance analysis is reported in this paper.

A containerized query (henceforth CQ) uses a deployment

methodology that is unique to each query with respect to the

number of containers and their networked topology effecting

data flows. Furthermore a CQ can be scaled at run-time

by adding more intra-operators. In contrast, the traditional

distributed database query deployment configurations do not

change at run-time, i.e., they are static and applied to all

queries. Additionally, traditional distributed databases often

need to rewrite an SQL query to optimize performance. The

proposed CQ methodology requires no such SQL-level query

rewriting.

Containerizing the execution of an SQL query using mul-

tiple distributed containers raises several challenges: 1) how

the query’s relational operators should be distributed among

many containers to obtain in-parallel performance gains; 2)

how containers can improve query performance collectively

by loading and keeping data relations all-in-memory, including

any intermediate results throughout the entire query’s evalu-

ation using container share-nothing memory, which provides

further query evaluation speed-up by eliminating DBMS disk

buffer management overhead of large relations that overflow

memory [12]; 3) a CQ must also orchestrate scheduling

of multiple cooperating containers across many cloud hosts,

while carefully synchronizing their interactions during the

query evaluation. These issues are addressed in this paper.

Contributions in this paper are as follows:

1) A framework (methodology and container architecture)

for a CQ, which for any given SQL query, creates an

execution plan for a unique network of specialized coop-

erating containers, and deploys the execution plan using

a container technology specific platform, e.g. Docker, in

a cloud.

2) An implementation of a research prototype, including a

CQ plan compiler to systematically create CQs.

3) A set of experiments on a research cloud comparing

CQ performance metrics against a real-world RDBMS

baseline to validate the framework. Preliminary result

shows up to 3-orders of magnitude performance gain

for containerization over running the same query on

the standalone RDBMS baseline hosted on a OpenStack

research cloud VM.

The rest of the paper is organized as follows. In Section

II a CQ framework is presented. Section III describes an

implementation of the framework. In Section IV results from a

set of test-bed experiments are discussed. Section V discusses

457

2019 IEEE 12th International Conference on Cloud Computing (CLOUD)

2159-6190/19/$31.00 ©2019 IEEE
DOI 10.1109/CLOUD.2019.00079

important related work, and Section VI concludes with a

summary and discussion of future work.

II. A FRAMEWORK FOR QUERY CONTAINERIZATION

For the purpose of this paper, we define an SQL CQ as

fully planned when all relational operators in the query tree

have been mapped into a cluster of cooperating networked

containers that can evaluate the query.

Fig. 1 shows the work-flow for a CQ framework. (A) A

SQL statement is compiled by a relational query optimizer

and output as an optimized query tree. (B) The query tree

is then used as input to a mapping function to construct a

digraph, representing abstractly a set of specialized networked

containers that will evaluate the query. (C) The digraph is

further compiled into an evaluation and deployment plan, con-

veying special container properties, e.g. placement, network

configuration, container image type, parameters etc. The plan

is output as a data serialization language(DSL) formatted file,

e.g. YAML. (D) The DSL file is used as a command stream

by the underlying container platform’s orchestrations tools to

allocate and schedule containers that evaluate the query.

Fig. 2 shows a scenario evaluating a CQ across a cluster of

containers hosted across many distinct cloud VMs. Shown are

three types of containers: Master, Worker, and Data-Only. Each

query is progressed and orchestrated at run-time by a master.

The master starts and executes steps (B) and (C) in Fig. 1.

The framework work-flow is repeated for every distinct query

to create a new digraph, plan and serialized DSL file.

Subsequently, after all containers are started, the master pro-

gresses query evaluation and data-flows with control messages

to-and-from worker containers. Query relational operations are

executed by the cooperating worker containers; each performs

a specific query operation, e.g. one of {��, π, σ, δ}, as well as

operations needed to transfer data among workers. Data-Only

containers serve workers as a uniform interface for storage

and retrieval of data from the underlying cloud storage. All

containers are networked together by a virtual private overlay

LAN that spans the container cluster’s VMs.

III. A FRAMEWORK PROTOTYPE

We now describe one (of many possible) experimental

research prototype implementation of the CQ framework using

Docker containers, which we use to illustrate and validate

the framework. For simplicity, we use off-the-shelf software

packages to implement query system functions. Specifically,

SQLite, a lightweight SQL engine, is embedded inside each

Worker container image to execute relational operators. Rab-

bitMQ, an external messaging service, is used to facilitate

message communication among master and worker containers.

We use Java to implement plan generation, serialization and

query run-time container management functions. The Java

Database Connectivity (JDBC) API interfaces containers with

the relational operator functions provided by SQLite. This

implementation strategy provides a plug-and-play interface for

our containers to interact with any off-the-shelf lightweight

SQL engine that supports a JDBC driver. The following

subsections detail specific issues related to the prototype.

A. Container Images

We build a different image for each of the three types of

the containers, namely, Worker, Master, and Data-Only, to

run container-specific Java code. These container images are

built using a software layer model. The base layer consists of

an Ubuntu 14.04 Linux operating system. Subsequent upper

layers in an image’s software stack include a Java JVM and

Java programs (for both Master and Worker container func-

tions), and the RabbitMQ message interface API binaries. The

message layer permits run-time control messages to-and-from

master and workers to monitor, synchronize and progress the

query. The Master uses message queues to communicate tasks

to other Worker or Data-only containers (to be further dis-

cussed in Section III-G). The Master sends control messages

to workers to synchronize the progress of the overall query

and to direct data flow between workers, which contains inter-

mediate results (tuples) produced by relational operators. The

Master image includes a custom written query plan compiler,

which interfaces to Docker container platform orchestration

tools: Docker-Compose and Docker-Swarm. Worker functions

delegate relational operations to the embedded SQLite engine,

but manage intermediate result data flows using special non-

relational operators described in Section III-C. The Data-Only

image uses the same base layer, but contains only functions

to manage data and provide a uniform interface for Workers

to access relation data sets.

B. Plan Generation

Fig. 1 illustrates the CQ plan generation process. It begins

with an optimized query tree obtained in Step (A). In step (B),

the optimized query tree is transformed by a 1-to-1 mapping

into a directed graph that represents container execution order

and direction of data flows. Specifically, each query tree

operator is mapped into a unique digraph vertex abstractly

representing a worker. Each worker executes a specific query

relational operator, with conditions, predicates and clauses

derived from its mapped query tree node. A pre-order traversal

of the query tree suffices to map each node into the directed

graph.

Data relations must also be mapped to data-only containers.

A list of database relations and their partitions, if any, must

be available to the query planner. If the relation is partitioned,

each partition is managed by a distinct data-only container.

This information is usually available from a data catalog.

Assigning data-only containers to a relation’s data partitions is

an additional organization step that proceeds query evaluation.

Containerizing the data requires identifying the data’s location,

schema and permissions. Once the partition size and host data

location is known, containerization scheduling also attempts

to collocate data-only containers on the same host where the

database volume resides.

Planner compiled output is formatted as a version 3.3

Docker-Compose YAML file. The planner feeds the compiled

458

Figure 1. Query Containerization Framework Work-Flow

Figure 2. Containerized Query across many VMs

YAML file to a container orchestration tool, Docker-Stack,

that deploys the containers across a cluster of VMs. Each

worker container executes its distinct relational operator on

its data using the embedded SQL engine. A simple SQL

SELECT command with appropriate predicate and clauses e.g.

“SELECT t.a, t.b FROM intermediateTable AS t” suffices to

execute the operator, in this example a projection operator π.

Data-Only containers are concerned with marshaling a query’s

initial database relations for workers. JDBC intermediate rows

sets are transferred between containers along shared directed

edges as specified in the query’s digraph using streaming

sockets. Sockets implement special data transfer operators

described in section III-C.

C. Data Flow Management Operators

In addition to the query’s relational operators executed by

containers, four non-relational operators are used to transfer

intermediate results among containers.

• Pull: is used by the down-stream worker to retrieve

relation or intermediate data from an up-stream worker.

• Push: is used by the up-stream worker to send relation or

intermediate data to a down-stream worker.

• Exchange: redistribute tuples between containers, using

One-To-Many or Many-to-One distribution patterns.

• Merge: collates down-stream results of up-stream parallel

operations.

Whether a Push or a Pull is used to transfer data between two

workers will depend on the relational operators the workers

are assigned to execute. For example, as shown in Fig. 2 a

worker executing a join may Pull tuples from one worker that

produces tuples, while allowing another worker to Push its

tuples.

The Exchange operator is introduced to further organize

how Push and Pull are used to transfer intermediate results.

This operator redistributes output data tuples from up-stream

workers or data-only containers to multiple down-stream

workers. Exchanging involves selecting a distribution pattern,

e.g exchanging by hash key, equal-size block re-distribution

or round-robin among recipients etc.

For example, in Fig. 3 (C) an Exchange operator is used to

distribute tuples from a data-only container managing relation

R to the three workers that perform a join operation in parallel,

possibly using a join key hash mapping from R to the distinct

join containers. In that case the distribution pattern of the

tuples is based upon the hash values of join attribute R.B3. As

alluded to, the Exchange is a general redistribution operator,

not always a hashing function.

D. Adding Intra-Operator Parallelism Statically

In Fig.1 step (B), the initial digraph may need to be revised

by adding more vertices and edges whenever a vertex’s opera-

tion needs to be distributed across many intra-operator vertices

in parallel. The number of parallel nodes for a relational

operators is referred to as the degree of parallelism (DoP) of

the operator[18]. An operator’s DoP is assigned by the planner.

As parallel operators are added, Exchange operators III-C are

also added to redistribute data to and from the new vertices.

Modifying the graph by adding additional parallel vertices

is performed based on Algorithm 1, which takes as parameters:

(G the query’s digraph, v the current digraph vertex and d the

DoP). Two helper sets are needed: 1) a set Inv of vertices

for all input edges of v, 2) a set Outv of vertices for all

output edges of v. Steps 1-5 iterate (d − 1) times to add

d − 1 new intra-operator vertices to augment the original

vertex v. In each iteration Step 2 creates a new vertex v′ by

duplicating v. Steps 3 and 4 add directed edges to v′ based

459

Algorithm 1 Adding Parallel Vertices

Input:

G =< V,E >: a digraph view of containers

v: current digraph vertex

d: operator DoP

Output:

G′ =< V ′, E′ >: updated digraph

Method:

1. For (d −1) iterations Do

2. create new graph vertex v′

3. add inEdges to E {(u, v′): ∀(u)∈Inv} using ψ1

4. add outEdges to E {(v′, u): ∀(u)∈Outv} using ψ2

5. add v′ to V
6. return G′ =< V ′, E′ >

upon the same directed edges from v using vertex sets Inv

and Outv . Exchange functions ψ1 and ψ2 are added to v′.
Exchange functions (see Section III-C) may create new edges

not common to v, depending on how the data is redistributed

by and to the new intra-operator vertices. Step 5 adds the new

vertex v′ into V , the digraph’s modified list of vertices. Step 6

returns the updated digraph G′ with an updated list of intra-op

vertices and edges V ′ and E′.
Fig. 3 (B) and (C) show an example that transforms the

original join operator into intra-operators with a combined

DoP 3. In this case, because the operator is an equi-join,

the Exchange operator may choose to implement a hashing

function based upon the join key that maps a tuple to one of

the three intra-operator containers.

E. Serialization

Next, the digraph representing the completed CQ plan is

serialized by the planner into a configuration DSL (YAML)

file. An example configuration file is shown in Fig. 3 (D).

This file communicates any semantics and relationships be-

tween containers executing the query and other configuration

input needed to deploy and orchestrate the query. The file

is composed of a hierarchical list of container properties for

each container in the digraph, reflecting query semantics, such

as, the types of containers, their inter-relationships, cluster

placement preferences, environment variables, memory size,

volumes, network identifiers, and other artifacts needed to

execute the overall query across a cluster of containers.

F. Plan Deployment

Query evaluation is started by the master by sending the

YAML configuration file as input to the platform’s container

orchestration tool, Docker-Compose. The orchestrator tool

then schedules containers described in the configuration file

assisted by the prototype’s cluster manager, Docker-Swarm.

Container server/daemons on each VM respond to the orches-

trator to start container execution. In addition, orchestration

also dynamically creates a virtual network of data communi-

cation channels among all containers. The private networked

messaging service, RabbitMQ, is also started at deployment

to enable subsequent communications between the master and

worker containers during query evaluation.

G. Synchronization

Once containers are deployed the master orchestrates the

evaluation and progress of the query using control messages.

Evaluation task control messages are passed from master to

other containers with instructions to progress the query, e.g.

specific relational operator instructions. The master makes

use of its knowledge of the digraph using edge direction to

synchronize both container execution order and operator result

data flow between containers. Fig. 2 shows a scenario in which

the master orchestrates the evaluation of the query with control

messages. The master progresses the query by sending control

messages to a down-stream worker to start execution of its

relational operation, e.g. a join ��. The query plan instructs the

master what type of control message and instruction payload

to send to each worker. Each worker then executes its control

message instructions.

In general, the master can be replicated for fault tolerance.

Workers are delegated responsibility to handle autonomously

some inter-container data transfers between their peers to help

distribute overall control and avoid bottlenecks at the master.

For example, a worker may sends a message to an up-stream

or down-stream worker to request pulling or pushing its result

data.

Workers provide their adjacent peers and master with their

current state information. When an up-stream worker com-

pletes transferring data to a down-stream worker, both con-

tainers notify the master of any data state content changes. To

aid specifying worker synchronization, the following container

data states are defined:

• Valid Input State (VIS). A container is in VIS when

its input satisfies conditions to start execution of its

designated relational operator.

• Valid Output State (VOS). A container is in VOS when

intermediate results can be sent to their down-stream

workers.

With data state transitions occurring in the workers, execution

progress of the overall query can be viewed as data flow

engine, i.e. the execution of query operations proceed only

along directed edges in the digraph to successive containers

coincident with the progress of operator result data flow states.

Until a container’s input data flow state (VIS) is valid, the

query cannot progress along an adjacent directed edge. This

helps to simplify control of the evaluation. Each container

tracks its data input state and reports state transitions to the

master. This allows the master to monitor the overall state of

the query’s progress. For example, in the case of a hash-join,

the build phase data flows are completed before the probe
phase flows begin. In the prototype, a hash-join container’s

probe relation input state (VIS) remains invalid until its build
state input data flows are also completed.

To communicate a container’s valid state transitions, the

message sent by the worker contain various fields depending

on the message type: [timestamp, containerID, inputstate,

460

Figure 3. An Example of Query Containerization.(A) query tree; (B) mapped 1-1 into digraph; (C) add parallel intra-operators into digraph; (D) compile
serialized deployment file.

outputstate, operatorAction, adjacenyList]. Because workers

can help manage their data state progress autonomously, the

master can focus on progressing the overall query with control

messages; handling state transitions exceptions or failures.

Failures include a container crash or undelivered (or lost) state

transition message.

H. An Extended Example of Query Containerization Plan
Generation

Fig. 3 illustrates the work-flow of containerizing

an example SelectJoinProjectOrder(SJPO) SQL

statement denoted in relational expression form:

δR.A1,<(πR.A1,S.B1((σR.A2≤aR) ��R.A3=S.B3 (σS.B2=bS))),
where R(A1, A2, A3) and S(B1, B2, B3) are two relations;

{��, π, σ, δ} are join, projection, selection, order-by operators,

respectively. The query tree in (A) represents the optimized

query plan that would be generated by a conventional query

optimizer. Query tree nodes are mapped 1-1 into a directed

graph (B), whose vertices represent worker containers

that execute the query’s relational operators. Digraph edge

direction represents both operator execution order and data

flow. The planner chooses to further modify the digraph

by dividing a relational operator (here, the original join)

among three intra-operator vertices (for a DoP of 3) that

execute in parallel (C). Parallelism is a principle performance

benefit of CQ evaluation. Also, shown in Fig. 3 (C) is the

Exchange operator (Section III-C) that redistributes input

to multiple containers; in this case redistributing tuples

from data relations to parallel intra-operator join workers.

Finally, the digraph is compiled into a YAML (DSL) file

that specifies execution semantics for a container specific

platform orchestration tool (D), e.g. network id, data volumes,

placement directives, container image type etc.

IV. EXPERIMENTAL RESULTS

A. Experiment Setups
This section describe prototype experiments and discuss

preliminary results. To ensure experiment transparency and

Figure 4. Table of Experiment Queries

repeat-ability, a sufficiently large public relational database 1

was transcribed from MySQL to a SQLite database, which

serves as test-bed data relations for comparing different CQ

configurations. Two relations from the database, salaries and

employees, are used in the queries: salaries with 2, 844, 047
tuples, employees 300, 024 tuples. Both relation’s tuples were

randomly permuted before experiments to avoid any skew

in the data. The experiments use several types of queries:

SJPO, Aggregate and Simple Select, Fig. 4. Operator predicate

clauses were varied for different effects in each experiment.

Each experiment records and compares a query’s perfor-

mance when 1) executed as a cloud hosted CQ vs. 2) ex-

ecuted on a VM hosted standalone SQLite baseline. Each

experiment is repeated multiple times with operators assigned

different DoPs to investigate how parallelism effects per-

1https://dev.mysql.com/doc/employee/en/sakila-structure.html

461

Figure 5. Experiment Partitions & Intra-Operator DoPs

formance. The salaries relation for each query experiment

is run with different number of partitions, matching intra-

operator DoP for some operators, Fig. 5, to observe effects of

parallelism. All relational operators {��, π, σ, δ} are configured

with zero or more parallel intra-operators. DoP for intra-

operators {��, σ} match the experiment’s number of partitions

for relation salaries. DoP for {δ, π} also increase with number

of partitions to distribute compute overhead needed when

merging intermediate results from parallel intra-operator ver-

tices lower(upstream) in the digraph. This permits observing

speed-up in the experiments due to intra-operator and disk

parallelism, and further effects performance by loading and

keeping relations all-in-memory in each container’s embed-

ded SQLite engine. JDBC’s database driver specification:

<DB_URL>:memory: supports an all-in-memory configura-

tion. Relations and intermediate results are only constrained

by a container’s memory size, which in turn is constrained

by the VM host memory; no SQLite memory overflow errors

were observed. This avoids costly performance degrading due

to heap buffer paging overhead for large relations [19]. More

to the point, the Docker workers written in Java are initially

started with 4 Gigs of Heap memory (distinct from SQlite

memory). Java garbage collection has a significant impact on

worker performance, when large JDBC ResultSets generated

by the SQL engine operations deplete container JVM heap

memory. DoP and number of relation partitions is summarized

for the SJPO experiments. Queries 3 and 4 also matched their

principle relational operator DoP with the same number of

partitions.

The experiments were performed using Docker containers

scheduled across a Docker Swarm cluster of six OpenStack

Ubuntu 14.04 VMs hosted on a research cloud. The exper-

iments can be conveniently repeated by cloning the experi-

ment’s BitBucket repo using the following shell command: git
clone https://deepeddy@bitbucket.org/deepeddy/databases.git.
A README file details suggested VM configurations on

any cloud and step-by-step instructions for experiment set-

up and test query execution. Each experiment configuration

and the baseline were run at the same time to avoid the

impact of different multi-tenant cloud workloads; network

rates also fluctuated depending on workloads. However, the

relative performance between the baseline and the Container-

ized Query is reported regardless of multi-tenant workload. A

CQ planner/compiler was coded for the prototype to enable

the Master to organize the deployment and evaluation of

each query. Special optimizations were avoided by the Query

Planner to simplify analysis and emphasize the essential CQ

methodology. Java executables were instrumented to record

operator performance metrics . Total query execution time for

each experiment is reported and compared.

B. Query Experiment One

The purpose of experiment-one Fig. 6 (see query-1, Fig.

4) is to compare the evaluation of a SJPO CQ to the same

query evaluated on the SQLite baseline, when indexing and

sorting optimizations are allowed by the baseline’s query plan.

Results show that a configuration of 6 partitions and DoP 6

for ��, results in a only a slightly smaller query execution

time compared to the SQLite baseline running the query on

unpartitioned relations. The associated table shows slightly

improving performance up until 48 partitions, an apparent

inflection point, where network and container scheduling

overhead begins reducing performance. Experiment-one in-

cludes a lengthy join clause, but its trailing segment “AND
(salaries.empNo == employees.empNo)”, permits the SQLite

baseline engine’s query plan to optimize the �� by first sorting,

then indexing on field empNo in both relations being joined.

This optimization avoids a full-scan of both relations by the

control baseline, resulting in only marginal speed-up in the

CQ over the baseline.

C. Query Experiment Two

The purpose of experiment-two Fig. [7] (see query-2, Fig.

4) is to compare a SJPO CQ to the baseline version, when

indexing and sorting optimizations are prohibited, forcing full-

scans by the baseline. Join selectivity is also intentionally

chosen to be poor by adding a BETWEEN clause. The clause

(salaries.empNo == employees.empNo) in query one is now

absent from the join, forcing a full-scan by the baseline SQLite

engine. This effectively creates the same overhead as a full

Cross-Join, and demonstrates the advantage of the distributed

Containerized Query in cases of large relations with intense

relational operator overhead. Experiment-two shows a 3-order

of magnitude improvement over the baseline, 8 secs for 24

partitions as compared to 1538 secs for the baseline. In this

case demonstrably, real-time OLTP is possible with a CQ.

Again, Experiment-two again shows a performance inflection

point at 48 partitions, where inter-container communication

and container scheduling overhead begins degrading overall

query completion time.

D. Query Experiment Three

The purpose of experiment-three Fig. 8 (see query-3, Fig. 4)

is to compare a simple Select CQ to the baseline evaluation.

Results shows a order of magnitude improvement over the

baseline, 4 secs for DoP 48 as compared to 69 secs for the

baseline. In this case demonstrably again real-time OLTP is

improved by query containerization.

462

Figure 6. Experiment One: SJPO with indexing

Figure 7. Query Experiment Two: SJPO with full scan

E. Query Experiment Four

The purpose of experiment-four Fig. 9 (see query-4, Fig.

4) is to compare an aggregate CQ to the baseline evaluation.

Results show only marginal improvement over the baseline.

An inflection point occurs again at DoP 48, when container

scheduling and container-to-container network communication

overhead begin to degrade performance. Clearly, containeriz-

ing a query in not always an imperative.

F. Experiment Five: Transfer & Re-Insert Latencies

The purpose of experiment-five Fig. 10 is to observe three

critical operation times: 1) data ResultSet transfer time be-

tween adjacent digraph workers, 2) re-Insert/reloading laten-

cies of intermediate results sets, and 3) relational operator ex-

ecution times. An SJPO query run with 6 partitions and 6 DoP

suffices to reveal latencies transferring and re-Inserting inter-

mediate results between worker containers. The chart shows

that these latencies are a factor of 7 times the average relational

Figure 8. Query Experiment Three: Simple Select

Figure 9. Query Experiment Four: Aggregate (Sum)

Figure 10. Experiment Five: Transfer & Re-Insert Latencies

operator execution time. This poses a significant bottle-neck

for containerizing a query. Re-Inserting is an artifact to the

prototype’s design implementation; using an embedded SQL

engine. An implementation that does not rely on an embedded

SQL engine, but executes relational operators directly would

eliminate database reloading. Re-Insert database latencies ob-

served could be mitigated by the development of an API

that supports direct native intermediate result set reloading.

Extending the JDBC to accommodate transfer of rows sets

using native internal data structures(ResultSetInternal) at the

driver level that can be reloaded directly into a SQL database

engine avoid the overhead of SQL Inserts and Journaling.

Transfer latency of intermediate results between nodes is un-

avoidable with distributed containers and can best be addressed

by extending low-level container kernel support for inter-

container communication, instead of relying on application

level channels, e.g. sockets.

V. RELATED WORK

Major cloud providers currently offer a number of SQL

database services in the cloud, although they do not support

distributed queries using containers. These include Amazon’s

RDS[1], Microsoft’s Azure SQL Database[4] and Google

Cloud SQL[3]. In addition, a number of academic research

groups have proposed cloud DBaaS services to support dis-

tributed relational database functionality in the cloud. Exam-

ples include VoltDB[19], Postgres-XL[5], Impala [11], and

Relational Cloud [9]. A State-of-the-art overview of traditional

distributed database architectures in the cloud is reviewed in

[16] with a taxonomic overview of partitioning, distributed

control and consistency.

In addition to SQL DBaaS, a number of NoSQL database

services are also provided by major cloud providers. These

463

systems provide features like columnar storage and retrieval

of large data sets, support nested data structures, and NoSQL

query types. These services are generally, like CQs, dis-

tributed. However, these systems do not support full SQL

queries and ACID data consistency. NoSQL data-stores such

as Google’s Bigtable[10], Apache Hadoop’s HBase[15], Face-

book’s Cassandra[17] or PrestoDB are instructive for their

distributive architectures, high scalability, handling of large

data sets and cloud deployments.

Development of light-weight software container technology

includes Docker[2], Kubernetes, LCX, and ZeroVM[6]. All are

open source projects. Performance of container technology for

data intensive applications has been investigated and reported

in [14, 13]].

VI. CONCLUSIONS

This paper presented a method and software architecture

framework for containerizing a relational SQL query, eval-

uated using cloud-based commodity hosts. The method de-

scribes a query planner that compiles the CQ plan. CQ run-

time deployment, elasticity and scalability is different from

traditional distributed databases configurations. Constructing a

CQ plan starts with mapping the query’s optimized relational

tree into a digraph, which abstractly represents a cluster of

cooperating containers that evaluate the query. Some digraph

vertex operators may be subsequently distributed across many

parallel containers(intra-operators) to increase evaluation per-

formance. This allows any query’s relation to be partitioned

and processed in parallel. The final evaluation plan is compiled

into a data serialization language, e.g. YAML, specific to a

container platform technology tool set needed to deploy and

execute containers on cloud hosts. Prototype experiments show

that for some queries, performance can be greatly improved.

Other queries benefit only marginally from containerization.

This suggests that an online cloud RDBMS need only con-

tainerize queries that benefit from parallelism.

But there are still important future research solutions

needed: 1) lower latency distribution of intermediate query

results, 2) efficient, optimal run-time parallel intra-operator

creation across many containers to progress queries, to in-

clude dynamic partitioning, 3) better optimizations including

container placement, restart and fail-over, 4) a cost model

for comparing Containerized Queries to both non-distributed

and distributed baselines, emphasizing container elasticity,

portability, and application software development costs. 5) CQ

performance needs to be analyzed and compared against a

distributed RDBMS baseline.

ACKNOWLEDGEMENT

The authors would like to thank Texas Advanced Computing

Center at UT Austin for their technical and resource support.

REFERENCES

[1] Amazon RDS. http://aws.amazon.com/rds/.

[2] Docker. https://www.docker.com/.

[3] Google Cloud SQL. https://cloud.google.com/sql.

[4] MicrosoftAzureSQLDatabase.

http://azure.microsoft.com/en-us/services/sql-database/.

[5] Postgres-XL. http://www.postgres-xl.org/.

[6] ZeroVM. http://www.zerovm.org/.

[7] T. Adufu, J. Choi, and Y. Kim. Is container-based

technology a winner for high performance scientific

applications? In Network Operations and Management
Symposium (APNOMS), 2015 17th Asia-Pacific, pages

507–510, Aug 2015.

[8] David Bernstein. Containers and cloud: From LXC to

Docker to Kubernetes. IEEE Cloud Computing, 1(3):81–

84, 2014.

[9] Carlo Curino et. al. Relational Cloud: A database service

for the cloud. In Biennial Conference on Innovative Data
Systems Research, pages 235–240, 2011.

[10] Chang Fay et. al. Bigtable: A distributed storage system

for structured data. ACM Transactions on Computer
Systems, 26(2):4:1–4:26, June 2008.

[11] Marcel Kornacker et. al. Impala: A modern, open-source

SQL engine for Hadoop. In Biennial Conference on
Innovative Data Systems Research, 2015.

[12] Michael Stonebraker et. al. OLTP through the looking

glass, and what we found there. In Sigmod, page 981,

2008.

[13] Paul Rad et. al. ZeroVM: Secure distributed processing

for big data analytics. In World Automation Congress,

pages 882–887, 2014.

[14] Xuehai Tang et. al. Performance Evaluation of Light-

Weighted Virtualization for PaaS in Clouds. In Interna-
tional Conference on Algorithms and Architectures for
Parallel Processing, pages 415–428, 2014.

[15] Lars George. HBase: The Definitive Guide. O’Reilly

Media, Inc., 2011.

[16] Donald Kossmann, Tim Kraska, and Simon Loesing.

An evaluation of alternative architectures for transaction

processing in the cloud. In ACM SIGMOD International
Conference on Management of Data, pages 579–590,

2010.

[17] Avinash Lakshman and Prashant Malik. Cassandra: a de-

centralized structured storage system. SIGOPS Operating
Systems Review, 44(2):35–40, 2010.

[18] DeWitt D. J. Mehta M. Managing intra-operator paral-

lelism in parallel database systems. IBM internal report,
White Paper, 1994.

[19] Michael Stonebraker and Ariel Weisberg. The VoltDB

main memory DBMS. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, pages

21–27, 2013.

[20] Weining Zhang and David Holland. Containerized SQL

query evaluation in a cloud. In 2015 IEEE Interna-
tional Conference on Smart City/SocialCom/SustainCom
(SmartCity), pages 1010–1017, 2015.

464

