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ABSTRACT

A prominent parallel data processing tool MapReduce is gain-
ing significant momentum from both industry and academia
as the volume of data to analyze grows rapidly. While MapRe-
duce is used in many areas where massive data analysis is re-
quired, there are still debates on its performance, efficiency
per node, and simple abstraction. This survey intends to
assist the database and open source communities in under-
standing various technical aspects of the MapReduce frame-
work. In this survey, we characterize the MapReduce frame-
work and discuss its inherent pros and cons. We then intro-
duce its optimization strategies reported in the recent litera-
ture. We also discuss the open issues and challenges raised
on parallel data analysis with MapReduce.

1. INTRODUCTION

In this age of data explosion, parallel processing is
essential to processing a massive volume of data in a
timely manner. MapReduce, which has been popular-
ized by Google, is a scalable and fault-tolerant data
processing tool that enables to process a massive vol-
ume of data in parallel with many low-end computing
nodes[44, 38]. By virtue of its simplicity, scalability,
and fault-tolerance, MapReduce is becoming ubiqui-
tous, gaining significant momentum from both industry
and academia. However, MapReduce has inherent lim-
itations on its performance and efficiency. Therefore,
many studies have endeavored to overcome the limita-
tions of the MapReduce framework[10, 15, 51, 32, 23].
The goal of this survey is to provide a timely remark

on the status of MapReduce studies and related work
focusing on the current research aimed at improving
and enhancing the MapReduce framework. We give an
overview of major approaches and classify them with
respect to their strategies. The rest of the survey is or-
ganized as follows. Section 2 reviews the architecture
and the key concepts of MapReduce. Section 3 dis-
cusses the inherent pros and cons of MapReduce. Sec-
tion 4 presents the classification and details of recent
approaches to improving the MapReduce framework.
In Section 5 and 6, we overview major application do-

mains where the MapReduce framework is adopted and
discuss open issues and challenges. Finally, Section 7
concludes this survey.

2. ARCHITECTURE

MapReduce is a programming model as well as a
framework that supports the model. The main idea
of the MapReduce model is to hide details of parallel
execution and allow users to focus only on data pro-
cessing strategies. The MapReduce model consists of
two primitive functions: Map and Reduce. The input
for MapReduce is a list of (key1, value1) pairs and
Map() is applied to each pair to compute intermedi-
ate key-value pairs, (key2, value2). The intermediate
key-value pairs are then grouped together on the key-
equality basis, i.e. (key2, list(value2)). For each key2,
Reduce() works on the list of all values, then produces
zero or more aggregated results. Users can define the
Map() and Reduce() functions however they want the
MapReduce framework works.

MapReduce utilizes the Google File System(GFS) as
an underlying storage layer to read input and store out-
put[59]. GFS is a chunk-based distributed file system
that supports fault-tolerance by data partitioning and
replication. Apache Hadoop is an open-source Java
implementation of MapReduce[81]. We proceed our
explanation with Hadoop since Google’s MapReduce
code is not available to the public for its proprietary
use. Other implementations (such as DISCO written
in Erlang[6]) are also available, but not as popular as
Hadoop. Like MapReduce, Hadoop consists of two lay-
ers: a data storage layer called Hadoop DFS(HDFS)
and a data processing layer called Hadoop MapReduce
Framework. HDFS is a block-structured file system
managed by a single master node like Google’s GFS.
Each processing job in Hadoop is broken down to as
many Map tasks as input data blocks and one or more
Reduce tasks. Figure 1 illustrates an overview of the
Hadoop architecture.

A single MapReduce(MR) job is performed in two
phases: Map and Reduce stages. The master picks idle

SIGMOD Record, December 2011 (Vol. 40, No. 4) 11



workers and assigns each one a map or a reduce task
according to the stage. Before starting the Map task,
an input file is loaded on the distributed file system. At
loading, the file is partitioned into multiple data blocks
which have the same size, typically 64MB, and each
block is triplicated to guarantee fault-tolerance. Each
block is then assigned to a mapper, a worker which is
assigned a map task, and the mapper applies Map() to
each record in the data block. The intermediate out-
puts produced by the mappers are then sorted locally
for grouping key-value pairs sharing the same key. After
local sort, Combine() is optionally applied to perform
pre-aggregation on the grouped key-value pairs so that
the communication cost taken to transfer all the inter-
mediate outputs to reducers is minimized. Then the
mapped outputs are stored in local disks of the map-
pers, partitioned into R, where R is the number of Re-
duce tasks in the MR job. This partitioning is basically
done by a hash function e.g. , hash(key) mod R.

When all Map tasks are completed, the MapReduce
scheduler assigns Reduce tasks to workers. The inter-
mediate results are shuffled and assigned to reducers via
HTTPS protocol. Since all mapped outputs are already
partitioned and stored in local disks, each reducer per-
forms the shuffling by simply pulling its partition of the
mapped outputs from mappers. Basically, each record
of the mapped outputs is assigned to only a single re-
ducer by one-to-one shuffling strategy. Note that this
data transfer is performed by reducers’ pulling interme-
diate results. A reducer reads the intermediate results
and merge them by the intermediate keys, i.e. key2, so
that all values of the same key are grouped together.
This grouping is done by external merge-sort. Then
each reducer applies Reduce() to the intermediate val-
ues for each key2 it encounters. The output of reducers
are stored and triplicated in HDFS.
Note that the number of Map tasks does not depend

on the number of nodes, but the number of input blocks.
Each block is assigned to a single Map task. However,
all Map tasks do not need to be executed simultaneously
and neither are Reduce tasks. For example, if an input
is broken down into 400 blocks and there are 40 mappers
in a cluster, the number of map tasks are 400 and the
map tasks are executed through 10 waves of task runs.
This behavior pattern is also reported in [60].
The MapReduce framework executes its tasks based

on runtime scheduling scheme. It means that MapRe-
duce does not build any execution plan that specifies
which tasks will run on which nodes before execution.
While DBMS generates a query plan tree for execution,
a plan for executions in MapReduce is determined en-
tirely at runtime. With the runtime scheduling, MapRe-
duce achieves fault tolerance by detecting failures and
reassigning tasks of failed nodes to other healthy nodes
in the cluster. Nodes which have completed their tasks

Figure 1: Hadoop Architecture

are assigned another input block. This scheme natu-
rally achieves load balancing in that faster nodes will
process more input chunks and slower nodes process
less inputs in the next wave of execution. Furthermore,
MapReduce scheduler utilizes a speculative and redun-
dant execution. Tasks on straggling nodes are redun-
dantly executed on other idle nodes that have finished
their assigned tasks, although the tasks are not guar-
anteed to end earlier on the new assigned nodes than
on the straggling nodes. Map and Reduce tasks are
executed with no communication between other tasks.
Thus, there is no contention arisen by synchronization
and no communication cost between tasks during a MR
job execution.

3. PROS AND CONS

3.1 Debates

As suggested by many researchers, commercial DBMSs
have adopted “one size fits all” strategy and are not
suited for solving extremely large scale data processing
tasks. There has been a demand for special-purpose
data processing tools that are tailored for such problems
[79, 50, 72]. While MapReduce is referred to as a new
way of processing big data in data-center computing
[77], it is also criticized as a “major step backwards” in
parallel data processing in comparison with DBMS [10,
15]. However, many MapReduce proponents in indus-
try argue that MapReduce is not a DBMS and such
an apple-to-orange comparison is unfair. As the techni-
cal debate continued, ACM recently invited both sides
in January edition of CACM, 2010 [51, 39]. Panels in
DOLAP’10 also discussed pros and cons of MapReduce
and relational DB for data warehousing [23].

Pavlo et al ’s comparison show that Hadoop is 2∼50
times slower than parallel DBMS except in the case of
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data loading [15]. Anderson et al also criticize that the
current Hadoop system is scalable, but achieves very
low efficiency per node, less than 5MB/s processing
rates, repeating a mistake that previous studies on high-
performance systems often made by “focusing on scal-
ability but missing efficiency” [32]. This poor efficiency
involves many issues such as performance, total cost
of ownership(TCO) and energy. Although Hadoop won
the 1st position in GraySort benchmark test for 100 TB
sorting(1 trillion 100-byte records) in 2009, its winning
was achieved with over 3,800 nodes [76]. MapReduce
or Hadoop would not be a cheap solution if the cost
for constructing and maintaining a cluster of that size
was considered. Other studies on the performance of
Hadoop are also found in literature [28, 61]. Analysis
of 10-months of MR logs from Yahoo’s M45 Hadoop
cluster and MapReduce usage statistics at Google are
also available [60, 9].
The studies exhibit a clear tradeoff between efficiency

and fault-tolerance. MapReduce increases the fault tol-
erance of long-time analysis by frequent checkpoints of
completed tasks and data replication. However, the fre-
quent I/Os required for fault-tolerance reduce efficiency.
Parallel DBMS aims at efficiency rather than fault tol-
erance. DBMS actively exploits pipelining intermediate
results between query operators. However, it causes a
potential danger that a large amount of operations need
be redone when a failure happens. With this fundamen-
tal difference, we categorize the pros and cons of the
MapReduce framework below.

3.2 Advantages

MapReduce is simple and efficient for computing ag-
gregate. Thus, it is often compared with “filtering then
group-by aggregation” query processing in a DBMS. Here
are major advantages of the MapReduce framework for
data processing.

Simple and easy to use The MapReduce model is sim-
ple but expressive. With MapReduce, a program-
mer defines his job with only Map and Reduce
functions, without having to specify physical dis-
tribution of his job across nodes.

Flexible MapReduce does not have any dependency on
data model and schema. With MapReduce a pro-
grammer can deal with irregular or unstructured
data more easily than they do with DBMS.

Independent of the storage MapReduce is basically
independent from underlying storage layers. Thus,
MapReduce can work with different storage layers
such as BigTable[35] and others.

Fault tolerance MapReduce is highly fault-tolerant.
For example, it is reported that MapReduce can
continue to work in spite of an average of 1.2 fail-
ures per analysis job at Google[44, 38].

High scalability The best advantage of using MapRe-
duce is high scalability. Yahoo! reported that
their Hadoop gear could scale out more than 4,000
nodes in 2008[4].

3.3 Pitfalls

Despite many advantages, MapReduce lacks some of
the features that have proven paramount to data analy-
sis in DBMS. In this respect, MapReduce is often char-
acterized as an Extract-Transform-Load(ETL) tool[51].
We itemize the pitfalls of the MapReduce framework
below, compared with DBMS.

No high-level language MapReduce itself does not
support any high-level language like SQL in DBMS
and any query optimization technique. Users should
code their operations in Map and Reduce func-
tions.

No schema and no index MapReduce is schema-free
and index-free. An MR job can work right after
its input is loaded into its storage. However, this
impromptu processing throws away the benefits of
data modeling. MapReduce requires to parse each
item at reading input and transform it into data
objects for data processing, causing performance
degradation [15, 11].

A Single fixed dataflow MapReduce provides the ease
of use with a simple abstraction, but in a fixed
dataflow. Therefore, many complex algorithms are
hard to implement with Map and Reduce only in
an MR job. In addition, some algorithms that re-
quire multiple inputs are not well supported since
the dataflow of MapReduce is originally designed
to read a single input and generate a single output.

Low efficiency With fault-tolerance and scalability as
its primary goals, MapReduce operations are not
always optimized for I/O efficiency. (Consider for
example sort-merge based grouping, materializa-
tion of intermediate results and data triplication
on the distributed file system.) In addition, Map
and Reduce are blocking operations. A transi-
tion to the next stage cannot be made until all
the tasks of the current stage are finished. Conse-
quently, pipeline parallelism may not be exploited.
Moreover, block-level restarts, a one-to-one shuf-
fling strategy, and a simple runtime scheduling can
also lower the efficiency per node. MapReduce
does not have specific execution plans and does not
optimize plans like DBMS does to minimize data
transfer across nodes. Therefore, MapReduce of-
ten shows poorer performance than DBMS[15]. In
addition, the MapReduce framework has a latency
problem that comes from its inherent batch pro-
cessing nature. All of inputs for an MR job should
be prepared in advance for processing.
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Very young MapReduce has been popularized by Google
since 2004. Compared to over 40 years of DBMS,
codes are not mature yet and third-party tools
available are still relatively few.

4. VARIANTS AND IMPROVEMENTS

We present details of approaches to improving the
pitfalls of the MapReduce framework in this section.

4.1 High-level Languages

Microsoft SCOPE[53], Apache Pig[22, 18], and Apache
Hive[16, 17] all aim at supporting declarative query lan-
guages for the MapReduce framework. The declarative
query languages allow query independence from pro-
gram logics, reuse of the queries and automatic query
optimization features like SQL does for DBMS. SCOPE
works on top of the Cosmos system, a Microsoft’s clone
of MapReduce, and provides functionality similar to
SQL views. It is similar to SQL but comes with C# ex-
pressions. Operators in SCOPE are the same as Map,
Reduce and Merge supported in [37].
Pig is an open source project that is intended to sup-

port ad-hoc analysis of very large data, motivated by
Sawzall[55], a scripting language for Google’s MapRe-
duce. Pig consists of a high-level dataflow language
called Pig Latin and its execution framework. Pig Latin
supports a nested data model and a set of pre-defined
UDFs that can be customized [22]. The Pig execution
framework first generates a logical query plan from a Pig
Latin program. Then it compiles the logical plan down
into a series of MR jobs. Some optimization techniques
are adopted to the compilation, but not described in
detail[18]. Pig is built on top of Hadoop framework,
and its usage requires no modification to Hadoop.
Hive is an open-source project that aims at providing

data warehouse solutions on top of Hadoop, supporting
ad-hoc queries with an SQL-like query language called
HiveQL. Hive compiles a HiveQL query into a directed
acyclic graph(DAG) of MR jobs. The HiveQL includes
its own type system and data definition language(DDL)
to manage data integrity. It also contains a system
catalog, containing schema information and statistics,
much like DBMS engines. Hive currently provides only
a simple, naive rule-based optimizer.
Similarly, DryadLINQ[71, 49] is developed to trans-

late LINQ expressions of a program into a distributed
execution plan for Dryad, Microsoft’s parallel data pro-
cessing tool [48].

4.2 Schema Support

As described in Section 3.3, MapReduce does not
provide any schema support. Thus, the MapReduce
framework parses each data record at reading input,
causing performance degradation [15, 51, 11]. Mean-
while, Jiang et al report that only immutable decoding

that transforms records into immutable data objects
severely causes performance degradation, rather than
record parsing [28].

While MapReduce itself does not provide any schema
support, data formats such as Google’s Protocol Buffers,
XML, JSON, Apache’s Thrift, or other formats can be
used for checking data integrity [39]. One notable thing
about the formats is that they are self-describing for-
mats that support a nested and irregular data model,
rather than the relational model. A drawback of the use
of the formats is that data size may grow as data con-
tains schema information in itself. Data compression is
considered to address the data size problem [47].

4.3 Flexible Data Flow

There are many algorithms which are hard to directly
map into Map and Reduce functions. For example,
some algorithms require global state information dur-
ing their processing. Loop is a typical example that
requires the state information for execution and ter-
mination. However, MapReduce does not treat state
information during execution. Thus, MapReduce reads
the same data iteratively and materializes intermedi-
ate results in local disks in each iteration, requiring lots
of I/Os and unnecessary computations. HaLoop[66],
Twister[42], and Pregel[36] are examples of systems that
support loop programs in MapReduce.

HaLoop and Twister avoid reading unnecessary data
repeatedly by identifying and keeping invariant data
during iterations. Similarly, Lin et al propose an in-
mapper combining technique that preserves mapped out-
puts in a memory buffer across multiple map calls, and
emits aggregated outputs at the last iteration [75]. In
addition, Twister avoids instantiating workers repeat-
edly during iterations. Previously instantiated workers
are reused for the next iteration with different inputs
in Twister. HaLoop is similar to Twister, and it also
allows to cache both each stage’s input and output to
save more I/Os during iterations. Vanilla Hadoop also
supports task JVM reuse to avoid the overhead of start-
ing a new JVM for each task [81]. Pregel mainly tar-
gets to process graph data. Graph data processing are
usually known to require lots of iterations. Pregel im-
plements a programming model motivated by the Bulk
Synchronous Parallel(BSP) model. In this model, each
node has each own input and transfers only some mes-
sages which are required for next iteration to other
nodes.

MapReduce reads a single input. However, many im-
portant relational operators are binary operators that
require two inputs. Map-Reduce-Merge addresses the
support of the relational operators by simply adding a
third merge stage after reduce stage [37]. The merge
stage combines two reduced outputs from two different
MR jobs into one.
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Clustera, Dryad and Nephele/PACT allow more flex-
ible dataflow than MapReduce does [31, 48, 30, 26].
Clustera is a cluster management system that is de-
signed to handle a variety of job types including MR-
style jobs [31]. Job scheduler in Clustera handles MapRe-
duce, workflow and SQL-type jobs, and each job can be
connected to form a DAG or a pipeline for complex
computations.
Dryad is a notable example of distributed data-parallel

tool that allows to design and execute a dataflow graph
as users’ wish [48]. The dataflow in Dryad has a form of
DAG that consists of vertices and channels. Each vertex
represents a program and a channel connects the ver-
tices. For execution, a logical dataflow graph is mapped
onto physical resources by a job scheduler at runtime.
A vertex runs when all its inputs are ready and outputs
its results to the neighbor vertices via channels as de-
fined in the dataflow graph. The channels can be either
of files, TCP pipes, or shared-memory. Job executions
are controlled by a central job scheduler. Redundant
executions are also allowed to handle apparently very
slow vertices, like MapReduce. Dryad also allows to
define how to shuffle intermediate data specifically.
Nephele/PACT is another parallel execution engine

and its programming model[30, 26]. The PACT model
extends MapReduce to support more flexible dataflows.
In the model, each mapper can have a separate input
and a user can specify its dataflow with more various
stages including Map and Reduce. Nephele transforms
a PACT program into a physical DAG then executes the
DAG across nodes. Executions in Nephele are scheduled
at runtime, like MapReduce.

4.4 Blocking Operators

Map and Reduce functions are blocking operations in
that all tasks should be completed to move forward to
the next stage or job. The reason is that MapReduce
relies on external merge sort for grouping intermediate
results. This property causes performance degradation
and makes it difficult to support online processing.
Logothetis et al address this problem for the first time

when they build MapReduce abstraction onto their dis-
tributed stream engine for ad-hoc data processing[29].
Their incremental MapReduce framework processes data
like streaming engines. Each task runs continuously
with a sliding window. Their system generates MR
outputs by reading the items within the window. This
stream-based MapReduce processes arriving increments
of update tuples, avoiding recomputation of all the tu-
ples from the beginning.
MapReduce Online is devised to support online ag-

gregation and continuous queries in MapReduce[63]. It
raises an issue that pull-based communication and check-
points of mapped outputs limit pipelined processing. To
promote pipelining between tasks, they modify MapRe-

duce architecture by making Mappers push their data
temporarily stored in local storage to Reducers period-
ically in the same MR job. Map-side pre-aggregation is
also used to reduce communication volumes further.

Li et al and Jiang et al have found that the merge sort
in MapReduce is I/O intensive and dominantly affects
the performance of MapReduce [21, 28]. This leads to
the use of hash tables for better performance and also
incremental processing [21]. In the study, as soon as
each map task outputs its intermediate results, the re-
sults are hashed and pushed to hash tables held by re-
ducers. Then, reducers perform aggregation on the val-
ues in each bucket. Since each bucket in the hash table
holds all values which correspond to a distinct key, no
grouping is required. In addition, reducers can perform
aggregation on the fly even when all mappers are not
completed yet.

4.5 I/O Optimization

There are also approaches to reducing I/O cost in
MapReduce by using index structures, column-oriented
storage, or data compression.

Hadoop++ provides an index-structured file format
to improve the I/O cost of Hadoop [40]. However, as it
needs to build an index for each file partition at data
loading stage, loading time is significantly increased.
If the input data are processed just once, the addi-
tional cost given by building index may not be justified.
HadoopDB also benefits from DB indexes by leveraging
DBMS as a storage in each node [11].

There are many studies that describe how column-
oriented techniques can be leveraged to improve MapRe-
duce’s performance dramatically [35, 62, 68, 12, 69].
Google’s BigTable proposes the concept of column fam-
ily that groups one or more columns as a basic working
unit[35]. Google’s Dremel is a nested column-oriented
storage that is designed to complement MapReduce[62].
The read-only nested data in Dremel are modeled with
Protocol Buffers [47]. The data in Dremel are split into
multiple columns and records are assembled via finite
state machines for record-oriented requests. Dremel is
also known to support ad-hoc queries like Hive [16].

Record Columnar File(RCFile), developed by Face-
book and adopted by Hive and Pig, is a column-oriented
file format on HDFS [68]. Data placement in HDFS is
determined by the master node at runtime. Thus, it is
argued that if each column in a relation is independently
stored in a separate file on HDFS, all related fields in
the same record cannot guarantee to be stored in the
same node. To get around this, a file format that rep-
resents all values of a relation column-wise in a single
file is devised. A RCFile consists of a set of row groups,
which are acquired by partitioning a relation horizon-
tally. Then in each row group, values are enumerated
in column-wise, similar to PAX storage scheme [3].
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Llama shows how column-wise data placement helps
join processing [69]. A column-oriented file in Llama
stores a particular column data with optional index in-
formation. It also witnesses that late materialization
which delays record reconstruction until the column
is necessary during query processing is no better than
early materialization in many cases.
Floratou et al propose a binary column-oriented stor-

age that boosts the performance of Hadoop by an or-
der of magnitude[12]. Their storage format stores each
column in a separate file but co-locate associated col-
umn files in the same node by changing data placement
policy of Hadoop. They also suggest that late mate-
rialization with skiplist shows better performance than
early materialization, contrary to the result of RCFile.
Both Floratou’s work and RCFile also use a column-
wise data compression in each row group, and adopt a
lazy decompression technique to avoid unnecessary de-
compression during query execution. Hadoop also sup-
ports the compression of mapped outputs to save I/Os
during the checkpoints[81].

4.6 Scheduling

MapReduce uses a block-level runtime scheduling with
a speculative execution. A separate Map task is created
to process a single data block. A node which finishes its
task early gets more tasks. Tasks on a straggler node
are redundantly executed on other idle nodes.
Hadoop scheduler implements the speculative task

scheduling with a simple heuristic method which com-
pares the progress of each task to the average progress.
Tasks with the lowest progress compared to the average
are selected for re-execution. However, this heuristic
method is not well suited in a heterogeneous environ-
ment where each node has different computing power.
In this environment, even a node whose task progresses
further than others may be the last if the node’s com-
puting power is inferior to others. Longest Approxi-
mate Time to End(LATE) scheduling is devised to im-
prove the response time of Hadoop in heterogeneous en-
vironments [52]. This scheduling scheme estimates the
task progress with the progress rate, rather than simple
progress score.
Parallax is devised to estimate job progress more pre-

cisely for a series of jobs compiled from a Pig pro-
gram [45]. it pre-runs with sampled data for estimating
the processing speeds of each stage. ParaTimer is an ex-
tended version of Parallax for DAG-style jobs written in
Pig [46]. ParaTimer identifies a critical path that takes
longer than others in a parallel query plan. It makes
the indicator ignore other shorter paths when estimat-
ing progress since the longest path would contribute the
overall execution time. Besides, it is reported that the
more data blocks to be scheduled, the more cost the
scheduler will pay [65]. Thus, a rule of thumb in in-

dustry – making the size of data block bigger makes
Hadoop work faster – is credible.

We now look into multi-user environment whereby
users simultaneously execute their jobs in a cluster.
Hadoop implements two scheduling schemes: fair schedul-
ing and capacity scheduling. The default fair scheduling
works with a single queue of jobs. It assigns physical
resources to jobs such that all jobs get an equal share
of resources over time on average. In this scheduling
scheme, if there is only a single MR job running in a
cluster, The job solely uses entire resources in the clus-
ter. Capacity sharing supports designing more sophis-
ticated scheduling. It provides multiple queues each of
which is guaranteed to possess a certain capacity of the
cluster.

MRShare is a remarkable work for sharing multiple
query executions in MapReduce [64]. MRShare, in-
spired by multi query optimization techniques in database,
finds an optimal way of grouping a set of queries using
dynamic programming. They suggest three sharing op-
portunities across multiple MR jobs in MapReduce, like
found in Pig [18]: scan sharing, mapped outputs shar-
ing, and Map function sharing. They also introduce
a cost model for MR jobs and validate this with ex-
periments. Their experiments show that intermediate
result sharing improves the execution time significantly.
In addition, they have found that sharing all scans yield
poorer performance as the size of intermediate results
increases, because of the complexity of the merge-sort
operation in MapReduce. Suppose that |D| is the size
of input data that n MR jobs share. When sharing all
scans, the cost of scanning inputs is reduced by |D|,
compared to n · |D| for no sharing scans. However, as a
result, the complexity of sorting the combined mapped
output of all jobs will be O(n · |D|log(n · |D|)) since
each job can generate its own mapped output with size
O(|D|). This cost can be bigger than the total cost of
sorting n different jobs, O(n · |D|log|D|) in some cases.

4.7 Joins

Join is a popular operator that is not so well dealt
with by Map and Reduce functions. Since MapReduce
is designed for processing a single input, the support of
joins that require more than two inputs with MapRe-
duce has been an open issue. We roughly classify join
methods within MapReduce into two groups: Map-side
join and Reduce-side join. We also borrow some of
terms from Blanas et al ’s study, which compares many
join techniques for analysis of clickstream logs at Face-
book [57], for explaining join techniques.
Map-side Join
Map-Merge join is a common map-side join that works
similarly to sort-merge join in DBMS. Map-Merge join
performs in two steps. First, two input relations are
partitioned and sorted on the join keys. Second, map-
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pers read the inputs and merge them [81]. Broadcast
join is another map-side join method, which is applica-
ble when the size of one relation is small [57, 7]. The
smaller relation is broadcast to each mapper and kept
in memory. This avoids I/Os for moving and sorting on
both relations. Broadcast join uses in-memory hash ta-
bles to store the smaller relation and to find matches via
table lookup with values from the other input relation.
Reduce-side Join
Repartition join is the most general reduce-side join [81,
57]. Each mapper tags each row of two relations to
identify which relation the row come from. After that,
rows of which keys have the same key value are copied
to the same reducer during shuffling. Finally, each re-
ducer joins the rows on the key-equality basis. This way
is akin to hash-join in DBMS. An improved version of
the repartition join is also proposed to fix the buffer-
ing problem that all records for a given key need to be
buffered in memory during the joining process[57].
Lin et al propose a scheme called ”schimmy” to save

I/O cost during reduce-side join[75]. The basic concept
of the scheme is to separate messages from graph struc-
ture data, and shuffle only the message to avoid shuf-
fling data, similar to Pregel [36]. In this scheme, map-
pers emit only messages. Reducers read graph structure
data directly from HDFS and do reduce-side merge join
between the data and the messages.
MapReduce Variants
Map-Reduce-Merge is the first that attempts to address
join problem in the MapReduce framework [37]. To
support binary operations including join, Map-Reduce-
Merge extends MapReduce model by adding Merge stage
after Reduce stage.
Map-Join-Reduce is another variant of MapReduce

framework for one-phase joining [27]. The authors pro-
pose a filtering-join-aggregation model that adds Join
stage before Reduce stage to perform joining within a
single MR job. Each mapper reads tuples from a sep-
arate relation which take part in a join process. After
that, the mapped outputs are shuffled and moved to
joiners for actual joining, then the Reduce() function
is applied. Joiners and reducers are actually run inside
the same reduce task. An alternative that runs Map-
Join-Reduce with two consecutive MR jobs is also pro-
posed to avoid modifying MapReduce framework. For
multi-way join, join chains are represented as a left-deep
tree. Then previous joiners transfer joined tuples to the
next joiner that is the parent operation of the previous
joiners in the tree. For this, Map-Join-Reduce adopts
one-to-many shuffling scheme that shuffles and assigns
each mapped outputs to multiple joiners at a time.
Other Join Types
Joins may have more than two relations. If relations
are simply hash-partitioned and fed to reducers, each
reducer takes a different portion of the relations. How-

ever, the same relation must be copied to all reducers
to avoid generating incomplete join results in the cases.
For example, given a multi-way join that reads 4 re-
lations and with 4 reducers, we can split only 2 rela-
tions making 4 partitions in total. The other relations
need to be copied to all reducers. If more relations
are involved into less reducers, we spend more commu-
nication costs. Afrati et al focus on how to minimize
the sum of the communication cost of data that are
transferred to Reducers for multi-way join [2]. They
suggest a method based on Lagrangean multipliers to
properly select which columns and how many of the
columns should be partitioned for minimizing the sum
of the communication costs. Lin et al propose the con-
current join that performs a multi-way join in parallel
with MapReduce [69].

In addition to binary equal-join, other join types have
been widely studied. Okcan et al propose how to effi-
ciently perform θ-join with a single MR job only [14].
Their algorithm uses a Reducer-centered cost model
that calculates the total cost of Cartesian product of
mapped output. With the cost model, they assigns
mapped output to reducers that minimizes job com-
pletion time. The support of Semi-join, e.g.R � S, is
proposed in [57]. Vernica et al propose how to efficiently
parallelize set-similarity joins with Mapreduce [56]. They
utilize prefix filtering to filter out non-candidates before
actual comparison. It requires to extract common pre-
fixes sorted in a global order of frequency from tuples,
each of which consists of a set of items.

4.8 Performance Tuning

Most of MapReduce programs are written for data
analysis and they usually take much time to be finished.
Thus, it is straightforward to provide the feature of au-
tomatic optimization for MapReduce programs. Babu
et al suggest an automatic tuning approach to finding
optimal system parameters for given input data [5]. It
is based on speculative pre-runs with sampled data.
Jahani et al suggest a static analysis approach called
MANIMAL for automatic optimization of a single Map-
Reduce job [34]. In their approach, an analyzer exam-
ines program codes before execution without any run-
time information. Based on the rules found during the
analysis, it creates a pre-computed B+-tree index and
slices input data column-wise for later use. In addition,
some semantic-aware compression techniques are used
for reducing I/O. Its limitation is that the optimiza-
tion considers only selection and projection which are
primarily implemented in Map function.

4.9 Energy Issues

Energy issue is important especially in this data-center
computing era. Since the energy cost of data centers
hits 23% of the total amortized monthly operating ex-
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penses, it is prudent to devise an energy-efficient way
to control nodes in a data center when the nodes are
idle[74]. In this respect, two extreme strategies for
energy management in MapReduce clusters are exam-
ined [74, 43]. Covering-Set approach designates in ad-
vance some nodes that should keep at least a replica of
each data block, and the other nodes are powered down
during low-utilization periods [43]. Since the dedicated
nodes always have more than one replica of data, all
data across nodes are accessible in any cases except for
multiple node failures. On the contrary, All-In strat-
egy saves energy in an all-or-nothing fashion [74]. In
the strategy, all MR jobs are queued until it reaches a
threshold predetermined. If it exceeds, all nodes in the
cluster run to finish all MR jobs and then all the nodes
are powered down until new jobs are queued enough.
Lang et al concluded that All-In strategy is superior
to Covering-Set in that it does not require changing
data placement policy and response time degradation.
However, All-In strategy may not support an instant
execution because of its batch nature. Similarly, Chen
et al discuss the computation versus I/O tradeoffs when
using data compressions in a MapReduce cluster in terms
of energy efficiency [67].

4.10 Hybrid Systems

HadoopDB is a hybrid system that connects multi-
ple single-node DBMS with MapReduce for combin-
ing MapReduce-style scalability and the performance
of DBMS [11]. HadoopDB utilizes MapReduce as a dis-
tributing system which controls multiple nodes which
run single-node DBMS engines. Queries are written
in SQL, and distributed via MapReduce across nodes.
Data processing is boosted by the features of single-
node DBMS engines as workload is assigned to the DBMS
engines as much as possible.
SQL/MapReduce is another hybrid framework that

enables to execute UDF functions in SQL queries across
multiple nodes in MapReduce-style [33]. UDFs extend a
DBMS with customizing DB functionality. SQL/Map-
Reduce presents an approach to implementing UDF that
can be executed across multiple nodes in parallel by
virtue of MapReduce. Greenplum also provides the
ability to write MR functions in their parallel DBMS.
Teradata makes its effort to combine Hadoop with their
parallel DBMS [70]. The authors describe their three
efforts toward tight and efficient integration of Hadoop
and Teradata EDW: parallel loading of Hadoop data to
EDW, retrieving EDW data from MR programs, and
accessing Hadoop data from SQL via UDFs.

5. APPLICATIONS AND ADAPTATIONS

5.1 Applications

Mahout is an Apache project that aims at building

scalable machine learning libraries which are executed
in parallel by virtue of Hadoop [1]. RHIPE and Ricardo
project are tools that integrate R statistical tool and
Hadoop to support parallel data analysis [73, 58]. Chee-
tah is a data warehousing tool built on MapReduce with
virtual view on top of the star or snowflake schemas and
with some optimization techniques like data compres-
sion and columnar store [7]. Osprey is a shared-nothing
database system that supports MapReduce-style fault
tolerance [25]. Osprey does not directly use MapReduce
or GFS. However, the fact table in star schema is parti-
tioned and replicated like GFS, and tasks are scheduled
by a central runtime scheduler like MapReduce. A dif-
ference is that Osprey does not checkpoint intermedi-
ate outputs. Instead, it uses a technique called chained
declustering which limits data unavailability when node
failures happen.

The use of MapReduce for data intensive scientific
analysis and bioinformatics are well studied in [41, 80].
CloudBLAST parallelizes NCBI BLAST2 algorithm us-
ing Hadoop [13]. They break their input sequences
down into multiple blocks and run an instance of the
vanilla version of NCBI BLAST2 for each block, us-
ing the Hadoop Streaming utility [81]. CloudBurst is
a parallel read-mapping tool that maps NGS read se-
quencing data to a reference genome for genotyping in
parallel [78].

5.2 Adaptations to Intra-node Parallelism

Some studies use the MapReduce model for simplify-
ing complex multi-thread programming on many-core
systems such as multi-core[24, 65], GPU[20, 19], and
Cell processors[8]. In the studies, mapped outputs are
transferred to reducers via shared-memory rather than
disks. In addition, a task execution is performed by a
single core rather than a node. In this intra-node paral-
lelism, fault-tolerance can be ignored since all cores are
located in a single system. A combination of intra-node
and inter-node parallelism by the MapReduce model is
also suggested [54].

6. DISCUSSION AND CHALLENGES

MapReduce is becoming ubiquitous, even though its
efficiency and performance are controversial. There is
nothing new about principles used in MapReduce [10,
51]. However, MapReduce shows that many problems
can be solved in the model at scale unprecedented be-
fore. Due to frequent checkpoints and runtime schedul-
ing with speculative execution, MapReduce reveals low
efficiency. However, such methods would be necessary
to achieve high scalability and fault tolerance in massive
data processing. Thus, how to increase efficiency guar-
anteeing the same level of scalability and fault tolerance
is a major challenge. The efficiency problem is expected
to be overcome in two ways: improving MapReduce it-
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self and leveraging new hardware. How to utilize the
features of modern hardware has not been answered in
many areas. However, modern computing devices such
as chip-level multiprocessors and Solid State Disk(SSD)
can help reduce computations and I/Os in MapReduce
significantly. The use of SSD in Hadoop with simple
installation is briefly examined, but not in detail [21].
Self-tuning and job scheduling in multi-user environ-
ments are another issues that have not been well address
yet. The size of MR clusters is continuously increas-
ing. A 4,000-node cluster is not surprising any more.
How to efficiently manage resources in the clusters of
that size in multi-user environment is also challenging.
Yahoo’s M45 cluster reportedly shows only 5∼10% re-
source utilization [60]. Energy efficiency in the clusters
and achieving high utilizations of MR clusters are also
important problems that we consider for achieving bet-
ter TCO and return on investments in practice.

7. CONCLUSION

We discussed pros and cons of MapReduce and clas-
sified its improvements. MapReduce is simple but pro-
vides good scalability and fault-tolerance for massive
data processing. However, MapReduce is unlikely to
substitute DBMS even for data warehousing. Instead,
we expect that MapReduce complements DBMS with
scalable and flexible parallel processing for various data
analysis such as scientific data processing. Nonetheless,
efficiency, especially I/O costs of MapReduce still need
to be addressed for successful implications.

Acknowledgement

This work is supported by the National Research Fund
(NRF) grant funded by Korea government(MEST)(No.
2011-0016282).

8. REFERENCES
[1] Mahout: Scalable machine-learning and data-mining

library. http://mapout.apache.org, 2010.
[2] F.N. Afrati and J.D. Ullman. Optimizing joins in a

map-reduce environment. In Proceedings of the 13th
EDBT, pages 99–110, 2010.

[3] A. Ailamaki, D.J. DeWitt, M.D. Hill, and M. Skounakis.
Weaving relations for cache performance. The VLDB
Journal, pages 169–180, 2001.

[4] A. Anand. Scaling Hadoop to 4000 nodes at Yahoo!
http://goo.gl/8dRMq, 2008.

[5] S. Babu. Towards automatic optimization of mapreduce
programs. In Proceedings of the 1st ACM symposium on
Cloud computing, pages 137–142, 2010.

[6] Nokia Research Center. Disco: Massive data- minimal code.
http://discoproject.org, 2010.

[7] S. Chen. Cheetah: a high performance, custom data
warehouse on top of MapReduce. Proceedings of the VLDB,
3(1-2):1459–1468, 2010.

[8] M. de Kruijf and K. Sankaralingam. Mapreduce for the cell
broadband engine architecture. IBM Journal of Research
and Development, 53(5):10:1–10:12, 2009.

[9] J. Dean. Designs, lessons and advice from building large
distributed systems. Keynote from LADIS, 2009.

[10] D. DeWitt and M. Stonebraker. MapReduce: A major step
backwards. The Database Column, 1, 2008.

[11] A. Abouzeid et al . HadoopDB: An architectural hybrid of
MapReduce and DBMS technologies for analytical
workloads. Proceedings of the VLDB Endowment,
2(1):922–933, 2009.

[12] A. Floratou et al . Column-Oriented Storage Techniques for
MapReduce. Proceedings of the VLDB, 4(7), 2011.

[13] A. Matsunaga et al . Cloudblast: Combining mapreduce
and virtualization on distributed resources for
bioinformatics applications. In Fourth IEEE International
Conference on eScience, pages 222–229, 2008.

[14] A. Okcan et al . Processing Theta-Joins using MapReduce.
In Proceedings of the 2011 ACM SIGMOD, 2011.

[15] A. Pavlo et al . A comparison of approaches to large-scale
data analysis. In Proceedings of the ACM SIGMOD, pages
165–178, 2009.

[16] A. Thusoo et al . Hive: a warehousing solution over a
map-reduce framework. Proceedings of the VLDB
Endowment, 2(2):1626–1629, 2009.

[17] A. Thusoo et al . Hive-a petabyte scale data warehouse
using Hadoop. In Proceedings of the 26th IEEE ICDE,
pages 996–1005, 2010.

[18] A.F. Gates et al . Building a high-level dataflow system on
top of Map-Reduce: the Pig experience. Proceedings of the
VLDB Endowment, 2(2):1414–1425, 2009.

[19] B. Catanzaro et al . A map reduce framework for
programming graphics processors. In Workshop on
Software Tools for MultiCore Systems, 2008.

[20] B. He et al . Mars: a MapReduce framework on graphics
processors. In Proceedings of the 17th PACT, pages
260–269, 2008.

[21] B. Li et al . A Platform for Scalable One-Pass Analytics
using MapReduce. In Proceedings of the 2011 ACM
SIGMOD, 2011.

[22] C. Olston et al . Pig latin: a not-so-foreign language for
data processing. In Proceedings of the ACM SIGMOD,
pages 1099–1110, 2008.

[23] C. Ordonez et al . Relational versus Non-Relational
Database Systems for Data Warehousing. In Proceedings of
the ACM DOLAP, pages 67–68, 2010.

[24] C. Ranger et al . Evaluating mapreduce for multi-core and
multiprocessor systems. In Proceedings of the 2007 IEEE
HPCA, pages 13–24, 2007.

[25] C. Yang et al . Osprey: Implementing MapReduce-style
fault tolerance in a shared-nothing distributed database. In
Proceedings of the 26th IEEE ICDE, 2010.
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