
Virtual Appliances for Deploying and Maintaining Software

Constantine Sapuntzakis David Brumley Ramesh Chandra
Nickolai Zeldovich Jim Chow Monica S. Lam Mendel Rosenblum

Computer Systems Laboratory
Stanford University

{csapuntz, dbrumley, rameshch, nickolai, jchow, lam, mendel}@cs.stanford.edu

Abstract

This paper attempts to address the complexity of system administration by making the labor of applying soft-
ware updates independent of the number of computers on which the software is run. Complete networks of
machines are packaged up as data; we refer to them asvirtual appliances. The publisher of an appliance con-
trols the software installed on the appliance, from the operating system to the applications, and is responsible
for keeping the appliance up to date. These appliances can be configured by users to fit their needs; the con-
figuration is captured such that it can be reapplied automatically when the appliance’s software is updated. We
have developed a compute utility, called the Collective, which assigns virtual appliances to hardware dynami-
cally and automatically. By keeping software up to date, our approach prevents security break-ins due to fixed
vulnerabilities.

This paper presents the concept of virtual networks of virtual appliances and describes our prototype of the
Collective Utility. We demonstrate the feasibility of our approach by creating appliances for groupware servers,
Windows desktop environments, and software development environments.

1 Introduction

On July 24, 2002, Microsoft released a patch for buffer
overruns in SQL Server 2000[11]. Six months later, on
January 25, 2003, the SQL slammer worm inundated net-
work links with packets, slowing Internet connections and
costing an estimated $1 billion. The worm exploited a vul-
nerability on unpatched servers[19]. Unpatched software
affects more than just services; desktop systems are also in
jeopardy when security patches go unapplied. On June 5,
2003, Stanford University disabled all outgoing mail deliv-
ery due to the BugBear.B virus, which was leaking confi-
dential documents[20]. The hole exploited by BugBear.B
was fixed by Microsoft in a patch[10] issued more than two
years before, but many users had not updated their desk-
tops.

These two incidents underscore the importance of keep-
ing systems up to date with respect to security patches. But
security patches are released frequently, and end users may
not be aware of patches or have the know-how to update
their systems. Patching today is done through a variety of
ad-hoc mechanisms; applying a patch sometimes breaks a
system. To improve security, we must make updates auto-

matic, reliable, and even mandatory.
Software update is only one of the problems facing sys-

tem administrators. Setting up and maintaining a comput-
ing infrastructure requires much effort. While large orga-
nizations may have IT departments, smaller organizations,
such as start-up companies and university research groups,
may not have professional staff to create and manage in-
frastructure. With home users, the situation is even worse.
They are often poorly versed in system administration and
waste much time as a result.

1.1 Approach

We observe that computers do not have to be difficult to
install and maintain. The TiVo personal video recorder has
much of the same hardware and software as a PC, yet it
automatically downloads updates and installs them, with-
out hassling the user. Computing appliances, like the TiVo,
provide a more predictable environment for software up-
dates since users do not install software. Instead, the soft-
ware installed on the appliance is controlled by the appli-
ance vendor, who can test all the software to ensure it works
together before distributing it.

Inspired by the ease of administering of appliances, we
have proposed organizing software systems asvirtual ap-
pliancesin previous work[17]. A virtual appliance (VAP)
is like a physical appliance but without the hardware; as
such, a VAP is like software and can be shipped and stored
electronically. Like the software in a real appliance, the
software in the virtual appliance is written to run on top of
hardware. We chose x86 hardware due to the vast amount
of x86 software and hardware available. Rather than run
the VAPs on bare hardware, we run them on an x86 virtual
machine monitor, VMware GSX Server, to ease manage-
ment. Recognizing that network management now plays a
substantial part in system administration, we have extended
the concept of a virtual appliance to include the network.
A virtual appliance can be a network of virtual appliances,
which we call avirtual appliance network(VAN). For ex-
ample, a groupware VAP may consist of separate DNS,
LDAP, web, and mail VAPs, connected by a virtual net-
work, and protected by a firewall VAP. By bundling appli-
ances into VANs, we amortize the cost of network admin-
istration among users of the bundle.

Appliance publisherscreate, publish, and update VAPs;
like software publishers, they will often be organizations
but may just be sophisticated individuals. Users get copies
of VAPs from publishers and run them. Instead of installing
software in VAPs, users acquire the features they need by
getting additional VAPs.

We propose running VAPs on a compute utility. The util-
ity automatically manages hardware, deciding which appli-
ances run where. Appliances are not tied to specific hard-
ware and can be moved to balance load or route around
failures. Professionals, calledutility administrators, pro-
cure and maintain the utility’s hardware; they also install
and maintain the utility’s software.

An appliance’s software is stored on virtual disks pro-
vided by the publisher; we call these disksprogram disks.
The publisher controls the contents of program disks and
can publish new versions to update the appliance’s soft-
ware. When an appliance is restarted, the utility will auto-
matically pick up the most recent versions of the program
disks unless instructed otherwise. To allow customizations
and data to persist across updates, data is stored on separate
data disksor in network storage.

By automating software update, our proposal makes
software administration independent of the number of com-
puters at a site. Not only does this reduce cost, but making
software easy to update improves security, and reducing
the management overhead encourages more software to be
used.

1.2 Overview

This paper presents a prototype system, called the Collec-
tive, designed to support the creation, publication, execu-
tion, and update of VAPs. We also report our preliminary
experiences with the system.

The Collective has three main components: a configu-
ration language called CVL for describing VAPs, an ap-
pliance repository for publishing VAPs, and a utility for
running VAPs. The Collective Virtual appliance Language
(CVL), pronounced “civil”, describes a VAP, including its
parameters and, for VANs, the network layout. Appliance
repositories allow publishers to post VAPs and to update
them. Users refer to a repository using a URL when telling
the Collective what appliance they wish to run. Finally,
the Collective Utility manages a cluster of computers, runs
VAPs, and performs updates.

The paper discusses the following in more detail:

Specification and implementation of VANs. Just as
virtual machines make whole computer states readily
manipulable, virtual appliance networks ease the ma-
nipulation of networks of computers. We have imple-
mented techniques for starting, stopping, and updating
VANs. Using CVL, we describe how to compose ap-
pliances into VANs and how to attach VANs to other
VANs.

Configurable and extensible VAPs. To be reused, pub-
lished appliances must be customizable to fit the needs
of the user. Using parameters set in CVL files, users
can configure VAPs with such details as network pa-
rameters and domain names; these parameters are
passed by the utility to a VAP on boot and on update.
Also, in the CVL language, a derived appliance inher-
its parameters from its parent and can thus automat-
ically take advantage of changes made to the parent
appliance. Still, users can override parameters from
the parent in the derived appliance to customize it for
the local site.

Update support. The Collective helps publishers main-
tain users’ software installations by providing a pre-
dictable update model–replacing the program disks of
the appliance. Since users refer to appliances from
repositories, the Collective Utility can directly con-
sult the repository to find the most up to date versions
and even prevent users from running vulnerable soft-
ware if that is desired. Also, the Collective Utility can
minimize downtime when updating a running VAN by
restarting only the modified appliances.

Experiences. This paper also reports our preliminary ex-
perience with the system in three scenarios: (1) a net-
work of common group services such as DNS, LDAP

and Mail, (2) Linux software development environ-
ments, and (3) Windows desktops. Our experience
suggests that VAPs are a feasible way of maintaining
software.

1.3 Paper Organization

The rest of the paper is organized as follows. Section 2
motivates our design with some examples. Section 3 ex-
plains how we specify a virtual appliance network. Sec-
tion 4 presents the design of the appliance repository. Sec-
tion 5 overviews the interface of the Collective Utility and
its implementation. We describe our experiences in Sec-
tion 6, and related work in Section 7. Finally, we present
our closing remarks and conclusions in Section 8.

2 Motivating Examples

Virtual appliances reduce system administration by having
one organization, the appliance publisher, manage the soft-
ware for all users of an appliance. Because the publisher
controls the operating system, shared libraries, and appli-
cations in the appliance, the publisher can test them and
ensure they work together.

Networks of virtual appliances have performance, isola-
tion, and maintenance benefits over individual appliances.
The performance benefits come from being able to run mul-
tiple appliances on multiple computers in parallel. The iso-
lation benefits come from separating services: for example,
firewall, LDAP, DNS, and mail servers can each have their
own appliance. Updating and rebooting an appliance af-
fects a single service or, if the service is replicated, a frac-
tion thereof.

The maintenance benefits come from two sources. First,
the cost borne by the publisher when maintaining an appli-
ance is amortized over all users of the same appliance. Sec-
ond, since a virtual appliance network can specify topology
and network infrastructure services like DHCP and DNS,
the user does not need to deal with the complexity of set-
ting up networks.

We illustrate the use of virtual appliances with three con-
crete scenarios:

Groupware. Many organizations need groupware tools
to collaborate. Groups often find it difficult to cre-
ate and keep their groupware up to date, especially in
non-technical organizations. As a result, many depart-
ments that would benefit from their own groupware go
without for lack of administrators.

Virtual appliance networks make it possible to bun-
dle together a number of common services, such as
DNS, LDAP, and Mail, and release them as a unit. In

keeping with security best practices[12], which sug-
gest that each service run on a separate operating sys-
tem, these functions are split across multiple appli-
ances connected by a virtual network. With the Col-
lective system, we can instantiate a new network of
groupware appliances quickly and keep them up to
date.

Software development.Some software systems are dif-
ficult to compile, link, and install. They have been
well tested only on specific versions of tools and are
picky about where libraries and files are placed. It
is time-consuming to track down and install the tools
necessary for a complete build.

Instead of creating an installer, the software publisher
can bundle the necessary tools in an appliance and dis-
tribute it to users. Each user runs a copy of the appli-
ance and uses the tools. To share data between the ap-
pliance and other systems, the user mounts a network
file system into the appliance.

Telecommuters’ desktops.The advantages of appliance
and utility computing can also be applied to desk-
top computing. In this scenario, the IT department
gives a user a configured network of appliances that
the user can run at home. For example, a standard
office worker may have a productivity appliance with
an office suite and e-mail tools. To allow the user to
access company resources from home, the company
bundles a VPN appliance with the productivity appli-
ance. The VPN appliance also has a firewall to protect
the productivity appliance and the company data on it
from being attacked by other appliances.

3 Virtual Appliance Networks

We use the termvirtual appliance(VAP) to refer to either a
virtual machine (VM) appliance, or a virtual appliance net-
work (VAN) composed of VAPs. To support customization,
VAPs are configurable; the behavior of a virtual appliance
can be changed by changing the values of parameters.

The interface between a VAP and the Collective Utility
takes the form of apre-defined set of parameters. These pa-
rameters are either used by, or set by, the Utility. For exam-
ple, for each VM appliance, the Collective needs to know
the name of the VMware.vmx configuration file. For each
VAN, the Collective needs to know the network topology,
the appliances connected to the network, and the dependen-
cies between them. The Collective can also assign values
to parameters. After allocating certain resources, such as
IP addresses, to an appliance, the utility sets parameters
on the appliance corresponding to these resources; the ap-
pliance and other appliances can use these parameters to

configure themselves.
Every VAP can also haveappliance-specific parameters

that are specific to configuring the software in the appli-
ance. While complex software packages such as OpenL-
DAP have tens of configuration parameters, the appliance
publisher can reduce this number by providing sensible de-
faults, thus saving the users the time-consuming task of
learning all the configuration parameters in a package. Fur-
thermore, the publisher of a VAN can pre-configure the ap-
pliances in it to talk to each other or propagate parameters
between them, freeing the user from having to manually
create these connections or propagate values.

An appliance specification includes a set of parameters
and values. Parameters can be set by appliance publish-
ers, the user, and the Collective Utility. A publisher may
wish to compose a network of appliances out of other pub-
lished appliances. Or, he may extend an existing appliance
by assigning specific values to some of the parameters and
republish it. For example, a university system administra-
tor may inject the university domain name into an appliance
and make it available to all users. A user may further extend
the appliance by, for example, supplying the appliance with
credentials in order to gain access to their data. Updates
should propagate down a chain of publishers while main-
taining customization; if the original publisher updates the
appliance, the extended ones should update automatically,
maintaining customizations wherever possible.

It is thus desirable that our configuration language sup-
port composition, extension, and allow changes to a VAP
to be propagated to extended versions. This argues for a
configuration language that supports abstraction and inher-
itance. To satisfy these requirements, we have defined the
Collective Virtual appliance Language (CVL).

3.1 The CVL Language

The CVL language, version 0.8, has a generic syntax suit-
able for describing configurations of any types of objects
and a set of pre-defined objects that model the semantics of
virtual appliances.

An object may consist of component objects, a set of pa-
rameters, and possibly their values. An object can inherit
from one other object. The value of a parameter is set using
an assignment statement. Assignments in parent objects are
executed before assignment in the derived objects, allow-
ing specialized assignments to override the generic. With-
out looping constructs or even conditional statements, the
language is far from being Turing-complete. It is a simple
configuration language whose goal is to generate parame-
ter and value pairs for each object. For reference, the BNF
grammar for the CVL language is shown in Appendix A.

The semantics of virtual appliances are captured by four
pre-defined types of objects:

Interface objects represent virtual Ethernet network in-
terfaces in VAPs.

Appliance is the base object for all appliances.

VMAppliance , inheriting from Appliance, is the base ob-
ject for VM appliances. VMAppliance has avm pa-
rameter that points to the contents of the virtual ma-
chine, which is a.vmx file in the case of a VMware
virtual machine.

VANAppliance, also inheriting from Appliance, is the
base object for VAN appliances.

Figure 1 shows all of the parameters defined for each of
the base objects. The semantics of these parameters are
discussed in more detail below. The pre-defined objects
and their parameters are used by the Collective Utility in
configuring and running virtual appliances. We can set the
values of these parameters and add new appliance-specific
parameters by deriving new appliances from either VMAp-
pliance or VANAppliance. Only VANAppliances can have
VMAppliance components; only VMAppliances can have
Interface components. Currently, CVL does not allow the
definition of any other kinds of objects.

Interface {
var "required" mac, ip, subnet, netmask;
var defaultroute;

}

Appliance {
var requires, provides;
var "required" vanIF;

}

VMAppliance extends Appliance {
var "required" vm;
var datadisks;
Interface ethernet0;
vanIF = "ethernet0";

}

VANAppliance extends Appliance {
var defaultroute;

}

Figure 1: Pre-defined objects in CVL.

Figures 2 and 3 show an example of a groupware net-
work called Groupware with three components, a DNS
server, an LDAP server, and a firewall. We will use this
example in the rest of the section to explain the CVL lan-
guage. We first describe how to specify components and
how to declare parameters and assign to them, and then de-
scribe the semantics of the parameters in the pre-defined
base types.

From http://virtualappliance.org/DNS:

/* Language version number */
CVL = "0.8";
DNS extends VMAppliance {

var "required" domain, dnshosts;
var port;
port = "53/udp";

/* Virtual machine configuration */
vm = "dns.vmx";
datadisks = { device => "ide0:1",

size => "100mb" };

/* Dependencies between appliances */
provides = "DNS";

}

From http://virtualappliance.org/OpenLDAP:

CVL = "0.8";
OpenLDAP extends VMAppliance {

var port, sport;
port = "389/tcp";
sport = "636/tcp";

/* Virtual machine configuration */
vm = "ldap.vmx";
datadisks = { device => "ide0:1",

size => "100mb" };

/* Dependencies between appliances */
provides = "LDAP";
requires = "DNS";

}

From http://virtualappliance.org/Firewall:

CVL = "0.8";
Firewall extends VMAppliance {

Interface ethernet1;
var services;

/* Virtual machine configuration */
vm = "fw.vmx";

}

Figure 2: A few virtual appliances used in Groupware.

3.2 Components

Component VAPs of a VAN must beimported into the
name space of the file defining the VAN. Theimport
statement specifies the appliance definition to be used and a
short name by which the definition is referred to. The def-
inition includes the URL of the appliance repository, the
name of the.cvl file, and optionally a version number.
If no version number is specified, the latest version is as-
sumed.

Specifying a particular version of an appliance is useful
in cases when only that specific appliance version supports
some feature. Additionally, a specific version of an appli-
ance may be desired when a set of appliances of certain

From http://virtualappliance.org/Groupware:

/* Language version number */
CVL = "0.8";
/* Import component appliance definitions */
import {

url => "http://virtualappliance.org/DNS",
cvl => "DNS.cvl",
version => "3"

} DNS;

import {
url => "http://virtualappliance.org/Firewall",
cvl => "Firewall.cvl",
version => "5"

} Firewall;

import {
url => "http://virtualappliance.org/OpenLDAP",
cvl => "OpenLDAP.cvl"

} OpenLDAP;

Groupware extends VANAppliance {
var "required" domain;

/* components */
DNS d;
OpenLDAP l;
Firewall f;

/* configuration */
d.domain = domain;
l.domain = domain;

d.dnshosts = { name => l.name,
ip => l.ethernet0.ip },

{ name => d.name,
ip => d.ethernet0.ip },

{ name => f.name,
ip => f.ethernet0.ip };

f.services = { port => l.port,
ip => l.ethernet0.ip },

{ port => l.sport,
ip => l.ethernet0.ip },

{ port => d.port,
ip => d.ethernet0.ip };

/* network topology */
vanIF = "f.ethernet1";
defaultroute = f.ethernet0.ip;

}

Figure 3: A virtual appliance network for running Group-
ware.

versions have been tested to work together, as is the case
of the Groupware appliance. Most of the time we expect
the user not to specify a particular appliance version when
starting an appliance, thus allowing the appliance software
to be automatically updated as new versions become avail-
able.

Components in VANs are declared by specifying the ap-
pliance type followed by the name of the component. For

example, the Groupware appliance in Figure 3 declares that
it has three components: a DNS server namedd, an OpenL-
DAP server namedl , and a firewall namedf . The import
statement for the DNS appliance specifically requests ver-
sion 3 of the appliance from the repository, while theim-
port statement for the Firewall appliance does not spec-
ify the version number, so the latest version present in the
repository will be used.

3.3 Parameters and Assignments

Each appliance inherits all the parameters from its parent
appliance and can define new parameters. It may assign to
its parameters or the parameters defined in any of its com-
ponents. We refer to parameterv of an objecto aso.v .

Parameters may be given attributes. Parameters declared
with the attribute"required" must have a value before
the appliance can be started. With this construct, the Col-
lective Utility can detect errors early and help users by pro-
viding them with a meaningful error report. As shown in
Figure 2, the OpenLDAP appliance has a requireddomain
parameter, which requires the user to set the domain name
for the LDAP server. The Firewall appliance, on the other
hand, has an optionalservices parameter, which allows
the user to specify what services the firewall should expose.
If the value of theservices parameter is not specified,
the firewall appliance will still function without exposing
any services.

Some parameters, like user keys and passwords, are
sensitive; we declare such parameters with the attribute
"sensitive" . Sensitive parameter values should not
be stored unencrypted in the file system. Instead, before
sending parameters to an appliance, the Collective Utility
passes them to a user agent service, which keeps a cache of
sensitive values. If the requested parameter is not present
in the cache, the agent prompts the user for the value. To
allow sensitive data to persist across instances of the user
agent, the user agent stores the data in a file encrypted with
a user-supplied password.

Parameter values in CVL are lists of one or more strings.
Each list element can be either a quoted string constant, a
parameter, or a map. A map is a set of key-value pairs.
The map notation eliminates the need to remember the or-
dering of values, and makes the meaning apparent. Map
keys are string constants, and values can be string con-
stants, other parameters, or even other maps. A map is just
syntactic sugar for defining a string: for example, the map
{a=>"b", c=>"d" } evaluates to"a=b&c=d" . In the
string representation of a map, non-alphanumeric charac-
ters in the keys and values are escaped, allowing for recur-
sive map structures.

Let us now look at how the configuration parameters in
the Groupware VAN are defined. The domain name, to

be specified by the user for the entire network, is passed
onto both the DNS and OpenLDAP appliances. The fire-
wall appliance has aservices parameter, which spec-
ifies the services that the firewall should allow and hosts
to which those services should be forwarded. The Group-
ware VAN declaration puts the addresses and ports of the
DNS and LDAP appliances into this parameter, via a map,
in order to expose those services. This example illustrates
how a VAN may have fewer parameters than the sum total
provided by its components. The components may share
common parameters, and values from one appliance can be
used to configure another.

3.4 Disks in VM Appliances

Users are not allowed to make changes to the installed soft-
ware in VM appliances, but of course must be able to mod-
ify their data. When updating a VAP, we must preserve the
user’s data. Our solution is to store user data either out-
side of the appliance, by using a network file system or
on a separate disk dedicated to storing user data in the ap-
pliance. Appliances that need to access existing user files
would likely want to use a network file system for user data.
Service appliances, or appliances whose data is of no use
outside of the appliance, would likely opt for the second
option of a dedicated data disk in the appliance, as it intro-
duces fewer dependencies.

Each virtual disk in a VM appliance is used either for
storing appliance software or for storing user data. Disks
storing appliance software are calledprogram disks; they
define the operation of the appliance. Disks storing user
data are calleddata disks. All data disks, each described
by a device name and an initial disk size, must be listed in
thedatadisks parameter inherited from VMAppliance.
For example, Figure 2 illustrates a DNS appliance with a
100 megabyte data disk as deviceide0:1 ; the data disk
stores zone files for the appliance.

When updating an appliance, contents of the program
disks are updated, but data disks are untouched. This al-
lows the user’s personal settings and data to persist across
updates of the appliance.

3.5 Network Topology

A VANAppliance allows one or more appliances to be
grouped into a single VAN appliance. This results in a
strictly hierarchical network of virtual appliances. More
general topologies are supported by CVL but, for simplic-
ity, are omitted from this paper.

All components of a VAN are connected to the same vir-
tual Ethernet network, which can be attached, via a gateway
appliance, to another virtual network or the Internet. The
gateway typically implements firewall, routing and NAT
functionality.

The Interface ethernet0 declaration inVMAp-
pliance guarantees that every VM appliance has a vir-
tual interface. It is possible for a VM appliance to declare
additional interfaces. The Collective Utility is responsible
for assigning MAC and IP addresses to each of the inter-
faces in a VM appliance. Components in a VAN are con-
nected to the same Ethernet segment via their VAN network
interfaces, specified by thevanIF variable.

A VAN specification wishing to export a network in-
terface must set thevanIF variable to an interface of
one of its constituent appliances. For example, the Fire-
wall appliance in Figure 2 has two interfaces,eth-
ernet0 and ethernet1 . Its ethernet1 interface,
f.ethernet1 , serves as Groupware’s network interface.
This allows the Groupware appliance to be connected as
an appliance to another network (such as another VAN or
the outside world). Groupware’sdefaultroute is set to
f.ethernet0.ip so that all packets from Groupware’s
appliances are routed through the firewall.

3.6 Dependencies between Appliances

Just as virtual machines can be started and stopped, so can
VANs. Because services have dependencies, we have to
start and stop them in a specific order. Appliance publish-
ers list the services that their appliance provides and the
services that their appliance needs for its operation. The
Collective uses this information to construct a boot order
and a shutdown order.

Every appliance inherits two variables from the Appli-
ance object:provides andrequires . These variables
contain a list of strings representing the services provided
or required by this appliance, respectively. For example,
in Figure 2, the DNS appliance sets theprovides vari-
able to"DNS" , and the OpenLDAP appliance sets there-
quires variable to "DNS" . A VAN containing these
two appliances would start the DNS appliance before the
OpenLDAP appliance.

4 Repositories

A repository provides a location where a publisher can
post successive versions of an appliance and users can find
them. This section explains what repositories are and how
they are used by publishers, users, and the Collective Util-
ity.

Each Collective appliance repository holds the versions
of a single appliance; the versions are numbered using in-
tegers starting from 1. Once a version has been written
to the repository, that version becomes immutable. Each
version of an appliance has a CVL file. For VM appli-
ances, the VMware virtual machine files (.vmx , .vmdk ,
and .vmss) are also stored. To save time, disk space,

and bandwidth, the virtual disks typically contain only the
changes from the previous version of the appliance.

Publishers create and update repositories through the
UNIX Collective User Interface command, orcui for
short. The publisher runs the command

cui create <repository>
to create an empty repository at the file pathreposi-
tory . The publish operation

cui publish <repository> <cvl>
stores the files representing a virtual appliance as the latest
version of the appliance in the repository. For all appli-
ances, this involves copying the CVL file into the reposi-
tory. For a VM appliance, the VMware configuration file
contains a list of all virtual disks comprising the VM appli-
ance, and the CVL file designates some of the virtual disks
as data disks. Virtual disks not designated as data disks are
assumed to be program disks. The publish operation copies
the contents of the program disks to the repository but does
not copy the contents of data disks. This means that an
appliance repository only contains appliance software and
does not store any data disk content.

A repository can be hosted anywhere in the file system
where a user can create a subdirectory. We access and store
our repositories through SFS[9], which provides a secure
access to a global namespace of files.

5 The Collective Utility

The Collective Utility manages both virtual appliances and
hardware. The utility executes requests to start, stop, and
update VAPs from users, and answers queries on the status
of VAPs. It allocates hardware and network resources to
VAPs and configures VAPs to use those resources.

The Collective Utility consists of a central cluster man-
ager service and a host manager service for each computer
in the cluster. The cluster manager accepts appliance man-
agement requests from users, decides on the allocation of
resources across the entire cluster, and interfaces with the
host managers, which are responsible for executing appli-
ances on the respective hosts. The cluster manager also
keeps track of the “truth” in the system, including the list of
physical resources in the system, the VAPs that have been
started, and the resources allocated to them. This informa-
tion is stored on disk to survive cluster manager restarts.

The utility administrator is responsible for registering all
the resources in the system with the cluster manager, so
that it can keep track of the available resources and per-
form resource allocation to appliances. Using a command
line tool, the administrator can register a host, specifying
its resources—memory size and the maximum number of
VMs hosted at any one time. In our prototype, we require
each registered host have Red Hat Linux 9, VMware GSX
Server 2.5.0, and the Collective software installed. The ad-

ministrator also registers a set of VLAN numbers and pub-
lic IP addresses with the cluster manager. These VLAN
numbers and public IP addresses are assigned to virtual
networks and to network interfaces connected to the public
Internet.

The utility administrator can restrict the appliances the
utility runs by providing it with ablacklist of repositories
and versions that should not be run. For example, the ad-
ministrator may wish to place all appliances with known
security vulnerabilities on the list. The utility will not start
new appliances that use versions on the blacklist. However,
the utility will not stop already running appliances that vi-
olate the blacklist; instead, the administrator can query the
utility for these appliances. The administrator can then ei-
ther ask users to update or can forcibly stop the appliances.

Before using the utility, the user must first create a new
appliance by creating a CVL file that inherits from the ap-
pliance to be run. As part of writing that CVL file, the user
sets the values of the parameters of interest. The follow-
ing is an example of a CVL file created by a user for the
Groupware appliance:

import {
url => "http://virtualappliance.org/Groupware",
cvl => "Groupware.cvl",

} Groupware;

AcmeGroupware extends Groupware {
domain = "acme.org";

}

The user can then use the utility to start, stop, and update
the appliance. Below, we describe each of the available
user commands in more detail and overview their imple-
mentation.

5.1 Starting a VAP

The commandcui start <CVL> starts the appliance
as specified in the<CVL> file. We first discuss how we
handle virtual networks and then describe the implementa-
tion of the command.

5.1.1 Virtual Networks

Our design allows the component VM appliances in a VAN
be run on one or more machines. Each running VAN has
its own Ethernet segment, implemented as a VLAN (Vir-
tual Local Area Network) on the physical Ethernet. All
VM component appliances of a VAN on each host are con-
nected to a dedicated VMware virtual switch on the host,
which is bridged to the VAN’s VLAN. Physical Ethernet
switches that recognize and manage VLANs may need to
be configured to pass traffic with certain VLAN tags to cer-
tain hosts. Since our experimental setup uses switches that
ignore VLAN tags, no configuration is required.

The Collective also takes over the chore of assigning IP
addresses to appliances. Each VAN is assigned a subnet in
the10.0.0.0/8 site-local IP address range, with the sec-
ond and third octets of the address derived from the VLAN
tag. So, each VAN has 256 IP addresses. Each virtual Eth-
ernet adapter in each VM appliance is given a unique MAC
address and an IP address from the pool of VAN’s IP ad-
dresses.

In the case of sub-VANs, the internal interface of a gate-
way on a sub-VAN is assigned an IP address from the sub-
VAN’s IP address space. The external interface of the gate-
way is assigned an IP address from the address space of the
parent VAN. Exported interfaces that do not connect the
VAN to another VAN are given public IP addresses from a
pool of IPs.

We use network address translation (NAT) to help route
traffic between VANs and their parent networks. We must
use NAT between the public Internet and our VANs since
we assign site-local addresses to our VANs. Even though
each VAN has a distinct site-local range, we still use NAT
between VANs and sub-VANs to avoid setting up routing
tables. For this reason, a VAN’s chokepoint appliance, such
as a firewall or router, should provide NAT functionality.

5.1.2 Implementation

To implement thestart command, the cluster manager
parses the CVL file. It importsCVL files from reposito-
ries where necessary, remembering the version number. It
sets up the VAP’s disks and then, if it finds that the VAP’s
requirements can all be satisfied, brings up the VAP. Note
that a VAP may be a VAN whose components may them-
selves be VANs. From now on, we use the termcomponent
VM appliancesof a VAP to refer to all the VM appliances
defined by a VAP, its components, its components’ compo-
nents and so forth.

In the first step, the cluster manager sets up the program
and data disks for all the component VM appliances in the
directory containing the CVL file. Every component VM
appliance is given its own subdirectory. The manager cre-
ates a new copy-on-write demand-paged version for each
program disk, and if a specified data disk does not already
exist, an empty data disk of the size specified in the CVL
file is created. The appliance is responsible for detecting an
all-zero data disk on boot and initializing it appropriately.

In the second step, the cluster manager ensures that all
the required services are available, required parameters set,
and required resources reserved. It generates a dependency
graph from theprovides and requires variables of
all component VM appliances, and propagates parameter
values to all the CVL files. For fault tolerance reasons, the
cluster manager determines which resources are available
by computing all the resources currently in use by all the
running VAPs. It then decides where each VM appliance

is to be hosted and reserves the memory requested in the
appliance’s.vmx files. Next, the cluster manager reserves
a VLAN for each subnet and an IP address for each VM
Appliance.

In the third and final step, the cluster manager brings
up the VAN. It first sets up the hierarchy of networks
by instructing all participating host managers to allocate
VMware virtual switches and bridge them to the appropri-
ate VLAN. It then starts up the component VM appliances,
possibly in parallel, in an order satisfying the dependen-
cies. The VMware Scripting API[24] is used to pass a VM
appliance its parameters, including the assigned MAC and
IP addresses, and to power it on. As soon as an appliance
signals that it has successfully started, the cluster manager
starts any appliances whose dependencies are now satisfied.

5.2 Stopping a VAP

The commandcui stop <CVL> [<comp>] stops the
entire appliance defined in the<CVL> file if no <comp>
is given, otherwise it stops only the component appliance
<comp>. As in CVL, components are specified using a
dot-separated path, for example sub-componentf of com-
ponentg is writteng.f .

Stopping a virtual appliance is more straightforward than
starting one. Component VM appliances are stopped in the
reverse order of startup. To stop a VM appliance, the clus-
ter manager uses the VMware Scripting API to instruct the
virtual machine to stop. VMware passes the stop request
to a daemon running inside the appliance, which then initi-
ates a clean shut down. If the appliance does not shut down
within 3 minutes, VMware forcibly terminates it.

5.3 Updating a VAP

The commandcui update <CVL> [<comp>] up-
dates the entire appliance if no<comp> argument is given,
otherwise it updates just the component<comp>. To min-
imize disruption, we do not require that all the VM appli-
ances be shut down to update a VAN; only the affected VM
appliances are. The cluster manager automatically derives
the actions necessary to update an old version to the new
by finding the differences between the two.

The cluster manager re-parses the CVL file, and simu-
lates its execution to determine what the final state of the
VAN should look like. It then finds the difference between
that final state and the current VAN state, and determines
the list of actions to transform the current state to the de-
sired final state. The actions include:

• Starting an appliance that is present in the final state
but not present in the current VAN state.

• Removing an appliance that is present in the current
VAN state and not in the final state. First, it stops the

appliance and the appliance data is moved to an attic
directory. This prevents conflicts with any new appli-
ance in future updates that might be given the same
name as the removed appliance.

• Updating a VM appliance if its version has changed.
This involves first stopping the VM, copying over the
new program disks, and restarting the appliance. If
an update requires data disks be modified, the new
version of the appliance should include logic that, on
boot, detects whether the user data is in the old format
and, if so, migrates the data to the new format.

• Resending parameters to a VM appliance, if any have
changed. This is done using the VMware Script-
ing API. An appliance wishing to respond to changes
would run a daemon that checks for changes in the pa-
rameters and reconfigures the appliance appropriately.
For example, when parameters are resent to a DHCP
appliance, the daemon rewrites the DHCP configura-
tion file and restart the DHCP server.

5.4 Costs of Virtual Appliances

The benefits of isolation and ease of management obtained
from using virtual appliances are not without costs. First,
starting up an appliance requires booting its operating sys-
tem, which takes much longer than starting a service on an
already booted operating system. Note, however, that this
same procedure will bring up a pristine copy of the latest
software on any machine. There is no extra cost associated
with provisioning a machine to run a new service, or re-
installing the operating system to fix an error, or updating
a software to a new version.

Virtual appliances also have higher disk and memory
storage requirements and slower execution due to virtu-
alization overheads. Fortunately, virtual machine tech-
nology continues to improve. Recent work on VMware
ESX Server improves the utilization of physical mem-
ory by adapting the allocation of physical pages dynam-
ically and sharing identical memory pages across virtual
machines[25]. Our previous work has shown that demand
paging and copy-on-write disks significantly decrease the
cost of storing and sending updates using disk images[16].
Finally, it should be noted that our approach is not limited
to virtual machines; with SAN adapters and appropriate
management support from the computer’s firmware, virtual
appliances could be booted on raw hardware.

6 Experimental Results

We describe using the Collective system to build the fol-
lowing appliances: a Groupware virtual appliance network,

a software development appliance, and Windows desktop
appliances.

6.1 The Groupware Appliance

We created a groupware virtual appliance that provides a
base Internet infrastructure for a small collaborating group.
The plone web-based content management system was
built with Debian GNU/Linux 3.0, and all the other appli-
ances were built with Red Hat Linux 8.0. Open source soft-
ware was used for the services. The software packages for
the services and the versions used are shown in Figure 4.

6.1.1 Configuration and Deployment

Since the groupware bundles together mostly-configured
appliances, this reduces the amount of configuration effort
necessary for each instantiation. With the goal of building
an infrastructure for a small group, we were able to set most
software configuration options to reasonable defaults. For
example, even though the OpenLDAP and Mail (Postfix
and Courier) applications have a large number of configu-
ration options, the corresponding appliances in groupware
need only 12 and 9 parameters, respectively. In addition,
some appliances share the same parameters. As a result,
although a sum total of 30 parameters need to be set indi-
vidually in the groupware appliances, deploying the whole
suite of groupware services requires setting only 14 param-
eters. Figure 5 gives a complete list of all the parameters for
the groupware appliances, along with a short description of
each of them. The parameters and their relationships are all
specified in the CVL file, excerpts of which are shown in
Figures 2 and 3.

The appliances use these parameters to configure them-
selves. Configuration works especially well for UNIX,
where most configuration is done using text files and it is
easy to interpose on the boot sequence. In our appliances,
the boot sequence is modified to read in the appliance pa-
rameters and generate configuration files based on them,
before appliance software is started. Typically, these con-
figuration files are generated by using a template and filling
in values based on appliance parameters.

For example, the firewall appliance has a parameter for
specifying the ports and addresses of all the groupware ser-
vices, and it configures itself to accept traffic only to those
services. The DHCP appliance has parameters for specify-
ing the MAC addresses, IP addresses, and hostnames of all
the groupware appliances, and it transforms these param-
eters into a DHCP server configuration file. After rewrit-
ing the DHCP configuration file, the appliance restarts the
DHCP server. Other appliances configure themselves in a
similar fashion.

6.1.2 Characteristics of Groupware

As shown in Figure 4, the sizes of all the VM appliances are
around 500MB. This is large compared to the sizes of the
services themselves. However, since we use SFS, during an
appliance start-up only the required parts of the appliance
are demand paged in. Furthermore, techniques exist (see
Section 5.4) for decreasing appliance disk space require-
ments.

We timed the groupware start-up and shut-down on five
2.4GHz Pentium 4 client machines with 1GB of RAM
each. The program and data disks were stored on a sixth
2.4Ghz Pentium 4 machine which acted as the SFS server.
The clients and server were connected via 100Mbps Ether-
net.

The start-up time was 6.3 minutes with cold caches at
the SFS server and clients and averaged 5.0 minutes over
three runs with a warm cache. The shut-down time aver-
aged 2.2 minutes over three runs. During start-up, the clus-
ter manager took on average 1.1 minutes to set up appliance
disks, reserve resources, and set up virtual networks. The
remainder of the time is spent starting up the component
VM appliances. The Red Hat 8.0-based component appli-
ances took on average 1.8 minutes each to start before opti-
mization. After removing unnecessary services from start,
the appliances took about one minute to start. Currently, of
that minute, the network start script takes 20 seconds; by
taking advantage of the virtual nature of the network inter-
face, we believe it can be optimized to under one second.

With further optimizations, appliances with smaller disk
space and boot times could be built. For example, the flop-
pyfw Linux istribution[22] combines both DHCP and fire-
wall functionalities in a single 1.44 MB floppy disk that
boots in less than 20 seconds in a virtual machine.

6.2 Software Development Environments

Software development today typically relies on a large
number of tools and often specific versions of those tools.
Acquiring all the tools required to develop and build a piece
of software can take a lot of time. Appliances allow com-
plex software to be used immediately and easily by the user
by bundling all required tools and libraries into the appli-
ance. We expect this will encourage more users to exper-
iment with software and to participate in its development;
for example, an appliance made up of free software could
include the source and tool chain so that users could fix
bugs and add features.

We have created an appliance for the SUIF research com-
piler infrastructure[1], a system that has been used by re-
search teams both in and out of Stanford. Over the years,
new researchers have spent hours setting up their environ-
ment to build the system before they could start experi-
menting with it. For example, SUIF is compiled and tested

Appliance Software Package Function Size Depends on
DHCP DNS LDAP

Firewall iptables-1.2.6a Forwards traffic only to group services 495 MB — — —
DHCP bind-9.2.1 Provides IP addresses to appliances 501 MB — — —
DNS dhcp-3.0pl1 Serves names of group services 501 MB Yes — —
LDAP openldap-2.0.25 Authentication and user database 578 MB Yes Yes —
Mail postfix-1.1.11 & SMTP, IMAP, and POP server 627 MB Yes Yes Yes

courier-0.42.2
Plone plone-1.0.2 Web-based content management system441 MB Yes Yes —

Figure 4: Properties of appliances in the Groupware appliance.

Parameter
Name

Appliances Using
Parameter

Parameter Description

hostname DHCP, DNS Used to auto-populate the dhcpd.conf and DNS zone files.
domain DHCP, DNS, LDAP The DHCP server uses the domain parameter to set the proper domain

name of the appliance. The LDAP server derives the root DN from the
domain name.

rootdnpass LDAP The root DN password.
proxypw LDAP, Mail A proxy user is used for LDAP client authentication. This is the proxy

user’s password.
smtppw LDAP, Mail The smtppw is the password of the user who can read a user’s Maildir

parameter in the LDAP server.
country, state,
city, org, ou,
certemail

LDAP, Mail These parameters are used to create X.509 certificates.

defmailhost LDAP The default mail host the SMTP server should deliver mail to.
forwarders DNS DNS caches to forward queries to.
rootpw All appliances The Unix root password.

Figure 5: Parameters of the Groupware appliance.

using the GCC 2.95 compiler and header files; Red Hat
Linux 8 and 9 come with GCC 3, and users of these sys-
tems would need to install the older compiler and headers.
Even then, they would probably need to modify the build
process to point SUIF to the alternate compiler and head-
ers. In sum, we can avoid a lot of trivia by distributing the
entire tool chain as a unit, which we did when we made
SUIF into an appliance.

Users of the SUIF appliance and other desktop appli-
ances may wish to mount their user files. We expect that
users may want to access their existing files from the SUIF
appliance, and therefore the SUIF appliance stores user
files on a network file system rather than on a data disk.
However, we feel it would be cumbersome if the user had
to repeatedly enter their username, location of their files,
and password into each appliance.

To mount user files into an appliance, we give the ap-
pliance a list of ways to mount the user files. Each way
includes a URL and credentials; the URL tells the appli-
ance how and what to mount and the credentials tell it who

to mount as. The list is ordered. As the appliance traverses
the list, it checks if it supports the protocol indicated in the
URL. If it does support the protocol, it looks at the cre-
dentials. If it supports the authentication method indicated
in the credentials, it tries to mount the file system. If it
succeeds, it sets the home directory in the user record to
the mounted file system. If it fails, it tries the next way of
mounting the files.

Others have grappled with the problem of mounting user
files across multiple operating systems. In Windows net-
works, domainsauthenticate users and provide roaming
profiles; many other systems have similar notions. Rec-
ognizing the diversity in today’s network sites, rather than
forcing any specific system, we try to configure appliances
with user files in as generic a fashion as possible.

6.3 Windows Appliances

To investigate the feasibility of Windows virtual appli-
ances, we created virtual appliances reflecting common

Windows desktop environments. Section 6.3.1 describes
the base of software we used in our experiments. While
building these appliances, we had to deal with the peculiari-
ties of Windows. In particular, we take a different approach
(described in Section 6.3.2) to configuring a Windows ap-
pliance since system properties, like the computer’sSecu-
rity Identifier (SID), do not reside in simple text config-
uration files as on Linux. Additionally, updating an ap-
pliance requires customizations be stored separately from
programs, and this is difficult to enforce on Windows, but
in Section 6.3.3 we observe that most applications partition
themselves nicely.

6.3.1 The DesktopNet Appliance

We created two Windows virtual appliances; each virtual
appliance runs a single application. We created one for Of-
fice 2000 and another for Internet Explorer 6, both running
Windows 2000 Professional. To share program data and
configuration settings between programs in different appli-
ances, all appliances are configured to use roaming profiles
and mount network shares from a central Samba server.

The Samba appliance runs Samba 2.2 on Redhat 8.0. It
is configured to serve profile data and network shares off of
its data disk, which starts off empty. Also, to add a user, the
administrator must currently log into the Samba appliance
and add the account manually. Alternatively, the Samba ap-
pliance could be configured to require an LDAP appliance
for authenticating accounts.

Since Samba allows program data and configuration to
live outside of the appliance, desktop applications gener-
ally require little direct configuration. The only required
configuration variables for the desktop appliances are for
making it talk to the Samba server. For example, Samba
requires credentials for both the user (to access their files)
and the machine (to join/authenticate to the domain). Ap-
pliances receive domain configuration (domain name and
domain user/password) on-the-fly from the CVL specifi-
cation, and users must log in to their desktop appliances
before using them.

6.3.2 Configuring a Windows-Based Appliance

Under UNIX, appliance configuration involves taking in
parameters supplied by the Collective and rewriting text
configuration files residing in the appliance. Under Win-
dows, however, changing such settings may require the
modification of undocumented registry entries and a reboot
of the appliance. Therefore we use published and tested
tools where possible; our current approach for configur-
ing appliances uses Microsoft’s System Preparation Tool
sysprep . Parameters configured through the appliance’s
CVL file are propagated to a script running in the appliance
on boot, which prepares asysprep unattended install file

(sysprep.inf) with the passed-in parameters, and then
initiatessysprep in the appliance. This requires a series
of reboots to get the appliance into the appropriate state,
but usingsysprep guarantees that Windows-specific ma-
chine IDs are properly changed in each copy of the appli-
ance.

6.3.3 Updating a Windows-Based Appliance

Normally, updating an appliance means replacing the ap-
pliance’s program disks with updated ones. As long as data
and user configuration reside on a separate data disk, no
data is lost in this update process. Unfortunately, some
Windows applications’ use of the file system and reg-
istry can make separating program state onto a dedicated
data disk difficult—any data stored under the application’s
Program Files directory or in system-wide registry
entries could get blown away during an update.

Fortunately, many Windows applications store per-user
configuration in the user’s roaming profile directory (either
through special per-user registry sections, which get backed
by the roaming profile, or in the user’sDocuments and
Settings folder, which also resides in the user’s roaming
profile). This behavior is actually mandated by Microsoft’s
Logo certification program so that roaming profiles work,
and we have observed correct behavior in practice by doing
updates on our desktop appliances.

For example, we made user customizations in Office
2000 (e.g., adding keyboard macros, dictionary entries,
etc.) and updated from Office 2000 to Office 2000 Service
Pack 3 by completely replacing the program disk; we ob-
served that our user customizations remained intact. Like-
wise, we made similar customizations to Internet Explorer
5 (e.g., bookmarks, proxy settings, homepage, toolbar set-
tings, etc.) and observed that these too were recognized
after a complete overhaul of the publisher disk to Internet
Explorer 6. Thus, although Windows applications can be
more difficult to coerce into using particular parts of the
file system, many turn out to be well-behaved on their own.

As illustrated by the experiences described in this sec-
tion, we have encountered challenges in both configuring
and updating Windows appliances. And although they
present interesting problems, we have demonstrated tech-
niques for turning Windows applications into parameter-
ized virtual appliances.

7 Related Work

Package tools like Depot[5] and Debian’s apt simplify the
maintenance of individual software packages. Unlike most
packages, appliances bundle groups of applications and
provide a unified configuration interface. Also, virtual ap-
pliances running on the same computer are better isolated

from each other than packages installed on the same com-
puter. Tools like Sasify[13, 18], as well as the aforemen-
tioned package tools, simplify the task of keeping up with
patches and software updates. Virtual appliances update
the entire system, thus providing more assurance in the way
of overall system testing at each version.

Like the Collective, Sun’s N1[21], HP’s Utility Data
Centre[8], and VMware’s Control Center[23] aim to au-
tomate managing hardware and software. The customer
of the utility provides a higher-level description of the ser-
vices they want to run and the performance they want from
those services, and the utility decides how many servers to
instantiate and what hardware to assign them to. The util-
ity dynamically monitors load and can reassign computers
from serving one service to another. The utility can also
work around failures of hardware by booting a new instance
of the service on good hardware.

Grid computing, of which Globus[7] is the leading ex-
ample, automates the harnessing of thousands of comput-
ers across the world for running scientific code. The grid
software for managing processes on thousands of machines
may be useful for non-scientific code too. As a result, it
seems that grid and utility computing are merging in some
parts; Globus has recently expanded to web services.

Our research is focused on reducing software system ad-
ministration cost by amortizing the configuration, installa-
tion, and update efforts over a large number of users. This
led to the development of VANs, a way of distributing soft-
ware that can be configured to suit individuals’ needs and
can be updated automatically.

Web application servers, like JBoss and Websphere, au-
tomate the deployment and management of services written
in Java across a cluster of machines. They require software
to be written to Java APIs. In contrast, our approach of us-
ing virtual x86 machines can be applied to most existing
software.

Storage-area networks (SANs) and disk imaging[3, 14]
have been used for years to reliably configure computers.
Virtual appliances use disk imaging to predictably deliver
updates to virtual disks. VMMs allow us to implement
SAN-like capabilities in software without modifying hard-
ware or the guest OS.

CFengine[4] is a tool for configuring operating system
images from a central description. Like CFengine, CVL
strives to describe what the state of a network of machines
should be rather than describe the steps for configuring the
network. Unlike CFengine, CVL passes information to
appliances through a generic key-value pair interface and
leaves the details of configuring individual nodes in the net-
work to the appliance publishers.

Like the Desktop Management Task Force’s (DMTF’s)
Common Information Model (CIM)[6] and SNMP
MIBs[15], CVL describes objects with sets of properties.

Unlike CIM and SNMP, the focus of CVL is not return-
ing status and statistics but configuring objects, specifically
networks of virtual appliances. To reduce duplication of
values when configuring objects and to provide intelligent
defaults, CVL has constructs for propagating one value to
many parameters.

8 Conclusion

This paper develops the concept of virtual networks of vir-
tual appliances as a means to reduce the cost of deploying
and maintaining software. We have presented a language
for specifying virtual appliances and algorithms for imple-
menting them. The language is designed to allow user cus-
tomization while supporting automatic updates. The Col-
lective prototype we developed assigns virtual appliances
to hardware in the system automatically and dynamically.
The prototype uses repositories to find up-to-date versions
of appliances.

We have shown how VAPs can be used to create a
complete Groupware appliance that can be instantiated
anywhere, a software development appliance that reduces
the overhead associated with working on new software,
and discussed how the approach can be used to create
Windows-based appliances.

Our approach makes the management of software in-
dependent of the number of computers running the soft-
ware. By placing the burden of maintenance on the appli-
ance publisher, this approach makes it easier for users to
run new computer software and to keep their systems up to
date. The Collective Utility can even be used to disallow
the execution of vulnerable software. This would eliminate
incidents like the one where Microsoft itself was compro-
mised by the Slammer worm when it failed to locate all
vulnerable servers [2].

For information about releases of the Collective,
please visit our web page athttp://collective.
stanford.edu/ .

9 Acknowledgements

This material is based upon work supported in part by the
National Science Foundation under Grant No. 0121481 and
Stanford Graduate Fellowships. We thank our shepherd
Gerald Carter, Satoshi Uchino, and Will Robinson for their
comments on the paper.

A BNF Grammar of CVL
Program ::= ProgramStmt*
ProgramStmt ::= ImportStmt| AsgnStmt| ObjDecl

ImportStmt ::= import Map Item;
ObjDecl ::= Itemextends Item { Stmt* }
Stmt ::= VarDecl| CompDecl| AsgnStmt
VarDecl ::= var AttrList ItemList ;
AttrList ::= QuotedStr*
CompDecl ::= Item ItemList;

AsgnStmt ::= Ident= RhsList;
RhsList ::= Rhs| Rhs, RhsList
Rhs ::= QuotedStr| Ident| Map
Map ::= { PairList}
PairList ::= Pair| Pair, PairList
Pair ::= Item=> Rhs

URL ::= [file |http]:// non-whitespace
QuotedStr ::= " any characters, with quotes escaped"
Ident ::= Item| Item . Ident
ItemList ::= Item| Item , ItemList
Item ::= alpha alphanumsym*
alphanumsym ::= alpha| 0-9 |
alpha ::= a-z | A-Z

B About the Authors

Constantine Sapuntzakis is currently pursuing a PhD in
Computer Science. To avoid the stresses of grad school,
he likes to play system administrator for his research group
and at home. He wants to make computer systems easier to
use.

David Brumley is a PhD student in Computer Science
at Carnegie Mellon University. Previously, he was the
computer security officer for Stanford University, where he
responded to over 1000 incidents and authored such pro-
grams as the remote intrusion detector (RID) and SULinux
(Stanford University Linux). David received his Bache-
lor’s degree in Mathematics from the University of North-
ern Colorado and his Master’s degree in Computer Science
from Stanford.

Ramesh Chandra is a PhD candidate in Computer Sci-
ence at Stanford University. He received his B.Tech from
the Indian Institute of Technology, Madras, India, and his
M.S. from the University of Illinois at Urbana-Champaign,
both in Computer Science. He is interested in systems re-
search in general, and in particular operating systems, net-
working, and distributed systems.

Nickolai Zeldovich is a PhD student in Computer Sci-
ence at Stanford. He received his Bachelor’s and Master’s
in Computer Science from MIT in 2002. In his spare time,
he likes to windsurf, hack on OpenAFS, and collect old
computer equipment.

Jim Chow is currently a PhD student in Computer Sci-
ence at Stanford University. His interests include operating
systems and systems security. He graduated in 2000 with
a BS in Electrical Engineering and Computer Science from
UC Berkeley.

Monica Lam is a Professor of Computer Science at Stan-
ford. She received a Ph.D from Carnegie Mellon University
in 1987 and a B.S. from University of British Columbia in
1980. Her current research interests are in improving soft-
ware productivity and usability of computers. Honors for
her research include an NSF Young Investigator Award and
an ACM Most Influential Programming Language Design
and Implementation Paper Award.

Mendel Rosenblum is an Associate Professor of Com-
puter Science at Stanford. His contributions to the field of
systems, including the Log-structured File System, SimOS,
Hive, Disco, and VMware, earned him the ACM SIGOPS
Mark Weiser award in 2002.

References

[1] G. Aigner, A. Diwan, D. Heine, M. S. Lam,
D. Moore, B. Murphy, and C. Sapuntzakis.
An overview of the SUIF2 compiler infrastruc-
ture. http://suif.stanford.edu/suif/
suif2/doc-2.2.0-4 .

[2] Associated Press. Microsoft also gets slammed by
worm. http://www.cnn.com/2003/TECH/
biztech/01/28/microsoft.worm.ap/ , Jan-
uary 2003.

[3] T. Barnett, K. McPeek, L. S. Lile, and J. Ray Hyatt.
A web-based backup/restore method for Intel-based
PC’s. In Proceedings of the 11th LISA Conference,
pages 71–78, October 1997.

[4] M. Burgess. A site configuration engine.USENIX
Computing Systems, 8(2):309–337, 1995.

[5] W. Colyer and W. Wong. Depot: A tool for manag-
ing software environments. InProceedings of the 6th
LISA Conference, pages 153–162, October 1992.

[6] Desktop Management Task Force - Common In-
formation Model. http://www.dmtf.org/
standards/standard_cim.php .

[7] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke.
Grid services for distributed system integration.IEEE
Computer, 35(6):37–46, 2002.

[8] HP Utility Data Center. http://www.hp.
com/solutions1/infrastructure/
solutions/utilitydata/ .

[9] D. Mazières, M. Kaminsky, M. F. Kaashoek, and
E. Witchel. Separating key management from file sys-
tem security. InProceedings of the 17th ACM Sym-
posium on Operating Systems Principles (SOSP ’99),
Kiawah Island, South Carolina, December 1999.

[10] Microsoft Security Bulletin MS01-020: Incorrect
MIME header can cause IE to execute attachment,
March 2001.

[11] Microsoft Security Bulletin MS02-039: Buffer over-
runs in SQL Server 2000 resolution service could en-
able code execution, July 2002.

[12] Red Hat. Red Hat Linux 8.0: The official Red
Hat Linux security guide. http://www.
redhat.com/docs/manuals/linux/
RHL-8.0-Manual/security-guide/
%ch-server.html .

[13] D. Ressman and J. Valdes. Use of CFengine for au-
tomated, multi-platform software and patch distribu-
tion. In Proceedings of the 14th LISA Conference,
pages 207–218, December 2000.

[14] P. Riddle. Automated upgrades in a lab environment.
In Proceedings of the 8th LISA Conference, pages 33–
36, September 1994.

[15] M. Rose and K. McCloghrie. RFC 1212: Concise
MIB definitions, March 1991.

[16] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
Lam, and M. Rosenblum. Optimizing the migration
of virtual computers. InProceedings of the Fifth Sym-
posium on Operating Systems Design and Implemen-
tation, pages 377–390, December 2002.

[17] C. Sapuntzakis and M. S. Lam. Virtual appliances in
the Collective: A road to hassle-free computing. In
Proceedings of the 9th Hot Topics in Operating Sys-
tem, May 2003.

[18] M. Shaddock, M. Mitchell, and H. Harrison. How to
upgrade 1500 workstations on saturday, and still have
time to mow the yard on sunday. InProceedings of the
9th LISA Conference, pages 59–66, September 1995.

[19] Slammer worm hits the Net.http://news.com.
com/1200-1001-982780.html , January 2003.

[20] Stanford’s e-mail service restored following shut-
down. http://www.stanford.edu/dept/
news/pr/03/virus611.html , June 2003.

[21] Sun N1.http://www.sun.com/n1 .

[22] floppyfw. http://www.zelow.no/
floppyfw/ .

[23] VMware Control Center.http://www.vmware.
com/products/cc_features.html .

[24] VMware Scripting API. http://www.
vmware.com/support/developer/
scripting-API/doc/ .

[25] C. A. Waldspurger. Memory resource management
in VMware ESX server. InProceedings of the Fifth
Symposium on Operating Systems Design and Imple-
mentation, December 2002.

