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Abstract
Web services that enable users in multiple regions to collaborate
can increase availability and decrease latency by replicating data
across data centers. If such a service spreads its data across multiple
cloud providers—for the associated performance, cost, and reliability
benefits—it cannot rely on cloud providers to keep the data globally
consistent.

Therefore, in this paper, we present an alternate approach to
realizing global consistency in the cloud, which relies on cloud
providers to only offer a strongly consistent storage service within
each data center. A client library then accesses replicas stored in
different data stores in a manner that preserves global consistency.
To do so, our key contribution lies in rethinking the Paxos replication
protocol to account for the limited interface offered by cloud storage.
Compared to approaches not tailored for use in the cloud, our system
CRIC can either halve median write latency or lower cost by up to
60%.
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1 Introduction

Minimizing user-perceived latency is a critical goal for web services,
as even a few 100 milliseconds of additional delay can significantly
reduce revenue [1]. Key to achieving this goal is to deploy web
servers in multiple locations so that every user can be served from a
nearby server. Therefore, cloud services such as Azure and AWS are
an attractive option for web service deployments, as these platforms
offer data centers in tens of locations spread across the globe [5, 7].

To simplify the development of geo-distributed web services,
cloud providers have recently begun offering support for replicating
data across data centers while exporting consistency semantics as
though there were a single global copy of each data item. Google’s
Cloud Spanner [9] and Azure’s Cosmos DB [6] are examples of
such storage services. Geo-replicating data, like in these services,
is crucial to maximize availability (so as to tolerate data center and
Internet path failures) and to achieve low latency (so that web servers
can read/write shared data by accessing a subset of nearby copies).

However, reliance on such geo-distributed storage services offered
by cloud providers is not an option for applications that choose
to spread their data across multiple cloud providers. While prior
work has shown that multi-cloud web service deployments can offer
performance, cost, and fault-tolerance benefits [31, 32, 53, 55], a
cloud provider has no incentive to keep data stored on its platform in
sync with copies stored on other platforms. As a result, applications
are left with the onus of managing the consistency of data that they
replicate across the data centers of multiple cloud providers.

To simplify the development of applications that opt for multi-
cloud storage, we present CRIC (Consistent Replication in the
Cloud), a client library which exports single-copy semantics for
data replicated across data centers in the cloud. Rather than relying
upon a geo-distributed storage service, CRIC builds upon strongly
consistent storage services within each data center as building blocks.
Given multiple data centers across which to replicate any object, a
web service can store a copy of the object in the storage service at
each of these data centers. CRIC enables a client VM in any data
center to then read and update these copies without violating global
consistency.

The key challenge in developing CRIC is to ensure that the la-
tency of accessing geo-replicated data using it is comparable to that
feasible when using a geo-distributed service. The reason this is
challenging is because there is a mismatch between the interface
offered by cloud storage services (e.g., PUT/GET) and the interface
necessary to reuse existing low latency replication protocols (e.g.,
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Accept/Learn to use Fast Paxos [36]). Since application providers
have no control over modifying cloud storage’s interface, they could
resort to using replication protocols [25, 29] that are compatible with
this limited interface. Doing so however significantly degrades laten-
cies, as these protocols require additional round-trips of wide-area
communication.

In CRIC, we address this challenge in two ways. First, we develop
CPaxos, a variant of Paxos optimized for use in the cloud. To cope
with the limited storage interface, CPaxos stores the state maintained
by Paxos acceptors in cloud storage but moves the logic executed by
Paxos acceptors into the client. Unlike prior variants of Paxos [25,
29] designed similarly, CPaxos leverages additional features that
strongly consistent cloud storage services export beyond a simple
PUT/GET interface. These include the ability to conditionally update
an object only if it is unchanged since it was last read, and the
option of augmenting every object’s data with metadata that can be
independently accessed and updated. By exploiting these features,
CPaxos can execute both reads and writes with one round-trip of
wide-area communication in the common case when conflicts are
rare.

Second, to ensure that latencies and throughput are not signifi-
cantly degraded in settings where conflicts are common, when any
client VM attempts to update multiple copies of an object, CRIC
makes it likely that the update is successfully applied either to all
copies or to none. For this, rather than concurrently issuing requests
to an object’s replicas, CRIC staggers its requests such that they
arrive near-simultaneously at these replicas. Such staggering of
requests is feasible because Internet path latencies between cloud
data centers are stable and these latencies dominate any client VM’s
interactions with remote storage.

We have implemented a prototype of CRIC and deployed appli-
cations that use it across AWS and Azure. Compared to existing
replication protocols compatible with a limited storage interface, we
show that CPaxos can halve write latency and also lower cost by
10–60%.

2 Overview and Motivation
In a geo-distributed web service deployment, user-facing web servers
are deployed in multiple data centers, so that any user’s request can
be served from a nearby location. The latency incurred by a user
includes time that the web server waits for data to be read from or
written to storage. We focus on geo-replicating data to minimize
latency and maximize availability for web services that use key-
value stores to store small KB-sized objects [13, 19, 44]. By geo-
replicating data, we can enable web servers to read/write a object by
accessing a subset of nearby replicas, rather than a centrally located
copy of the object.

2.1 Why multi-cloud?

While public cloud services allow tenants to deploy applications in
many locations, any tenant must choose from the set of data centers
in the cloud platform it uses. If a cloud provider has little or no
presence in a particular region, then its tenants will be unable to
store any data there, and will instead have to access data stored in a
distant location.

Since different cloud providers target different markets, using
multiple clouds enables tenants to store data in more geographic
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Figure 1: For each Azure data center, we compute the number
of other data centers within varying latency bounds. For each
latency bound, the min, median, and max value across Azure
data centers is shown.

regions. For example, while US-based cloud providers (e.g., AWS
and Azure) have a large number of data centers in North America
and Europe, Alibaba Cloud and Telefónica target the Asia-Pacific
and Latin America regions respectively. While porting applications
to multiple clouds is challenging due to differences in the interfaces
they offer, modifying applications to use additional providers only
for data storage is relatively simpler. For example, in this paper, we
consider that a web service’s servers will be deployed across the
data centers of a single cloud provider, but any data center that has a
key-value storage service—irrespective of which provider owns that
data center—is a candidate for storing some of the service’s data.

To quantify the utility of using multiple cloud providers for data
storage, we consider 11 public cloud providers. Besides AWS, Azure,
and Google Cloud, we consider the public cloud services offered by
IBM, Alibaba Cloud, Telefónica, CityCloud, OVH, ECS, Rackspace,
and SAP; all of these providers have data centers in which they
offer strongly consistent key-value storage services. We measured
network latencies between all pairs of AWS, Azure, and Google
Cloud data centers and used this data to compute a linear regression
model of latency as a function of geographic distance. Using our
best estimates of the physical locations of data centers operated by
each cloud provider, we then estimated latencies between all pairs
of data centers.

For any web service hosted on Azure, Figure 1 shows that using
all 11 cloud providers for data storage significantly increases the
number of data centers near any Azure data center. The median
Azure data center has 5 other Azure data centers within a 50 ms
radius, while the most isolated data center has to suffer over 100 ms
latency to contact another Azure data center. In contrast, using our
full list of cloud providers, the median Azure data center has over 9
other locations within a 50 ms radius and the most isolated Azure
data center has a non-Azure data center just 30 ms away.

To see how this might affect storage performance, we evaluate the
latency improvement for two access patterns. The first considers data
being accessed from Korea and Singapore, and the second considers
data being accessed from Central India and UK; these are locations
in which both Azure and AWS have data centers. In either case, we
assign data to be replicated across 3 data centers chosen to minimize
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Figure 2: Latency improvement from going multi-cloud. For
two different access patterns, we show the minimum read la-
tency SLO feasible when using a single provider for data stor-
age versus when using multiple providers.

the latency for either access location to read data by contacting a
majority of the replicas.

Figure 2 shows that using all clouds for storage can provide better
read latency than using only Azure or AWS. For data accessed
from Korea and Singapore, using all clouds improves read latency
compared to AWS-only by 25% while Azure-only suffices in this
case for low latency. However, for data accessed from Central India
and UK, using all clouds improves read latency compared to both
Azure-only and AWS-only storage by 20%.

2.2 Goals

Realizing these latency benefits from multi-cloud data storage is
however challenging for applications because they cannot rely on a
storage service offered by any provider to manage the geo-replication
of data. Therefore, our goal is to enable web service developers to
outsource to CRIC the task of managing the consistency of data
replicated across data centers. As shown in Figure 3, CRIC’s client
library stores data in and accesses data from strongly consistent
storage services offered by cloud providers within each of their data
centers. CRIC can implement operations supported at all the storage
services that it builds upon (§5), but we focus primarily on reads,
writes, and conditional-writes on individual geo-replicated objects
(§3).

Our design of CRIC is guided by four objectives.
• Strong consistency: All reads and writes must be linearizable.

Strongly consistent replicated storage simplifies application de-
velopment, enables seamless porting of web services written to
use centralized storage, and is essential in many web services,
including collaborative document editing (e.g., Google Docs), on-
line auctions (e.g., eBay, stock trading), and multi-player online
gaming.
• Fault-tolerance: CRIC must ensure that any object continues to

be readable/writable as long as storage services in at most f data
centers are unavailable.
• Low latency: CRIC should ensure low latencies for both reads

and writes.

Web service VM

Web service logic

CRIC library

Data Center 1

Cloud 
Storage

Data Center 2

Cloud 
Storage

Data Center 3

Web service VM

Web service VM

Figure 3: Illustration of CRIC’s use in a geo-distributed web
service deployed in the cloud.

• Cost-effectiveness: CRIC should minimize the cost overhead
(i.e., the dollar amount charged by cloud providers) that it im-
poses on web services. We account for the cost of data trans-
fers, GET/PUT requests, and any VMs necessary to support geo-
replication.

3 Global consistency atop limited interface

CRIC’s interface matches that offered by strongly consistent intra-
data center key-value stores. Here, we describe CRIC’s support
for three operations: read, write, and conditional-write (a client’s
conditional-write on an object succeeds only if the object has not
been modified since the client last read it); Table 1 summarizes
the various techniques we use. These operations are analogues of
the GET, PUT, and conditional-PUT operations supported by cloud
storage within each data center. In Section 5, we describe how the
mechanisms used in CRIC also enable support for other operations
offered at all the data centers across which objects are replicated.

3.1 Basics

The need to support conditional-writes requires being able to as-
sociate every object’s data with monotonically increasing version
numbers. Once a write to version i of an object is complete, any
attempt by a client that previously read version j (j < i) to write
version j + 1 must fail. This rules out the use of protocols such as
ABD [14], which suffice to implement a PUT/GET interface atop
replicated data, but are fundamentally incapable of serving as the
basis for the read-modify-write semantics necessary to implement
conditional-writes [14]; see Appendix B for an example.

Therefore, CRIC instead builds upon Paxos. Each version of
an object corresponds to one Paxos instance, and every replica of
the object serves as a Paxos acceptor. When a client executes a
conditional-write, the CRIC library attempts to write to the version
one higher than that last read by the client and returns an error if a
quorum of acceptors have already accepted a value for this version.
To execute a (unconditional) write, the CRIC library repeatedly
retries writing to higher versions until success.

The state stored at each replica of an object comprises a log
of increasing versions (Figure 5). For each version, we store the
highest proposal number that the acceptor has promised to accept,
the highest proposal number accepted, the last accepted value, and a
commit bit, which indicates whether the locally accepted value for
this version has been globally accepted.
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Metric to optimize Technique Section

Write latency Treat cloud storage as a passive acceptor and use conditional-PUTs to update Paxos state, cache acceptors’
states, and attempt to write to a super quorum of acceptors § 3.2

Read latency Clients act as learners, asynchronously update Paxos state to mark version as globally accepted § 3.3
Storage and data

transfer costs
Garbage collect old versions in Accept phase § 3.4Store Paxos state as object’s metadata so that no need to transfer object data in Prepare phase

Performance under
conflicts

Stagger client’s requests to replicas such that requests arrive near-simultaneously at either the closest
quorum or the closest super quorum § 3.5

Table 1: Techniques used in CRIC to minimize latency and cost for strongly consistent reads and writes.

Write latency (RTTs) in
common case

When executing writes, # of copies of object’s
data transferred per write attempt Average # of copies of

object’s data per replicaFast path Slow path No conflict n concurrent proposers
Disk Paxos [25] 2 4 O (m) O (m) m

pPaxos [29] 2 4 3 O (n) ⇡1
Classic Paxos [35] 1 2 1 1 1

CPaxos 1 2 1 O (1) 1

Table 2: Comparison of CPaxos to prior protocols. m is the number of clients. For pPaxos, we assume older versions are garbage
collected as soon as a new version is globally accepted.

3.2 Low latency writes

Using Paxos to execute writes requires replicas to participate in
the Paxos protocol. For this, one could deploy VMs which proxy
all client interactions with cloud storage and augment the storage
interface. However, as we show later in Section 4, deploying a
sufficient number of proxy VMs so that they do not prove to be a
bottleneck can significantly increase the cost that a web service must
pay to the cloud provider. Moreover, since write conflicts are rare
in typical web service workloads [23, 41], these proxy VMs would
largely have to simply relay data between application VMs and cloud
storage, without having to perform any concurrency control.

Therefore, to enable client VMs that use CRIC to directly com-
municate with cloud storage, we design CPaxos (Cloud Paxos), a
new variant of Paxos which works with passive Paxos acceptors
(i.e., acceptors that only store state but cannot run any computa-
tion); see Appendix A for proof of correctness. Like prior variants
of Paxos [25, 29] designed for passive acceptors, CPaxos moves the
acceptor and learner logic into the proposer. However, prior Paxos
variants for passive acceptors inflate latency and cost (see Table 2)
because they require two rounds of communication to complete each
phase of Paxos: one round to perform conflict-free writes at a quo-
rum of acceptors (e.g., write a new object [25] or perform an atomic
append [29]), and another round to read the state of the acceptors
to check for success. We use three techniques to execute a write in
one round of wide-area communication in the common case, when
conflicts are rare [23, 41].
Leveraging conditional updates. To write to a specific version of
an object, like in classic Paxos, a CPaxos proposer must first gather
promises from a majority of acceptors in the Prepare phase and then
get its proposal accepted by a majority of acceptors in the Accept

Proposer
Learner Acceptor

Proposer/
Learner

Passive 
acceptor 
(storage)

Prepare
phase

Accept
phase

Read Paxos state

Conditional update
Paxos state

Conditional update
Paxos state

Skip if
cached

(a) (b)

Prepare

Accept

Paxos prepare logic Paxos accept logic

Figure 4: Comparison of (a) classic Paxos and (b) CPaxos.

phase. For this, as shown in Figure 4, a proposer first gathers the
state from a majority of acceptors. For each acceptor, the proposer
then runs the same logic that the acceptor would have executed upon
receiving the proposer’s Prepare message. If the proposer finds that a
majority of acceptors would have promised to accept its proposal, it
then attempts to update the state of these acceptors using conditional-
PUTs; the update of any acceptor’s state succeeds only if the state
has not already been updated since when the proposer read it.

If conditional-PUTs fail at a majority of acceptors, the proposer
re-collects acceptor states, re-runs the logic for the Prepare phase
(possibly with a higher proposal number), and tries to update the
acceptors’ states again. The proposer repeatedly does so until it
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either gets a majority of acceptors to promise to accept its proposal,
or discovers that a conflicting value has been globally accepted.

The Accept phase is similar to the Prepare phase, except that the
proposer need not collect the acceptors’ states at the start of the
Accept phase; it already knows the state of at least a majority of
acceptors after its conditional updates succeed in the Prepare phase.

Thus, after collecting the states of all acceptors, CRIC leverages
conditional-PUTs to complete the Prepare and Accept phases of a
write in one round of communication each in the common case. In
contrast to the concurrency-safe primitives that prior Paxos variants
designed for passive acceptors [25, 29] rely upon (write a new object
or do an atomic append), conditional-PUTs ensure that at most one
among concurrent attempts to update a replica will succeed and that
the successful client will discover its success without incurring an
additional round-trip to read the acceptor’s state.
Caching acceptors’ states. The first step of collecting the current
states of all acceptors can often be omitted because 1) if an object is
being created, it will have no state at any acceptor, and 2) when a
client is updating an object, it has likely read that object in the past,
enabling the CRIC library to cache acceptors’ states. If an object is
updated between a client’s read and subsequent write, the client’s
write to the version one higher than what it had read will fail, even
with classic Paxos. In workloads where this scenario is common and
it is important for such writes to fail quickly, the CRIC library can
either periodically refresh cached acceptor states, or first check that
the state of the closest acceptor is unchanged before attempting to
execute a write.
Enabling one round write. Taking inspiration from Fast Paxos [36],
we further reduce write latency to one round of communication.
Since conflicts are rare in typical web service workloads [23, 41],
any write can start with an attempt to fast accept the update by skip-
ping the Prepare phase and running the Accept phase for proposal
#0. The value is considered as committed once a super quorumj 3
2 f + 1

k
of the object’s 2f + 1 replicas accept the value. Requiring

acceptance at a super quorum of replicas ensures that, when a reader
subsequently reads from any quorum of replicas, a successful write
would have been accepted at a majority of that quorum.

Failure of the fast round indicates that there may be conflicting
writes, so the proposer must fall back to the regular two-round
CPaxos protocol using a higher proposal number. This increases
the likelihood that one of the writers will be successful. During the
Prepare phase, if a proposer observes multiple values accepted in
proposal #0 and is unable to determine if any of them is globally
accepted (e.g., because some replicas are unavailable), like in Fast
Paxos, it will pick the value with the highest frequency (because
any value committed in a fast round will have been accepted by
a majority of any quorum of acceptors) and try to get it globally
accepted.

Note that, when objects are geo-replicated, using a fast round
may not always lower write latency even when conflicts are rare,
because two rounds of communication with a quorum may impose
lower latency than one round-trip to a super quorum [33]. Given
the placement of an object’s replicas, CRIC can identify whether a
particular client would benefit from using a fast round to update the
object.

3.3 Low latency reads

Since typical web service workloads are dominated by reads [13,
23], it is particularly vital to minimize read latency. Hence, in the
common case, CRIC enables any client to read the latest version of
an object in one round of communication with the closest majority
of the object’s replicas. We achieve this property by having clients
act as learners.

After a client has its update to an object’s data accepted by a
quorum of acceptors, the client asynchronously issues conditional-
PUTs to update the commit bit for this new version in the object’s
replicas. The utility of doing so is that, when a client wants to read
the latest version of an object, it can issue GET requests to fetch
the CPaxos logs for this object from all of the object’s replicas
but need not wait to hear from all replicas in order to identify the
highest globally accepted version. Instead, once a reader is done
fetching CPaxos logs from any majority of acceptors (typically the
quorum of acceptors closest to it), if it finds the commit bit for the
highest version enabled at any replica, the reader can safely use the
corresponding data.

A client may find that the commit bit for the highest version it
sees is not set at any of the majority of replicas that it first hears from,
e.g., because this read occurs after a new version has been globally
accepted but before the writer updates the commit bit for that version.
In this case, the client needs to simply wait to receive CPaxos logs for
the object from more replicas to recognize the committed version.

When storage services in some cloud data centers are unavailable,
a reader may be unable to confirm that a particular version has been
globally accepted even if it reads from a majority of replicas that
are available; that version may have been accepted by a different
majority of acceptors, some of whom are currently unavailable. In
this case, a client identifies the highest version accepted at any of
the acceptors from which it has read the CPaxos log. Then, like
prior systems [16, 46] that use Paxos, the client re-proposes the
data corresponding to the highest accepted proposal number for this
version in order to either get this value globally accepted or discover
a different value that is already globally accepted. The purpose of
a reader performing such a write back is to ensure that, in case an
object is in an inconsistent state (e.g., because a client failed in the
midst of performing a write), the object is left in a consistent state
which reflects the data returned to the application. Since failures in
the cloud are rare [2, 3, 10], readers will seldom have to incur the
latency overhead of performing write backs.

3.4 Low cost

In comparison with classic Paxos, CPaxos inflates the cost associated
with network transfers in two ways: 1) from every acceptor, a reader
has to fetch the entire CPaxos log, not just the last accepted version,
and 2) to update an acceptor’s state via a conditional-PUT, a client
has to redundantly transfer all data previously stored in the CPaxos
log. We address these sources of cost overhead via efficient garbage
collection and by separating data from metadata.
Garbage collection of CPaxos logs. Since readers need to know
only the highest version accepted by each acceptor (Section 3.3),
we can afford to garbage collect CPaxos state for older versions
during the Accept phase of a write. Even if all older versions of an
object are garbage collected when writing a new version, this does
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Figure 5: CRIC’s per-replica state in cloud storage.

not violate safety; if another client reads this new version before it is
globally accepted, the reader will write back a value for this version
before returning to the application. In settings where conflicts are
known to be not so rare, one can minimize the chances of readers
having to perform write backs by configuring CRIC so that writers
garbage collect some, but not all, older versions in the Accept phase.

The key point to note here is that CRIC can safely afford to always
store a single copy of an object’s data at any replica. In contrast,
to not violate safety, prior variants of Paxos designed for passive
acceptors [25, 29] require every writer to create an additional copy
of the object’s data at a quorum of replicas, even if every update
to an object is a complete overwrite of the object’s data. This in
turn leads to overheads in network transfers as subsequent readers
must necessarily fetch multiple copies of the object’s data from each
replica.
Separation of object data and Paxos state. During the Prepare
phase of a write, only the CPaxos state needs to be updated but not
the object’s data. To enable this, we store an object’s data separately
from the CPaxos state at each of the object’s replicas (see Figure 5).
In services that offer blob storage, we leverage support for storing
with any key a limited amount of metadata which can be modified
independently of the key’s value [8]; storing the CPaxos state for an
object in a separate key would make multi-key transactions necessary,
which key-value stores often do not support. In services that offer
tabular storage (e.g., DynamoDB), we store metadata for each key
in a separate column.

We also store within the metadata a data digest: a hash of the
data last accepted at that replica. In low conflict workloads where
replicas are typically in sync, CRIC reduces cost by having a client
read an object’s data only from the closest replica and read only the
metadata from the other replicas to confirm that they have the same
data for the object.

3.5 Performance under conflict

In comparison with classic Paxos, performance with CPaxos de-
grades more rapidly if conflicts become common. This is because,
when a client’s conditional-PUT to update a replica fails, the client
must incur an additional round-trip to read the acceptor’s state at that
replica before it can retry its proposal. In contrast, when an active
acceptor rejects a proposal, its response includes the information
necessary for the proposer to retry.

Rather than addressing this difference between active and passive
acceptors, we tackle the root cause for conflicts: no client will be
able to complete its write if every client’s proposal is accepted by
less than a majority in a slow round or by less than a super quorum
in a fast round. As shown in Figure 6(a), this occurs because a
client’s requests can arrive at different replicas at different times.

Client 1

Replica 1

Client 2
ok

Conditional-PUT Response

ok

Replica 2

proposal = 2

proposal = 1

Fail

Fail

(a)

Client 1

Replica 1

Client 2

okok

Replica 2

FailFail

(b)

proposal = 1

proposal = 2

Figure 6: Illustration of staggered requests: (a) When clients
issue requests to all replicas simultaneously, update may be suc-
cessful at some replicas but not others. (b) When every client
staggers its requests so that they arrive at the replicas near-
simultaneously, either all replicas will be updated or none.

Though both replicas are in the same state to begin with, by the
time Client1’s request arrives at Replica2, that replica has already
been updated by Client2; similarly, Client1 updates Replica1 before
that replica receives Client2’s request. When data is geo-replicated,
such a scenario is likely to occur when there are concurrent writers,
because the latency from a client can vary significantly to different
replicas.

To address this cause for performance degradation when there are
concurrent writers, CRIC does not send out requests to all replicas
simultaneously. Instead, it staggers its requests such that they arrive
near-simultaneously at the subset of replicas that the client needs to
update for its write to be successful. For example, in the fast round,
after the client first sends out its request to the farthest replica R in
the closest super quorum, the client delays its request to any other
replica R0 in the super quorum by an amount equal to the difference
in the client’s latencies to R and R0. A client can similarly stagger
its requests in a slow round so that its requests arrive at the closest
majority of replicas near-simultaneously. As shown in Figure 6(b),
the likely outcome of such staggering of requests will be that either
all the desired replicas are updated or none.

Staggering requests in this manner works for two reasons. First,
when data is geo-replicated, wide-area network latencies dominate
the latency of interaction between client VMs and storage in remote
data centers. Second, network latencies between cloud data centers
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Figure 7: Low variance of wide-area network latencies for
Azure, AWS, and Google Cloud. 10,000 latency samples were
collected for every pair of data centers.

exhibit low variance. Figure 7 shows that this is true both for Internet
paths between data centers in the same cloud platform and between
data centers in different platforms.

Note that staggering requests as described also helps when exe-
cuting reads. A reader’s staggered requests to the closest majority of
replicas helps increase the likelihood that the client sees the effects
of the same write at all replicas.

4 Evaluation
We evaluate CRIC in three parts. First, in a prototype deployment of
CRIC, we evaluate the latency and throughput performance under
different conflict rates, in comparison with alternative designs not
optimized for the cloud. Second, we conduct a simulation-based
evaluation to demonstrate CRIC’s cost-effectiveness. Finally, we
showcase the utility of CRIC on a real-world web service’s workload.
The primary takeaways from our evaluation are:
• CRIC’s performance is comparable to approaches that require

proxy VMs to augment the storage interface, but at 20–50% lower
dollar cost.
• Compared to existing replication protocols compatible with pas-

sive Paxos acceptors, CPaxos can halve write latency and also
lower dollar cost by 10–60%.
• Under high conflict scenarios, CRIC’s use of staggered requests

helps reduce median write latency by over 50%.

4.1 Prototype Evaluation

Implementation. Our prototype implementation of CRIC is roughly
5400 lines of Java code. We use Thrift [48] for RPCs between VMs,
and interact with every cloud storage service using the official client
libraries. Our prototype is compatible with Microsoft Azure and
Amazon AWS.

To compare CRIC with existing solutions, we also implemented
two comparison systems: Fast Paxos and pPaxos*. Note that we
do not directly compare CRIC with cloud storage services which
support geo-replication of data for two reasons. First, at the time
of writing, Cosmos DB [6] does not yet support strongly consis-
tent replication of data across Azure regions for cloud customers.
Therefore, an experimental performance comparison between CRIC
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Figure 8: (a) Read and (b) write latencies under low conflicts
(Zipfian coefficient = 0.5).

and Cosmos DB is currently infeasible. Second, instead of directly
comparing with Cloud Spanner [9], we compare CRIC with the state
of the art Paxos protocol, which is the core replication protocol used
in Spanner [23].
• Fast Paxos: We implement Fast Paxos to represent a range of

existing solutions, such as MDCC [34] and TAPIR [57], that
would require proxy VMs to replicate data in the cloud. Although
these systems provide richer functionality such as transactions,
using them to offer a globally consistent view of key-value storage
would offer performance similar to the Fast Paxos protocol. Our
implementation of Fast Paxos contains two components: a client
library that implements a Fast Paxos proposer, and code that runs
on VMs which proxy requests to cloud storage and mimic Fast
Paxos acceptors and learners.
• pPaxos*: Among prior Paxos-based replication protocols that

work with passive acceptors, pPaxos [29] is strictly better than
Disk Paxos [25] in terms of performance and cost. Therefore, we
compare CRIC only with pPaxos. Our implementation, pPaxos*,
improves pPaxos’s efficiency by using fast round writes and opti-
mal garbage collection.
Not all cloud storage services support Append operations as
needed by pPaxos. Even storage services that do support Ap-
pend may impose restrictions, e.g., though Azure Storage sup-
ports Append Blobs, updating and deleting existing blocks in a
Blob is not supported, thus preempting garbage collection. We
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therefore implement Appends via proxy VMs that interpose on
requests to storage but ignore the dollar cost of these VMs in our
comparisons.

Deployment setting. We deploy clients in A2 instances (2 cores,
3.5GB RAM) at 5 Azure data centers: East US, West US, Japan,
West Europe, and Southeast Asia. In the blob storage service at each
of these data centers, we store a copy of one million objects. When
proxy VMs are necessary, we deploy a sufficient number of them for
these VMs to not be a bottleneck.

Clients issue reads and writes using YCSB [22], a key value
store benchmark which emulates cloud workloads. We set the num-
ber of clients such that client VMs are fully utilized. We vary the
read-to-write ratio, average object size, and Zipfian distribution that
reflects how popularity varies across objects. The higher the Zipfian
coefficient, the higher the rate of conflicts.
Performance under low conflict rates. First, when conflicts are
rare, we show that CRIC 1) offers performance comparable to ap-
proaches that would require proxy VMs for deployment in the cloud,
and 2) outperforms prior replication protocols compatible with pas-
sive acceptors. In this experiment, we use 1KB objects, set the
read-to-write ratio to 30, and set the Zipfian coefficient to 0.5.

Figure 8 shows the distribution of read and write latencies ob-
served by clients in the Azure East US region. In terms of read
latency, Fast Paxos, pPaxos*, and CRIC all offer similar latencies
since all of them require one round trip to a majority of replicas to
execute reads in the common case. Whereas, for writes, latencies
with pPaxos* are double that with CRIC and Fast Paxos. This is
because, after appending to acceptors’ logs, a pPaxos* proposer has
to read back those logs to check whether its request was accepted.
Tail latencies for both reads and writes are lower with CRIC because
its use of staggered requests reduces the need for writers to retry and
for readers to write-back.
Performance under high conflict rate. Next, we showcase CRIC’s
ability to minimize performance degradation even if conflicts are
common.

Under high conflict rates, a client may require multiple rounds of
communication to complete a read or write, worsening both latency
and throughput. Write-write conflicts cause the fast round to fail, and
multiple proposers compete in one CPaxos instance. For read-write
conflicts, readers may see an inconsistent state due to ongoing writes
and perform write backs, which may then interfere with ongoing
writes.
Write-write conflicts. To experiment with a scenario with a high
conflict rate, we emulate a scenario where a number of clients are
concurrently editing the same document (a la Google Docs or Share-
LaTeX). We vary the number of clients at each of the five data
centers, and we have every client repeatedly write to a shared key,
waiting 2 seconds between consecutive writes.

For different conflict scenarios (more the number of clients per
region, higher the rate of conflicts), Figure 9(a) compares the laten-
cies for successful writes incurred by clients in the East US region
with and without CRIC’s use of staggered requests. When there
is little to no conflict (i.e., 1 or 2 clients per region), it is best to
not use staggered requests because waiting before issuing requests
degrades latencies due to cloud storage’s latency variance. When
there are 4 or 5 clients per region, median write latency significantly
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Figure 9: (a) Utility of staggered requests in reducing write la-
tency under different conflict rates; y-axis is logscale, and 10th,
25th, 50th, 75th, and 95th percentile latency are shown. (b)
Degradation in write throughput under different conflict rates.
(c) Client perceived read latency distribution when conflict rate
is high (Zipfian coefficient = 0.8).

degrades when requests to all replicas are issued simultaneously but
remains unchanged when requests are staggered. At very high con-
flict rates (e.g., 15 clients per region), staggered requests no longer
help; pessimistic concurrency control would be a better choice in
such cases.

Although CRIC works well under low conflict rates, when the
conflict rate is high, throughput with CRIC does suffer more com-
pared to other replication approaches. Figure 9(b) shows how write
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Figure 10: Comparison of dollar cost to execute reads and writes on geo-replicated data; R/W is read-to-write ratio.

throughput degrades in CRIC, Fast paxos, and pPaxos* under differ-
ent conflict rates. As conflicts increase, CRIC’s throughput degrades
at a faster rate than Fast Paxos and pPaxos*. This is because in both
Fast Paxos and pPaxos*, the proposer can learn the outcome of a
Paxos phase in exactly one (Fast Paxos) or two (pPaxos*) rounds.
In contrast, in CRIC, it may take an arbitrary number of rounds
for a proposer to learn the outcome of a Paxos phase. This differ-
ence between CRIC and prior approaches arises because a failed
conditional-PUT in CRIC requires the proposer to read the object
again and possibly retry using the same proposal number; this pro-
cess may have to repeated several times until the proposer finally
knows the outcome of the Paxos phase. However, under such high
conflict rates, it would be more prudent to use pessimistic concur-
rency control.
Read-write conflicts. In CRIC, when a write to an object is globally
accepted but has not yet been applied to all replicas, clients who
read that object may have to perform a write back. CRIC’s use of
the commit bit reduces the incidence of such write backs.

In our experimental setup, Figure 9(c) shows the read latency
distribution observed at Azure’s Japan data center when the Zipfian
coefficient is set to 0.8 and read-to-write ratio is 1. We see that having
writers asynchronously mark their completed write as committed
greatly improves read latencies; as long as the commit bit is set at
any replica with the highest version, a reader need not perform write
backs.

4.2 Cost

While we have shown thus far that latencies and throughput with
CRIC are comparable to those with Fast Paxos when conflicts are
rare, using Fast Paxos incurs significant cost overhead due to the
need for proxy VMs to augment the storage interface. Figure 10
compares CRIC against Fast Paxos and pPaxos* in terms of the
dollar cost necessary to sustain any specific throughput. Note that
there are three main sources of the cost incurred in serving users:

the amount of computation resources (VMs) rented, the number of
PUTs and GETs issued, and the amount of data transferred out of
the data center in which the data is stored. We consider three read-to-
write ratios (30, 10, and 1), three object sizes (256 bytes, 1KB, and
100KB), and a Zipfian coefficient of 0.5. These parameter choices
are informed by prior studies of web service workloads [13, 19, 23].

We see that CRIC reduces dollar cost by 20–50% compared
to Fast Paxos and pPaxos* in our target setting: conflicts are rare
and objects are small [13, 19]. In such workloads, CRIC’s cost
savings over Fast Paxos stem from eliminating the need for VMs that
relay transfers and enrich the cloud storage interface. The savings
compared to pPaxos* are due to efficient use of storage and network
resources: the use of conditional-PUTs and CRIC’s more efficient
garbage collection mechanism allow CRIC to transfer much less
data to fulfill each read and write. Only if both objects are large
and the read-to-write ratio is low, do CRIC’s cost benefits reduce.
Note that, even though, like CRIC, pPaxos* too does not require
proxy VMs, its use may result in higher cost than Fast Paxos when
objects are large. This is because a pPaxos* proposer has to always
append a new copy of an object’s data to any acceptor’s log and has
to therefore transfer multiple versions when reading the log to check
the status of its proposal.

4.3 Application case study

In the final part of our evaluation, we examine CRIC’s performance
in a geo-distributed deployment of ShareLaTeX, a collaborative doc-
ument editor. ShareLaTeX stores multiple versions of any particular
document in a MongoDB instance to allow users to view the changes
to a document.
Operations. Instead of storing a single copy of its data in Mon-
goDB, we ported ShareLaTeX to use CRIC to geo-replicate its data
across Azure and AWS data centers. Our port of ShareLaTeX sup-
ports two operations: updating a document (UpdateDoc) and reading
a document (GetDoc). GetDoc first fetches the latest copy of the
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Figure 11: Latencies for operations in ShareLaTeX when using CRIC to store replicas in 5 data centers across Azure and AWS. Solid
vertical line represents the latency bound estimated when placing replicas.

specified document before fetching the current version number of
that document, and then returns both results to the caller. UpdateDoc
gets the latest copy and current version number of the specified
document to check if there are any changes, and then updates the
document and version number; all operations are executed serially.
While it may be possible to parallelize some of these operations, we
focus on evaluating CRIC’s performance on ShareLaTeX as is, not
on improving the application itself.
Setup. We deploy ShareLaTeX in East US, West US, Japan, West
Europe, and Southeast Asia as before. We use a mixed-integer-
program solver and network latency data to select which data centers
should store data. By identifying the nearest majority and super quo-
rum for each application data center, we select a set of replicas that
first minimizes read latency for the poorest-performing data center
and then minimizes write latency. To tolerate f = 2 failures, we store
5 replicas in 3 Azure data centers (Southeast Asia, West Central US,
West US 2) and 2 AWS data centers (Tokyo and Mumbai).

We preload our ShareLaTeX deployment with 10 projects each
containing 100 1KB documents. We perform 1000 UpdateDoc oper-
ations using randomly generated values, followed by 1000 GetDoc
operations. In both cases we select projects and documents at random
and have 1 client thread running in each data center.
Performance. Figure 11 shows the latency achieved compared to
the latency bound estimated when placing replicas (computed as the
median network latency necessary to contact the nearest majority for
reads and the nearest super quorum for writes). Because the chosen
replicas are in Western US and East Asia, latencies for clients in
those regions are significantly lower than the bounds. Our other
two clients are within 4% of the bounds at the median and 6% at
the 90th percentile. Interestingly, Japan and Southeast Asia swap
positions in the relative ordering based on latencies for GetDoc and
UpdateDoc operations. This is because read operations need only
contact a majority of replicas while writes have to wait for a super
quorum. While Southeast Asia is closer to a majority of replicas
than Japan, Japan is more quickly able to contact a super quorum of
replicas.

5 Discussion

Extensibility of API. The mechanisms used in CRIC to support
reads, writes, and conditional-writes enable it to also support sev-
eral other globally consistent operations on geo-replicated data. In
general, CRIC can be extended to implement operations that are
supported at all the data centers in which it stores data. This is be-
cause strongly consistent intra-data center cloud key-value stores
support the conditional execution of all operations that either update
or create objects. Here, we show evidence of CRIC’s extensibility
with a few examples. Specifically, we describe how CRIC can use
the following operations offered by cloud storage to implement those
same operations on geo-replicated data.
• DELETE. To delete an object, the CRIC library can first issue

conditional-PUTs to update the metadata at a quorum of replicas
to mark the object as deleted, and then asynchronously issue
conditional-DELETEs at all replicas of the object.
• LIST. The two-step process for deletions is necessary in order to

implement the LIST operation, which returns all objects in the
account of the tenant issuing the operation. CRIC can implement
LIST by invoking this operation at all data centers. For any ob-
ject that exists at fewer data centers than the number of replicas
stored for every object, the client must determine if this object
is currently in the process of being created or deleted. The client
can resolve this ambiguity by reading the object’s metadata from
the data centers where a replica of the object does exist; similar
to a reader performing a write back, the client can then complete
the creation/deletion of the object before returning the results of
LIST to the client.
• COPY and LEASE. To create a copy of an object or to obtain

a lease on it, a client must first read the metadata from the ob-
ject’s replicas, and perform write-backs if a quorum of replicas
do not have the latest version. Thereafter, the client can issue a
conditional-COPY or conditional-LEASE at each replica. The
client must repeat these two steps until its conditional operations
succeed at a quorum of replicas.
• Transactions. CRIC can also be used to execute multi-key trans-

actions on geo-replicated data if the cloud storage service within
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each data center offers support for transactions. For example, on
Azure, CRIC can leverage the Table service’s support for batched
updates [11] to execute a transaction as a batch of conditional
updates; on any particular replica, the batch is applied only if all
the conditional updates within the batch succeed. In the absence
of transaction support from cloud storage, CRIC can still be used
to execute transactions with an additional round of latency to
acquire locks (stored in the metadata of each replica) at a quorum
of replicas.

Other benefits of approach. Though the primary motivation for
our work is to help applications seamlessly replicate data across
multiple storage providers with the same interface, CRIC’s approach
of bolting on [15] global consistency offers several other benefits.
• Even if an application replicates its data across the data centers

of a single provider, CRIC promises higher availability than a
geo-distributed storage service offered by that provider; failure or
overload of one component of a geo-distributed storage service
could cascade to other components [26–28], rendering the service
unavailable, whereas data replicated with CRIC is available as
long as the storage services in a majority of data centers are
available.
• On cloud platforms that lack a geo-distributed storage service

(such as AWS), CRIC enables web services to achieve global
consistency semantics on geo-replicated data without waiting for
the cloud provider to fill this void.
• From the perspective of cloud providers, CRIC simplifies the task

of offering global consistency semantics. Rather than develop-
ing a new geo-distributed storage service, cloud providers who
already offer a strongly consistent key-value store in each data
center would merely need to distribute a new client library for
applications to use.

6 Related work

Replication protocols. Paxos [35] and its variants [20, 36, 42]
are well studied for transactional storage. Lynx [58] and Azure
RTable [4] use chain replication to achieve serializable transactions.
In contrast to chain replication, which sacrifices write latency for
read latency, CRIC’s use of Paxos replication permits both read and
write operations to complete while waiting for responses from only
the nearest quorum of nodes.

Many advancements in reducing commit latency stem from the
development of new protocols that reduce network communication
in the common case [23, 24, 34, 36, 38, 42, 43, 46, 57]. Building
upon these protocols, CRIC’s contribution lies in optimizing read
and write latency while minimizing—in the common case, even
eliminating—the need for intermediate virtual machines to enrich
the interface to cloud storage.
Replicated storage. Like CRIC, other replicated systems too sepa-
rate data and metadata, but with different goals. Gnothi [52] uses a
greater replication factor for metadata than for data to improve fault-
tolerance, whereas Giza [21] replicates only metadata and erasure
codes data to reduce storage overhead.

Many geo-distributed storage systems [37, 39, 40, 50] opt for
weaker consistency guarantees in exchange for low latency. In con-
trast, CRIC guarantees strong consistency to provide the simplest
storage semantics.
Leveraging conditional updates. Giza [21] is similar to CRIC in
its use of conditional-PUTs to cope with cloud storage’s limited
interface, but it relies on proxy servers to relay operations to storage;
as we have shown, this can significantly inflate cost. Giza also does
not address latency variance or throughput degradation at high con-
flict rates. Olive [47] takes advantage of conditional writes in cloud
storage for a different purpose: to provide exactly-once semantics
for application logic in the presence of failures.
Redesigning cloud services. To eliminate performance degrada-
tion caused by resource sharing in cloud services, several recent
efforts propose redesigning storage systems [49, 51], data center
networks [18, 30, 45, 54, 56], or both [12, 17]. Rather than wait for
cloud services to adopt these more complex architectures, many of
which can only offer predictability in terms of bandwidth but not
latency, CRIC mitigates latency variance on legacy cloud services.
Moreover, CRIC enables functionality—synchronization of replicas
across the data centers of multiple cloud providers—that no cloud
provider has the incentive to offer.

7 Conclusions
Replicating data across the data centers of multiple cloud providers
for better cost-vs-performance tradeoffs comes at the expense of
losing the luxury of being able to rely on a geo-distributed storage
service to geo-replicate data. With CRIC, we have demonstrated
that it is feasible to address this challenge efficiently with only a
client-side library that requires no changes either to applications
or to cloud services. Despite having to cope with cloud storage’s
limited unmodifiable interface, CRIC is able to efficiently and cost-
effectively preserve the global consistency of geo-replicated data.
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Appendices

A Proof of correctness for CPaxos
THEOREM 1. Only one value can be written for a given version,

and committed value cannot be changed.

PROOF SKETCH. Since all updates to an acceptor’s state are via
conditional-PUTs, a proposer can successfully update an accep-
tor only if it has the most up-to-date copy of that acceptor’s state.
Therefore, once a value is accepted by a quorum (super quorum) of
acceptors in a slow (fast) round, the intersection between quorums
guarantees that another proposer who proposes a different value in a
slow round will discover the committed value in the Prepare phase
and only propose the value that it discovers but not its own value
in the Accept phase. Whereas, if a subsequent proposer uses a fast
round with proposal #0, it will not succeed at a quorum, and it will
revert to proposing in a slow round. ⇤
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LEMMA 1. For a given version, once a value is globally commit-
ted, the highest accepted proposal must have proposed this globally
committed value among a quorum (slow round) or super quorum
(fast round) of acceptors.

PROOF SKETCH. A value is globally committed indicates a quo-
rum (a super quorum if fast round) of acceptors accepts a proposal
with proposal number greater than or equal to the highest proposal
number in them. Future proposals with lower proposal numbers
will not succeed, which leads the proposers to re-propose using
higher proposal numbers. For future proposals with higher proposal
numbers, those proposals will discover the committed value in the
Prepare phase and use the same value in their proposals. Therefore,
the globally committed value must be associated with the highest
accepted proposal number. ⇤

THEOREM 2. Read always returns the last committed write
value.

PROOF SKETCH. The moment a write is globally committed is
when a quorum/super quorum of acceptors accept a proposal. First,
we show that right after a value is globally committed (i.e., after
the moment that a quorum/super quorum of acceptors accept this
proposal), read is guaranteed to return this value.

When a read operation reads data from a quorum of replicas, there
are 2 cases:
• At least one of the replicas has its commit bit set. In this case,

read is guaranteed to return this value since it is indicated by the
commit bit that the value associated with the highest accepted
proposal number across all responses is committed (Lemma 1).
• No replicas have its commit bit set. There are 2 more cases in this

scenario:

• The highest proposal number is a slow round, and all the re-
turned replicas have the same highest accepted proposal number
and data. In this case, the reader knows this is the committed
value, so it will return this value.
• The highest accepted proposal number is a slow round and

the discovered highest proposal number does not appear at a
quorum of replicas, or the highest accepted proposal number
is a fast round. In this case, the reader needs to re-propose the
value with the highest accepted proposal number if the proposal
number is for a slow round, or the most common value if the
proposal number is for a fast round. Because of Lemma 1, if
a write prior to this read has committed, the value associated
with the highest accepted proposal number if it is a slow round
or the most common value associated with the highest accepted
proposal number if it is a fast round, must be the globally
committed value. Therefore, the reader re-proposes the globally
committed value, which will succeed, and then returns this
value.

Since any read which happens right after the commit moment can
return the just committed value by reading any quorum, following
the same logic, other reads after this read will also always return the
same value if no value is committed to any higher version. ⇤

THEOREM 3. Reader-write-back ensures linearizability.

PROOF SKETCH. Linearizability requires that:
• Reader returns the last committed write value.
• Writes happen atomically (once a reader reads version i of the

data, future reads will always return version i or higher version of
the data).

So proving reader-write-back does not break linearizability requires
proving these two properties hold.

Since Theorem 2 already proves A in the case of write back, here
we only need to prove A. Moreover, if reads and writes happen
disjointly (no overlap between the execution of requests), this case
is also included in Theorem 2. So, all we need to prove is that when
a read overlaps with a write, and if that read returns the value of that
write, subsequent reads should always return that value (assuming
no more writes after the write).

When the responses from a quorum of replicas do not contain
the same highest version with the same highest accepted proposal
number, the reader starts a new round of CPaxos to propose the
value associated with the highest accepted proposal number, with a
proposal number that is higher than all the proposal numbers seen
from the response. The consequences of this re-propose are:
• The reader successfully gets it committed.
• The reader fails and it either finds there is a committed value, or

it needs to re-propose again, until success.
In either case, when this read finishes, the value this read returns is
a committed value. And because of Theorem 2, all future reads are
guaranteed to return this value.

⇤

B Example of ABD’s inability to support conditional
updates

Augmenting the ABD [14] protocol to support conditional-writes
on replicated data is fundamentally impossible because ABD is
incapable of differentiating between successful and unsuccessful
writes. The original ABD paper says as much: that it cannot be used
as the basis for read-modify-write.

Consider an object with replicas R1, R2, and R3, all initially
storing copies with logical timestamp 1.1 (version.clientID).
• Clients C1 and C2 first read from a quorum of replicas.
• C1’s conditional-write succeeds updating R1 and R2 to copies

with timestamp 2.1.
• C2’s conditional-write fails but updates R3 to a copy with times-

tamp 2.2.
• Now, if C3 reads from R2 and R3, it will choose to write back

the copy with higher timestamp 2.2, incorrectly committing C2’s
failed conditional-write.
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