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Systems (DSMSs), which constantly monitor incoming data feeds (through registered continuous
queries), in order to detect events of interest. In this article, we examine the problem of how to
schedule multiple Continuous Queries (CQs) in a DSMS to optimize different Quality of Service
(QoS) metrics. We show that, unlike traditional online systems, scheduling policies in DSMSs
that optimize for average response time will be different from policies that optimize for average
slowdown, which is a more appropriate metric to use in the presence of a heterogeneous workload.
Towards this, we propose policies to optimize for the average-case performance for both metrics.
Additionally, we propose a hybrid scheduling policy that strikes a fine balance between performance
and fairness, by looking at both the average- and worst-case performance, for both metrics. We also
show how our policies can be adaptive enough to handle the inherent dynamic nature of monitoring
applications. Furthermore, we discuss how our policies can be efficiently implemented and extended
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1. INTRODUCTION

The growing need for monitoring applications [Carney et al. 2002] has forced an
evolution on data processing paradigms, moving from Database Management
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Systems (DBMSs) to Data Stream Management Systems (DSMSs). Traditional
DBMSs employ a store-and-then-query data processing paradigm, where data
is stored in the database and queries are submitted by the users to be answered
in full, based on the current snapshot of the database. In contrast, in DSMSs,
monitoring applications register Continuous Queries (CQs) which continuously
process unbounded data streams looking for data that represent events of in-
terest to the end-user.

Currently, we are developing a DSMS, called AQSIOS, that can help support
monitoring applications such as the real-time detection of disease outbreaks,
tracking the stock market, environmental monitoring via sensor networks, and
personalized and customized Web pages. One of the main goals in the design
of AQSIOS is the development of scheduling policies that optimize Quality of
Service (QoS).

This goal is complicated by the fact that the scheduling policy must take into
account that the CQs are heterogeneous, i.e., they may have different time com-
plexities (the amount of processing required to find if input data represents an
event), and different productivity or selectivity (the number of events detected
by the CQ). For example, consider two CQs, GOOGLE and ANALYSIS on streams of
stock market data. GOOGLE is a simple query that asks the DSMS to be notified
when there is a stock quote for GOOGLE. ANALYSIS is a complex query that
asks the application to provide some specific technical analysis for any new
stock price. Obviously, GOOGLE has low cost and it detects fewer events, whereas
ANALYSIS has high cost and it detects more events.

The most commonly used QoS metric in the literature is average response
time. In this paper, we show that if the objective is to optimize the response
time, then the “right” strategy is to schedule CQs according to their output rate.
Specifically, we present a new scheduling policy called Highest Rate (HR). HR
generalizes the Rate-based policy (RB) [Urhan and Franklin 2001] for schedul-
ing operators in multiple CQs as opposed to RB that has been proposed for
scheduling operators within a single query. Under HR, the priority of a query
is set to its output rate where the output rate of the query is the ratio between
its expected selectivity and its expected cost.

Although scheduling to minimize average response time works well for homo-
geneous workloads, there are some well known disadvantages to using average
response time as the metric to optimize when the workload is heterogeneous.
In the above example, the user who issued the ANALYSIS query likely knows
that it is a complex query, and is expecting a higher response time than the
user that issued the GOOGLE query. A metric that captures this phenomenon is
average slowdown. The slowdown of a job is the ratio of the response time of the
job to its ideal processing time [Muthukrishnan et al. 1999]. So, for example, if
each job had slowdown 1.1, then each user would experience a 10% delay due
to queuing (although the responses could be very different).

Interestingly, in most online systems (e.g., Web servers), Shortest-
Remaining-Processing-Time (SRPT) is one policy that is optimal for average
response time and near optimal for average slowdown [Muthukrishnan et al.
1999]. A surprising discovery that motivated this work is that this is not the
case with the HR policy which optimizes average response time of CQs [Sharaf
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et al. 2006]. In general, HR will not optimize average slowdown because of the
“probabilistic” nature of CQs where the selectivity might not equal 1. In this
paper, we argue that if the objective is to optimize average slowdown then the
“right” scheduling strategy is to set the priority of a query to the ratio of its
selectivity over the product of its expected cost and its ideal total processing
cost. We call this policy the Highest Normalized Rate (HNR) policy.

The average slowdown provided by the DSMS captures the system’s average-
case performance. However, improving the average-case performance usually
comes at the expense of unfairness toward certain classes of queries that might
experience starvation. Starvation is typically captured by measuring the maxi-
mum slowdown of the system [Bender et al. 1998], that is, the perceived worst-
case performance.

Starvation is an unacceptable behavior in a DSMS that supports monitoring
applications where all kinds of events are equally important. Hence, it is crucial
to balance the trade-off between the average-case and worst-case performances
of the DSMS. Toward this, we propose a hybrid scheduling policy that optimizes
the �2 norm of slowdowns [Bansal and Pruhs 2003]. As such, it is able to strike
a fine balance between the average- and worst-case performances and hence it
avoids starvation and exhibits higher degree of fairness.

In addition to new scheduling policies, we consider two special problems that
are unique to DSMSs and should be exploited by the query scheduler. The first
problem is inherent in the dynamic nature of data streams where the distribu-
tion of data may vary significantly over time. Towards solving this problem, we
propose an adaptive scheduling mechanism that allows our proposed policies to
react quickly to changes in data distribution. The second problem is inherent
in the interdependency between operators in CQs due to the presence of join or
shared operators. Towards this, we first address the scheduling of multi-stream
queries with time-based sliding window join operators. We formulate the defi-
nition of slowdown for composite tuples produced by join operators and extend
our proposed scheduling policies to handle such multi-stream queries. Second,
we consider the scheduling of multiple queries with shared operators, where
we show that a proper setting of the priority of shared operators significantly
improves system performance.

Contributions. The contributions of this article can be summarized as
follows:

(1) We propose policies for scheduling multiple CQs that maximize the average-
case performance of a DSMS, for response time and for slowdown.

(2) We propose hybrid policies that strike a fine balance between the average-
and worst-case performances, for response time and for slowdown.

(3) We consider three issues that are very particular to DSMSs. Namely, we
propose: (a) extending our proposed policies to handle multi-stream contin-
uous queries, (b) exploiting sharing in optimizing multi-query plans, and
(c) utilizing an adaptive scheduling mechanism.

(4) To ensure that our proposed hybrid policy can be efficiently realized in
AQSIOS, we propose a low-overhead implementation which uses clustering
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Fig. 1. Continuous queries plans.

in addition to efficient search pruning techniques adopted from [Aksoy and
Franklin 1999; Fagin et al. 2001].

Our extensive experimental evaluation using real and synthetic data shows
the significant gains provided by our proposed policies under different QoS
measures, compared to existing scheduling policies in DSMSs. Our experi-
ments also highlight the memory requirements of each of our proposed poli-
cies and the trade-off between optimizing for QoS vs optimizing for memory
usage.

Road Map. Section 2 provides the system model. Sections 3 and 4 define our
QoS metrics and present our proposed scheduling policies. Section 5 focuses on
multi-stream queries. In Sections 6 and 7, we discuss implementation details
and extend our work to consider queries with shared operators. Sections 8 and 9
discuss our simulation testbed and our experimental results. Finally, Section 10
surveys related work.

2. SYSTEM MODEL

In a DSMS, users register continuous queries that are executed as new data
arrives. Data arrives in the form of continuous streams from different data
sources, where the arrival of new data is similar to an insertion operation in
traditional database systems. A DSMS is typically connected to different data
sources and a single stream might feed more than one query.

A continuous query evaluation plan can be conceptualized as a data flow
tree [Carney et al. 2002; Babcock et al. 2003], where the nodes are operators
that process tuples and edges represent the flow of tuples from one operator to
another (Figure 1). An edge from operator Ox to operator Oy means that the
output of Ox is an input to Oy . Each operator is associated with a queue where
input tuples are buffered until they are processed.
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Multiple queries with common subexpressions are usually merged together
to eliminate the repetition of similar operations [Sellis 1988]. For example,
Figure 1 shows the global plan for two queries Q1 and Q2. Both queries op-
erate on data streams M1 and M2 and they share the common subexpression
represented by operators O1, O2 and O3, as illustrated by the half-shaded pat-
tern for these operators.

A single-stream query Qk has a single leaf operator Ok
l and a single root

operator Ok
r , whereas a multi-stream query has a single root operator and more

than one leaf operators. In a query plan Qk , an operator segment Ek
x, y is the

sequence of operators that starts at Ok
x and ends at Ok

y . If the last operator
on Ek

x, y is the root operator, then we simply denote that operator segment as
Ek

x . Additionally, Ek
l represents an operator segment that starts at the leaf

operator Ok
l and ends at the root operator Ok

r . For example, in Figure 1, E1
1 =<

O1, O3, O4 >, whereas E2
1 =< O1, O3, O5 >.

In a query, each operator Ok
x (or simply Ox) is associated with two parame-

ters:

(1) Processing cost or Processing time (cx) is the amount of time needed to
process an input tuple.

(2) Selectivity or Productivity (sx) is the number of tuples produced after pro-
cessing one tuple for cx time units. sx is less than or equal to 1 for a filter
operator and it could be greater than 1 for a join operator.

Given a single-stream query Qk which consists of operators < Ok
l , . . . , Ok

x ,
Ok

y , . . . , Ok
r > (Figure 1), we define the following characterizing parameters for

any operator Ok
x (or equivalently, for any operator segment Ek

x that starts at
operator Ok

x ):

—Operator Global Selectivity (Sk
x ): is the number of tuples produced at the root

Ok
r after processing one tuple along operator segment Ek

x .

Sk
x = sk

x × sk
y × · · · × sk

r .

—Operator Global Average Cost (C
k
x ): is the expected time required to process

a tuple along an operator segment Ek
x .

C
k
x = (

ck
x

) + (
ck

y × sk
x

) + · · · + (
ck

r × sk
r−1 × · · · × sk

x

)
.

If Ok
x is a leaf operator (x = l ), when a processed tuple actually satisfies

all the filters in Ek
l , then C

k
l represents the ideal total processing cost or time

incurred by any tuple produced or emitted by query Qk . In this case, we denote
C

k
l as Tk :

—Tuple Processing Time (Tk): is the ideal total processing cost required to pro-
duce a tuple by query Qk .

Tk = ck
l + · · · + ck

x + ck
y + · · · + ck

r .

We extend these parameters for multi-stream queries in Section 5.
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3. AVERAGE-CASE PERFORMANCE

In this section, we focus on QoS metrics for single-stream queries and present
our scheduling policies for optimizing these metrics. Multi-stream queries are
discussed in Section 5.

3.1 Response Time Metric

In DSMSs, the arrival of a new tuple triggers the execution of one or more CQs.
Processing a tuple by a CQ might lead to discarding it (if it does not satisfy
some filter predicate) or it might lead to producing one or more tuples at the
output, which means that the input tuple represents an event of interest to
the user who registered the CQ. Clearly, in DSMSs, it is more appropriate to
define response time from a data/event perspective rather than from a query
perspective as in traditional DBMSs. Hence, we define the tuple response time
or tuple latency as follows:

Definition 1. Tuple response time, Ri, for tuple ti is Ri = Di − Ai, where Ai

is ti ’s arrival time and Di is ti ’s output time. Accordingly, the average response
time for N tuples is: 1

N

∑N
i=1 Ri.

Notice that tuples that are filtered out do not contribute to the metric, as they
do not represent any event [Tian and DeWitt 2003].

3.1.1 Highest Rate Policy (HR). The Rate-based policy (RB) has been
shown to improve the average response time of a single query [Urhan and
Franklin 2001]. In Aurora [Carney et al. 2003], RB was used for scheduling
operators within a query, after the query had been selected by Round Robin
(RR). Below, we present a policy that extends RB for scheduling both queries
and operators [Sharaf et al. 2005; Sharaf 2007].

In the basic RB policy, each operator path within a query is assigned a priority
that is equal to its output rate. The path with the highest priority is the one
scheduled for execution. In our proposed Highest Rate policy (HR), we simply
view the network of multiple queries as a set of operators and at each scheduling
point we select for execution the operator with the highest priority (i.e., output
rate).

Specifically, under HR, each operator Ok
x is assigned a value called global

output rate (GRk
x ). The output rate of an operator is basically the expected

number of tuples produced per time unit due to processing one tuple by the
operators along the operator segment starting at Ok

x all the way to the root Ok
r .

Formally, the output rate of operator Ok
x is defined as follows:

GRk
x = Sk

x

C
k
x

, (1)

where Sk
x and C

k
x are the operator’s global selectivity and global average cost

as defined in Section 2. The intuition underlying HR is to give higher priority
to operator paths that are both productive and inexpensive. In other words, the
highest priority is given to the operator paths with the minimum latency for
producing one tuple.
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The priority of each operator Ok
x is set to its global output rate GRk

x , or equiv-
alently, the output rate of the operator segment Ek

x starting at Ok
x . Hence, the

priority of Ek
x is basically equal to the priority of Ok

x and executing Ok
x implies

the pipelined execution of all the operators on Ek
x unless it is interrupted by a

higher priority operator (or operator segment) as we will describe in Section 6.

3.2 Slowdown Metric

Average response time is an expressive metric in a homogeneous setting, that
is, when all tuples require the same processing time. However, in a heteroge-
neous workload, as in our system, the processing requirements for different
tuples may vary significantly and average response time is not an appropri-
ate metric, since it cannot relate the time spent by a tuple in the system to
its processing requirements. Given this realization, other online systems with
heterogeneous workloads such as DBMSs, OSs, and Web servers have adopted
average slowdown or stretch [Muthukrishnan et al. 1999] as another metric.
This motivated us to consider stretch as the metric in our system.

The definition of slowdown was initiated by the database community in
Mehta and DeWitt [1993] for measuring the performance of a DBMS executing
multi-class workloads. Formally, the slowdown of a job is the ratio between the
time a job spends in the system to its processing demands [Muthukrishnan
et al. 1999]. In DSMS, we define the slowdown of a tuple as follows [Sharaf
et al. 2006; Sharaf 2007]:

Definition 2. The slowdown, Hi, for tuple ti produced by query Qk is Hi =
Ri
Tk

, where Ri is ti ’s response time and Tk is its ideal processing time. Accordingly,
the average slowdown for N tuples is: 1

N

∑N
i=1 Hi.

Intuitively, in a general purpose DSMS where all events are of equal im-
portance, a simple event (i.e., an event detected by a low-cost CQ) should be
detected faster than a complex event (i.e., an event detected by a high-cost CQ)
since the latter contributes more to the load on the DSMS.

3.3 Highest Normalized Rate Policy (HNR)

Based on the above definitions, we developed the Highest Normalized Rate
(HNR) policy for minimizing average slowdown. Table I summarizes the pa-
rameters used for describing the HNR policy for single-stream queries as well
as the other scheduling policies discussed in the next section. It also includes the
parameters used for join operators (Section 5) and shared operators (Section 7).

To illustrate the intuition underlying HNR, consider two operator segments
Ei

x and E j
y starting at operators Oi

x and O j
y respectively. For each of the two

operator segments, we compute its global selectivity and global average cost as
described above. Further, assume that the current wait time for the tuple at
the head of Oi

x ’s queue is W i
x and for the tuple at the head of O j

y ’s queue is W j
y .

We then consider two different scheduling policies:

—Policy (A), where Ei
x is executed before E j

y , and

—Policy (B), where E j
y is executed before Ei

x .
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Table I. Table of Symbols

Symbol Description

Oi
x Operator x in query i

Ei
x, y Segment of operators that starts at Oi

x and ends at Oi
y

Ei
x Segment of operators that starts at Oi

x and ends at the root Oi
r

ci
x Processing time/cost of operator Oi

x
si
x Selectivity of operator Oi

x

C
i
x Expected processing time/cost of operator segment Ei

x
Si

x Selectivity of operator segment Ei
x

W i
x Wait time for tuple at the head of Oi

x ’s input queue
Ti Ideal processing time/cost of a tuple produced by query Qi

Vx Window interval for join operator Ox

τl Mean inter-arrival time of data stream Ml

SEx Set of operator segments starting at shared operator Ox

SCx Expected processing time/cost of set of segments in SEx

In policy A, where Ei
x is executed before E j

y , the total slowdown of tuples
produced under this policy is:

HA = Si
x × HA,i + S j

y × HA, j (2)

where Si
x and S j

y is the number of tuples produced by Ei
x and E j

y respectively,
and HA,i and HA, j are the slowdowns of the Ei

x tuples and the E j
y tuples

respectively.
Recall that the slowdown of a tuple is the ratio between the time it spent in

the system to its ideal processing time. Hence, HA,i and HA, j are computed as
follows:

HA,i = Ti + W i
x

Ti
HA, j = C

i
x + Tj + W j

y

Tj
,

where C
i
x is the amount of time E j

y will spend waiting for Ei
x to finish execution.

By substitution in (2),

HA = Si
x × Ti + W i

x

Ti
+ S j

y × C
i
x + Tj + W j

y

Tj
.

Similarly, under the alternative policy B, where E j
y is executed before Ei

x , the
total slowdown HB is:

HB = S j
y × Tj + W j

y

Tj
+ Si

x × C
j
y + Ti + W i

x

Ti
.

In order for HA to be less than HB, then the following inequality must be
satisfied:

S j
y × C

i
x

Tj
< Si

x × C
j
y

Ti
. (3)

The left-hand side of Inequality (3) shows the increase in total slowdown in-
curred by the tuples produced by E j

y when Ei
x is executed first. Similarly, the

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2008.



Algorithms and Metrics for Processing Multiple Heterogeneous CQs • 5:9

right-hand side shows the increase in total slowdown incurred by the tuples
produced by Ei

x when E j
y is executed first. The inequality implies that between

the two alternative execution orders, we should select the one that minimizes
the increase in the total slowdown. That is, we should select the segment
with the smallest negative impact on the other one.

In order to select the segment with the smallest negative impact, in our HNR
policy, each operator Ok

x is assigned a priority V k
x which is the weighted rate or

normalized rate of the operator segment Ek
x that starts at operator Ok

x and it
is defined as:

V k
x = 1

Tk
× Sk

x

C
k
x

. (4)

The term Sk
x /C

k
x is basically the global output rate (GRk

x) of the operator seg-
ment starting at operator Ok

x as defined in Urhan and Franklin [2001]. As such,
the priority of each operator Ok

x is its normalized output rate, or equivalently,
the normalized output rate of the operator segment Ek

x starting at Ok
x . Hence,

executing Ok
x implies the pipelined execution of all the operators on Ek

x unless
it is interrupted by a higher priority operator, as we will describe in Section 6.

3.4 HNR vs. HR

It is interesting to notice that if the objective is optimizing the response time,
then the ideal total processing cost T should be eliminated from the denomina-
tors of all the above equations resulting in setting the priority V k

x of operator
Ok

x to:

V k
x = Sk

x

C
k
x

= GRk
x . (5)

In fact, this is the prioritizing function we use in our Highest Rate (HR) policy
for optimizing the response time. presented in Section 3.1.1. The HR policy,
schedules jobs in descending order of output rate which might result in a high
average slowdown because a low-cost query can be assigned a low priority since
it is not productive enough. Those few tuples produced by this query will all
experience a high slowdown, with a corresponding increase in the average slow-
down of the DSMS.

Our policy HNR, like HR, is based on output rate, however, it also emphasizes
the ideal tuple processing time in assigning priorities. As such, an inexpensive
operator segment with low productivity will get a higher priority under HNR
than under HR.

Example 1. To further illustrate the difference between the HR and the
HNR policies, let us consider an example where we have two queries Q1 and
Q2. Each query consists of a single operator. For Q1, the cost of the operator
is 5 ms and its selectivity is 1.0. For Q2, the cost of the operator is 2 ms and
its selectivity is 0.33. Further, assume that there are 3 pending tuples to be
processed by the 2 queries and that all 3 tuples have arrived at time 0.

Under the HR policy, Q1’s priority is 1.0
5.0 = 0.2, whereas Q2’s priority is 0.33

2.0 =
0.1667 (which is the output rate of each query). Figure 2(A) shows the queries’
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Fig. 2. The output of Example 1.

Table II. Results of Example 1

Response Time Slowdown

HR 12.25 3.875
HNR 13.0 2.9

output under the HR policy where Q1 is executed first and it accepted/emitted
all the pending 3 tuples, then Q2 is executed and it only accepted one of the
3 pending tuples (since its selectivity is 0.33); we assume it was the middle one
in this example.

Under the HNR policy, Q1’s priority is 1.0
5.0×5.0 = 0.04, whereas Q2’s priority

is 0.33
2.0×2.0 = 0.08. Hence, under HNR, Q2 is scheduled before Q1 resulting in the

output shown in Figure 2(B).
Table II summarizes the results of the two different policies and shows that

HNR provides the lower average slowdown compared to HR. The reason is that
the one tuple accepted by Q2 experienced a slowdown of 4

2 = 2.0 under HNR
while its slowdown under HR is 19

2 = 9.5. This unfairness of HR toward Q2

resulted in a higher overall average slowdown compared to HNR.

3.5 HNR vs. HR vs. SRPT

It should be clear that under HR, if all the operators’ selectivities are equal to
one, then Equation (5) is simply the inverse of the processing time. Hence, in
this case, HR is equivalent to SRPT. Similarly, if all the operators’ selectivities
are equal to one, then in Equation (4), C

k
x is equal to Tk and Oi

x is executed
before O j

y if 1/(Ti)2 > 1/(Tj )2. By taking the square root of both sides, then
HNR is also equivalent to SRPT.

The previous observation shows the effect of the selectivity parameter on
this problem. That is, under a probabilistic workload, HR reduces the response
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time, whereas HNR reduces the slowdown. However, as the workload becomes
deterministic, both HR and HNR converge to a single policy which is the SRPT
policy, which has been shown to be optimal for task scheduling when looking at
response time and near optimal when looking at slowdown.

4. AVERAGE-CASE VS. WORST-CASE PERFORMANCE

Here, we first define the worst-case performance and a policy that minimizes
it. Then, we introduce our scheduling policy for balancing the trade-off between
the average- and worst-case performance.

4.1 Worst-Case Performance

It is expected that a scheduling policy that strives to minimize the average-case
performance might lead to a poor worst-case performance under a relatively
high load. That is, some queries (or tuples) might starve under such a policy.
The worst-case performance is typically measured using maximum response
time or maximum slowdown [Bender et al. 1998].

Definition 3. The maximum response for N tuples is max(R1, R2, . . . , RN ).

Definition 4. The maximum slowdown for N tuples is max(H1, H2, . . . ,
HN ).

Intuitively, a policy that optimizes for the worst-case performance should be
pessimistic. That is, it assumes the worst-case scenario where each processed
tuple will satisfy all the filters in the corresponding query. An example of such a
policy is the traditional First-Come-First-Serve (FCFS) that has been shown to
optimize the maximum response time metric in Bender et al. [1998]. Similarly,
the traditional Longest Stretch First (LSF) [Acharya and Muthukrishnan 1998]
has been shown to optimize the maximum slowdown. Under LSF, each operator
Ok

x is assigned a priority V k
x which is computed as:

V k
x = W k

x

Tk
, (6)

where W k
x is the wait time of the tuple at the head of Ok

x ’s input queue and Tk

is the ideal processing cost for that tuple.
LSF is a greedy policy under which the priority assigned to an operator Ok

x
is basically the current slowdown of the tuple at the top of Ok

x ’s input queue;
the current slowdown of a tuple is the ratio of the time the tuple has been in
the system thus far to its processing time.

4.2 Balancing the Trade-Off between Average-Case and

Worst-Case Performance

A policy that strikes a fine balance between the average-case and worst-case
performance needs a metric that is able to capture this trade-off. In this section,
we first present such a metric, and then describe our proposed scheduling policy
which optimizes that metric.
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4.2.1 The �2 Norm Metric. On one hand, the average value for a QoS met-
ric provided by the system represents the expected QoS experienced by any
tuple in the system (i.e., the average-case performance). On the other hand,
the maximum value measures the worst QoS experienced by some tuple in the
system (i.e., the worst-case performance). It is known that each of these metrics
by itself is not enough to fully characterize system performance.

To get a better understanding of system performance, we need to look at both
metrics together or, alternatively, we can use a single metric that captures both
of these metrics. The most common way to capture the trade-off between the
average-case and the worst-case performance is to measure the �2 norm [Bansal
and Pruhs 2003]. Specifically, the �2 norm of response times, Ri, is defined as:

Definition 5. The �2 norm of response times for N tuples is equal to√∑N
1 R2

i .

The definition shows how the �2 norm considers the average in the sense that
it takes into account all values, yet, by considering the second norm of each value
instead of the first norm, it penalizes more severely outliers compared to the
average slowdown metric.

Similarly, the �2 norm of slowdowns, Hi, is defined as:

Definition 6. The �2 norm of slowdowns for N tuples is equal to
√∑N

1 H2
i .

In the following sections, we present our policies for balancing the trade-off
between the average and worst cases.

4.2.2 Balancing the Trade-Off for Slowdown. Our proposed HNR policy is
still biased toward certain classes of queries. These classes are:

(1) Queries with high productivity; and/or
(2) Queries with low processing cost.

For example, under HNR, a query with high cost and low productivity comes
at the bottom of the priority list. When the system is overloaded, such low
priority query will starve waiting for execution. This behavior may be viewed as
being unfair as it yields a system with a high value for the maximum slowdown
metric. The LSF policy, on the other hand, avoids the starvation of tuples yet
yields a poor average-case performance.

In order to balance the trade-off between the average- and worst-case per-
formance, we are proposing a new scheduling policy that minimizes the �2

norm of slowdowns. We will call this new policy Balance Slowdown (BSD).
To understand the intuition underlying BSD, we will use the same technique
from the previous section but with the objective of minimizing the �2 norm of
slowdowns.

Specifically, consider a policy A where operator segment Ei
x is executed before

operator segment E j
y . The �2 norm of slowdowns of tuples produced under this

policy is:

LA =
√

Si
x × (HA,i)2 + S j

y × (HA, j )2,
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where Si
x , HA,i, S j

y , and HA, j are calculated as in Section 3. Similarly, we can
compute LB which is the �2 norm of slowdowns of tuples produced under policy
B. In order for LA to be less than LB, then the following inequality must be
satisfied:

S j
y

C
j
y (Tj )2

(
2W j

y + 2Tj + C
i
x

)
<

Si
x

C
i
x(Ti)2

(
2W i

x + 2Ti + C
j
y

)
.

As an approximation, we drop (2Tj + C
i
x) and (2Ti + C

j
y ) from the above

inequality which yields to:

S j
y

C
j
y Tj

× W j
y

Tj
<

Si
x

C
i
xTi

× W i
x

Ti
.

Hence, under our proposed policy BSD, each operator Ok
x is assigned a priority

value V k
x which is the product of the operator’s normalized rate and the current

highest slowdown of its pending tuples. That is:

V k
x =

(
Sk

x

C
k
x Tk

) (
W k

x

Tk

)
. (7)

Notice that the term Sk
x /C

k
x Tk is the normalized output rate of operator Ok

x
as defined in (4), whereas the term W k

x /Tk is the current highest slowdown
experienced by a tuple in Ok

x ’s input queue. As such, under BSD, an operator is
selected either because it has a high weighted rate or because its pending tuples
have acquired a high slowdown. This makes our proposed heuristic a hybrid
between our previous policy for reducing the average slowdown (i.e., HNR) and
the greedy heuristic to optimize maximum slowdown (i.e., LSF). Comparing
the priority used in BSD to that used by HNR, we find that BSD considers the
waiting time of tuples, and gives greater emphasis to the cost.

4.3 Balancing the Trade-Off for Response Time

We use the same observations from above to devise a policy that balances the
trade-off between average response time and maximum response time. Specifi-
cally, our proposed heuristic for balancing the trade-off under the response time
metric is a hybrid of our proposed HR policy (that optimizes average response
time) and the FCFS policy (that optimizes maximum response time). As such,
under our proposed Balance Response Time (BRT) policy, each operator Ox is
assigned a priority value Vx which is defined as:

V k
x =

(
Sk

x

C
k
x

) (
W k

x

)
. (8)

5. MULTI-STREAM QUERIES

In this section, we extend our work to handle multi-stream queries which con-
tain Join operators and specifically, time-based sliding window joins. To sim-
plify the discussion, we assume Symmetric Hash Join (SHJ) [Wilschut and
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Apers 1991; Kang et al. 2003] which is a nonblocking, in-memory join process-
ing algorithm.

To illustrate the semantics of a time-based sliding window join, let us assume
a sliding window continuous query Q that performs a join between two streams
Ml and Mr with a window interval V . Each tuple that arrives at the system has
a timestamp which is either assigned by the data source or the DSMS. For such
a query Q , when a tuple t arrives at stream Ml , it will be compared against
the tuples from Mr that are within V time units from t ’s timestamp [Babcock
et al. 2003; Carney et al. 2002]. Out of those tuples, the ones that satisfy the
join predicate are streamed up the query plan.

To use SHJ for performing the join operation in the query described above,
hash tables HTl and HTr are defined over streams Ml and Mr , respectively.
As a tuple t with timestamp t.ts arrives at one of the streams (say Ml ), it is
first hashed and inserted into HTl , then the hash value is used to probe HTr

for tuples with matching key. Out of those matching tuples, each tuple that
satisfies the window predicate is concatenated to the input tuple t and a new
composite tuple is generated.

5.1 Metrics For Joins

Next, we extend the metrics described in Section 3 for composite tuples gener-
ated by multi-stream queries.

5.1.1 Response Time of Joined Tuples. Definition 1 can be used directly
to measure the response time of a composite tuple as long as the arrival time
is defined. This arrival time is easily defined by considering the dependency
between the two joined tuples. That is, the composite tuple cannot be generated
until the arrival of the second one (similarly to Babcock et al. [2003]). In other
words, the composite tuple “inherits” the arrival timestamp of the latest of the
tuples used to create it. Hence, the arrival time is defined as follows:

Definition 7. The arrival time Ai of a composite tuple ti that is produced
from concatenating two tuples tl and tr with arrival times Al and Ar respectively
is equal to max(Al , Ar ).

Thus, the response time Ri for tuple ti is Ri = Di − Ai, where Di is the tuple
output time and Ai is the arrival time.

5.1.2 Slowdown of Joined Tuples. In order to measure the slowdown of a
composite tuple produced by a multi-stream query Qk , we first need to identify
the ideal processing time Tk incurred by such a tuple. For simplicity, in this
section, we drop the query identifier from our notation. To compute Tk , let us
consider a query consisting of four components (Figure 3):

(1) A join operator (OJ )
(2) A left operator segment preceding the join operator (EL)
(3) A right operator segment preceding the join operator (ER), and
(4) A common operator segment following the join operator down to the query

root (EC).
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Fig. 3. An example of a multi-stream query plan.

Each of those segments might consist of one or more operators. In the sim-
plest case, when each segment is composed of one operator, the query plan looks
like Q1 or Q2 in Figure 1.

A tuple that is generated by such a query is the result of concatenating two
tuples tl and tr received from the left and right inputs, respectively. The tuple
tl is first processed by EL, then at OJ , the hash, insert, and probe operations
are performed on tl . Similarly, tr is processed by ER and OJ . Ultimately, the
concatenated tuple generated by the join is processed by EC. Hence, the ideal
processing time of a composite tuple is defined as follows:

Definition 8. The ideal processing time Tk of a composite tuple processed
by a multi-stream query Qk composed of join operator OJ , a left segment EL,
a right segment ER , and a common segment EC is defined as:

Tk = CL + CR + (2 × CJ ) + CC

where CL, CR , CJ , and CC are the ideal total processing costs of the operators
in EL, ER , OJ , and EC respectively.

To compute the slowdown of a tuple it is important not to penalize the DSMS
for the dependency delay. That is, the time that the first tuple has to spend
waiting for the arrival of its matching tuple. As such, we define the slowdown
incurred by a composite tuple ti produced by a multi-stream query Qk as follows:

Hi = 1 + Dactual
i − Dideal

i

Tk
,

where Dactual
i is the actual departure time of the composite tuple which includes:

1) processing time; 2) dependency delay; and 3) queuing delay, whereas Dideal
i

is the ideal departure time of the composite tuple if it were the only tuple in
the system and it includes all the components in Dactual

i except for the queuing
delay.

5.2 Scheduling Multi-stream Queries

In order to solve the problem of scheduling multi-stream queries, we follow
the same technique as in Urhan and Franklin [2001] and Babcock et al. [2003],
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where we reduce the problem to that of scheduling individual segments. Specif-
ically, we view a multi-stream query as a set of disjoint virtual single-stream
queries and assign a priority value to each operator in these virtual queries.

However, computing such priorities requires global knowledge about the se-
lectivity of the multi-stream query. Specifically, we need to redefine the prior-
itizing parameters Sx and Cx in the presence of windowed-join operators. As
such, let us consider a multi-stream query Q which contains a join operator OJ

and operator segments EL, ER , and EC as shown in Figure 3. Further, assume
that the selectivities of the operators in Q are known, hence, we can compute
the segments’ global selectivities SL, SR , and SC. Finally, assume that data
arrives at the left and right streams with mean inter-arrival times τl and τr ,
respectively and that the query performs a time-based windowed join where
the window interval is denoted by V time units.

For scheduling, we view the above query as two operator segments ELL and
ERR where ELL =< EL, OJ , EC > and ERR =< ER , OJ , EC >. For simplicity, we
assume we are implementing a nonpreemptive scheduling policy; as such, it is
sufficient to compute the priority values for the leaf operators in ELL and ERR.
Let Ox be the leaf operator in ELL, then the parameters Sx and Cx are defined
as follows:

—Global Selectivity Sx . is the number of tuples produced due to processing one
tuple down segment ELL and is defined as follows:

Sx = SL × SJ ×
(

SR × V
τR

)
× SC

where (SR × V
τR

) estimates the number of tuples present in hash table HTr

at any point of time (as in [Kang et al. 2003; Babcock et al. 2003]).
—Global Average Cost Cx. is the expected time required to process an input

tuple along segment ELL and is defined as:

Cx = CL + (SL × CJ ) +
(

SL × SJ × SR × V
τR

× CC

)
where the first two terms define the cost for processing the input tuple, and
the third term is the cost for processing all the tuples generated by concate-
nating the input tuple with the matching tuples in HTr .

Using the above parameters as well as the total processing time parameter
computed in Definition 8, we set the priority of each operator by substitution in
the prioritizing function corresponding to the used scheduling policy (i.e., HR,
HNR, BSD, or BRT) as defined in Equations (1), (4), (7), and (8) respectively.
For multi-stream queries with multiple join operators, the above parameters
are defined recursively.

6. IMPLEMENTATION ISSUES

At each scheduling point, our scheduler is invoked to decide which operator to
execute next. The definition of a scheduling point depends on the scheduling
level as follows:
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—Query-Level Scheduling, where the scheduling point is reached when a query
finishes processing a tuple (i.e., nonpreemptive)

—Operator-Level Scheduling, where the scheduling point is reached when an
operator finishes processing a tuple (i.e., preemptive).

6.1 Priority Dynamics under HNR

Under HNR, the priority given to each operator is static over time. Thus, the
scheduler simply keeps a sorted list of pointers to operators. At each scheduling
point, the scheduler traverses the list in order and selects for execution the first
operator with pending tuples.

In query-level scheduling, it is sufficient to only keep a list of the priorities of
leaf operators where the priority of a leaf operator Ol is basically the normalized
output rate of segment El .

In operator-level scheduling, the scheduler might decide to proceed with the
next operator Ox on the currently executing query or to execute a leaf operator
in another query for which new tuples have arrived. As such, it is required to
keep a list of the priorities of all operators, where the priority of operator Ox is
computed as the normalized output rate of the segment of operators starting
at Ox and ending at the root, as shown in Section 3.

6.2 Priority Dynamics under BSD

Recall, the priority of an operator Ox under BSD depends on its static nor-
malized output rate and the current slowdown of its pending tuple where the
latter increases with time. The increase in the current slowdown for different
tuples happens at different rates according to each tuple’s current wait time (W )
and ideal processing cost (T ). As such, the priority of each operator under BSD
should be recomputed at any instant of time. However, such an implementation
renders BSD very impractical. An obvious way to reduce such an overhead is to
implement BSD using a query-level scheduler; this approximation will reduce
the frequency of scheduling points, however it is not enough. For instance, if
there are q installed CQs, then at each scheduling point the scheduler will have
to compute the priorities for q leaf operators. Next, we describe techniques for
an efficient implementation of BSD.

6.2.1 Search Space Reduction. Notice that the priority of an operator un-
der the nonpreemptive implementation of BSD can be expressed by the product
of two components: W k

x and Sk
x /(C

k
x × T 2

k ) where the former is dynamic, while
the latter is static. We will denote that static component Sk

x /(C
k
x × T 2

k ) as �x .
To reduce the search space, we divide the domain of priorities into clusters

where each cluster covers a certain range in the priority spectrum. An operator
belongs to a cluster if its priority falls within the range covered by the cluster.
Then each cluster is assigned a new priority and all operators within a cluster
inherit that priority.

Using clustering is a well known technique to reduce the search space for
dynamic schedulers. In the particular context of DSMSs, Aurora uses a uniform
clustering method for its QoS-aware scheduler. However, uniform clustering
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has the drawback of grouping together operators with large differences in their
priorities. For example, if the priority domain is [1, 100] and we want to divide
it into 2 clusters, then we will end up with clusters covering the ranges [1, 50]
and [50, 100]. Notice how the ratio between the highest and lowest priority in
the second cluster is only 2, whereas that ratio in the first cluster goes up to 50.

In this paper, we propose to logarithmically divide the domain of priorities
into clusters, where the priorities of the operators that belong to the same
cluster are within a maximum value ε from each other. Specifically, the first
cluster will cover the priority range [ε0, ε1], the second covers [ε1, ε2] etc.. In
general, a cluster i will cover the priority range [εi, εi+1] where a cluster i is
assigned a pseudo priority equal to εi and an operator Ox will belong to cluster
i if εi ≤ �x ≤ εi+1.

The number of resulting clusters depends on ε and �, where � is the ratio
between the highest and the lowest priorities in the priority domain. Hence, the
number of clusters m is: m = log (�)

log (ε) . For example, if the priority domain is [1,
100], then at ε = 10, the number of clusters is equal to 2 where the first cluster
covers the priorities [1, 10] and the second covers [10, 100]. As one can see from
this example, the ratio between the highest and lowest priority in each cluster
is equal to ε (i.e., 10) as opposed to 2 and 50 when using uniform clustering.

Given such a clustering method, when a new tuple arrives, instead of routing
it to the input queue of a leaf operator Ok

l , it is routed to the input queue of the
cluster that contains Ok

l . Then at each scheduling point, the priority of each
cluster is computed using the W of the oldest tuple in the cluster’s input queue
and the cluster’s pseudo priority. Clearly, this “batching” can provide significant
savings in computing priorities.

6.2.2 Search Space Pruning. The clustering method reduces the complex-
ity of the scheduler from O(q) to O(m), however, we can do even better by
pruning the search space. Towards this, we use the same method used in
the R × W policy [Aksoy and Franklin 1999] and later generalized by Fagin’s
Algorithm (FA) which quickly finds the exact answer for top k queries [Fagin
et al. 2001].

FA quickly finds the exact answer for top k queries in a database where each
object has g grades, one for each of its g attributes, and some aggregation
function that combines the grades into an overall grade. FA requires that for
each attribute there is a sorted list which lists each object and its grade under
that attribute in descending order. In this paper, we do not present the details
of FA, but we show how to map our search space to that required by FA.

As mentioned above, under BSD, our function for computing the priority of an
operator cluster is the product of W and its pseudo priority. Hence, the system
can keep a list of all clusters sorted in descending order of pseudo priority.
Additionally, the system’s input queue is already sorted by the tuples’ arrival
time, which makes it automatically sorted in descending order of wait time
with each tuple pointing to its corresponding cluster in the cluster list. At a
scheduling point, the two lists are traversed according to FA with k = 1 (i.e.,
find the top 1 answer). The answer returned by FA is the cluster with the
highest priority which is selected for execution. Note that FA will provide the
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Fig. 4. An example that illustrates the different implementation techniques.

same answer as the one returned by a linear traversal of the list. Hence, the
only approximation so far is due to using the clustering method.

6.2.3 Clustered Processing. Once a cluster is selected for execution, then
the tuple at the top of the cluster’s input queue is processed by its corresponding
query until emitted or discarded (i.e., pipelined and nonpreemptive). However,
it is often the case that the same tuple is to be processed by more than one
query in the system. As such, once a cluster is selected by the scheduler, we
execute a complete set of queries Qc which belong to the selected cluster and
they all operate on the head-of-the-queue tuple.

This idea of clustered processing is kind of similar to the train processing
in Aurora [Carney et al. 2003] where once a query is selected for execution, it
will process a batch of pending tuples. However, each tuple in the same queue
will have a different wait time, but in our case, all the queries in the same
cluster will have the same pseudo priority which reduces the inaccuracy in the
scheduling decision.

Example 2. Figure 4 shows an example that illustrates the three imple-
mentation techniques described above. The figure shows two query clusters Cx

and Cy together with their pending tuples. It also shows the system’s input
queue where tuples are sorted according to their wait time W and the clusters
list where clusters of queries are sorted according to their static priority �. A
link between a tuple t and a cluster C means that t is the tuple at the head of
C’s input queue. Notice that t could be at the head of several input queues at
the same time, however, at any point of time, it is only associated with the one
cluster that has the highest static priority among these clusters. Finally, the
priority of a pair < t, C> is computed using t ’s wait time W and C’s priority �

as described above.
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In this example, we assume that the static priority �x of cluster Cx is higher
than the static priority � y of cluster Cy . The figure shows the status of the
system’s queues right after tuple t1 has been processed by the queries in cluster
Cx . At that moment, tuple t1 is disassociated from cluster Cx and it is instead,
associated with cluster Cy which follows Cx in the priority list. Additionally,
tuple t2 is associated with cluster Cx since it is the tuple currently at the head
of Cx ’s input queue.

Using FA, the two lists are searched for the pair that has the highest pri-
ority to be executed. If the pair < t2, Cx > is executed first, then at the next
scheduling point, tuple t3 would be the one associated with Cx . However, if the
pair < t1, Cy > is executed first, then at the next scheduling point, t1 would be
associated with the next cluster in the cluster list or it would be eliminated
from the queue if it has been processed by all clusters.

6.3 Adaptive Scheduling

It should be clear that the success of any of the scheduling policies we have
proposed relies heavily on the DSMS being able to estimate the processing
time and the selectivity parameters for each operator. This would enable the
scheduler to compute the right priority for each query which in turn would lead
to optimizing the desired QoS metric.

The first of these parameters (i.e., the processing time of an operator) is a
fairly static parameter that could be estimated once when a CQ is registered
and used throughout the lifetime of the CQ. However, the selectivity parameter
of an operator could be very dynamic as it depends on the data distribution in
the input data stream which may vary significantly over time. For example, in
an environment monitoring application, a filter like where temp < 40◦F will
have higher selectivity during the night than during the day. (At least in some
parts of the world, including Pittsburgh.)

To circumvent this problem of dynamic selectivity, we propose an adaptive
scheduling mechanism that enables our proposed policies to deliver the ex-
pected performance all the time. Under this mechanism, the DSMS continu-
ously monitors the execution of queries and updates the current priorities of
queries based on the new estimations.

Specifically, the DSMS monitors the input and output of query operators
over a time window and updates the selectivity of the operator at the end of the
window. If the new selectivity is different from the old one, then the operator is
assigned a new priority based on the new selectivity. The new selectivity Snew

assigned to an operator is basically computed as follows:

Snew = (1 − α) × Sold + α × NO

NI
,

where Sold is the current selectivity of the operator and NO and NI are re-
spectively, the number of output and input tuples of an operator during the
window interval. Finally, α is an aging parameter that determines how much
is the weight assigned to the newly observed selectivity as compared to the
selectivity currently assigned to an operator.
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For instance, if α is set to 0, then the selectivity would never be updated and
the system is static. On the contrary, if α is set to 1, then the system always
ignores the past and the new selectivity is basically the one that has been
observed during the last window. This might lead to a very unstable system
especially with a short monitoring window. Hence, a value of α that is greater
than 0 and less than one should allow for a stable and and adaptive system. In
fact, we found that setting α to 0.175, the same value used in network congestion
control mechanisms [Jacobson 1988], provides the best performance.

Notice that our mechanism for monitoring and adapting is very similar to
the ticket scheme used in eddies-based query processing [Madden et al. 2002].
However, the ticket scheme is basically used for routing tuples between op-
erators rather than scheduling the execution of multiple continuous queries.
Specifically, the ticket scheme provides dynamic query plans that can adapt to
changes in workload.

Under the ticket scheme, a lottery scheduling mechanism [Waldspurger and
Weihl 1994] is used where the eddy gives a ticket to an operator whenever it
consumes a tuple and takes a ticket away whenever it sends a tuple back to
the eddy for further processing. To choose an operator to which a new tuple
should be routed, a lottery is conducted between operators, with the chances
of a particular operator winning is proportional to the number of tickets it has
acquired. On the one hand, the ticket scheme gives higher priority to operators
with low selectivity, which is beneficial for query plan optimization. On the other
hand, our proposed policies generally give higher priority to operators with high
selectivity, which is beneficial for multiple query scheduling for improved online
performance.

7. OPERATOR SHARING

Operator sharing eliminates the repetition of similar operations in different
queries. Hence, a multi-query scheduler should exploit those shared operators
for further optimization. In this section we show how to set the priority of a
shared operator under our proposed policies.

First, let us consider a set of operator segments SEx in which operator Ox is
shared among multiple operator segments E1

x , E2
x , . . . , En

x (Figure 5) where for
each segment Ei

x , we can compute the selectivity Si
x and the average cost C

i
x .

Further, assume that the cost of the shared operator Ox is cx and SCx is
the average cost of executing the set of segments SEx . Intuitively, SCx is equal
to the total average cost of executing the N segments with the cost of the
shared operator Ox counted only once. Formally, the average cost SCx of N
paths sharing an operator Ox is:

SCx =
N∑

i=1

C
i
x −

N−1∑
i=1

cx ,

where C
i
x is the average cost of segment Ei

x and cx is the cost of the shared
operator Ox .
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Fig. 5. Multiple CQs plans sharing operator Ox .

7.1 HNR with Operator Sharing

In this section, we will describe the general method for setting the priority of a
shared operator under HNR. In the next section, we will describe the particular
details of this method. Note that the BSD policy can also be extended in the
same way, however the details are eliminated for brevity.

To set the priority of a shared operator under the HNR policy, consider two
sets of operator segments SEp and SEq , where SEp = {E1

p, . . . , E N
p } sharing

operator Op and SEq = {E1
q , . . . , E M

q } sharing operator Oq . For now, assume
that if a set of segments is scheduled, then all the segments within that set are
executed.

To measure the impact of executing one set on the other, we will use the
same concept from the definition of Inequality (3). Basically, we will measure
the increase in slowdown incurred by the tuples produced from one set if the
other set is scheduled for execution first. Hence, if the set of segments SEp is
executed first, then the increase in slowdown incurred by tuples from SEq is
computed as follows:

Hq = S1
q

SCp

Tq,1
+ S2

q
SCp

Tq,2
+ · · · + SM

q
SCp

Tq,M
,

where SCp is the amount of time that set SEq will spend waiting for set SEp

to finish execution and Tq,i is the ideal total processing time for the tuples
processed by Ei

q .
Similarly, we can compute Hp which is the increase in slowdown incurred

by tuples from SEp. In order for Hq to be less than Hp, then the following
inequality must be satisfied:

SCp

M∑
i=1

Si
q

Tq,i
< SCq

N∑
i=1

Si
p

Tp,i
.

Hence, the priority of a set of operator segments SEx that consists of N segments
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sharing a common operator Ox is:

Vx =
∑N

i=1
Si

x
Tx,i

SCx
. (9)

7.2 Priority-Defining Tree (PDT)

Setting the priority of a shared operator using all the N segments in a set is
only beneficial if it maximizes the value of Equation (9). However, that is not
always the case because Equation (9) is nonmonotonically increasing. That is,
adding a new segment to the equation might increase or decrease its value.

We definitely need to boost the priority of a shared operator, however, we do
not want segments with low normalized rate to hurt those with high normalized
rate by bringing down the overall priority of the shared operator. As such, we
need to select from each set what we call a Priority-Defining Tree (PDT) which
is the subset of segments that maximizes the aggregated value of the priority
function. Hence, the priority of a shared operator is basically the priority of
that PDT and once a shared operator is scheduled, the segments in the PDT
are executed as one unit (unless it is preempted).

In order to compute the priority value Vx for operator Ox , we sort the seg-
ments according to their priority. Then, we visit the segments in descending
order of priority, and only add a segment to the priority defining tree of Ox

(PDTx) if it increases the aggregate priority value, otherwise we stop and the
shared operator Ox is assigned that aggregate priority value. Hence, for an
operator Ox shared between N segments, with a PDTx that is composed of m
segments where m ≤ N , the priority of Ox under the HNR policy is defined as:

Vx =
∑m

i=1
Si

x
Tx,i∑m

i=1 C
i
x − ∑m−1

i=1 cx

.

If m = N , that is, if the PDT consists of all the segments sharing Ox , then Vx

is equal to the global normalized rate as defined in Equation (9).
For any operator segment Ei

x that does not belong to PDTx , such segment
can be viewed as two components: Ox and Li

x (as shown in Figure 5). Executing
PDTx will naturally lead to executing the Ox component of Ei

x . Scheduling Li
x

for execution depends on its priority which is computed in the normal way
using its normalized rate as in Section 3. Hence, for example, in a query-level
implementation of the HNR scheduler, the priority list will contain all the leaf
operators in addition to the first operator in each segment that does not belong
to any PDT.

8. EVALUATION TESTBED

To evaluate the performance of the algorithms proposed in this paper, we cre-
ated a DSMS simulator with the following properties.

Queries. We simulated a DSMS with 500 registered continuous queries. The
structure of the query is the same as in Chen et al. [2002] and Madden et al.
[2002] where each query consists of three operators: select, join, and project.
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For the experiments on single-stream queries, we assume a join with a stored
relation; for multi-stream queries we use window join between data streams.

Streams. We used the LBL-PKT-4 trace from the Internet Traffic Archive1

as our input stream. The trace contains an hour’s worth of wide-area traffic
between the Lawrence Berkeley Laboratory and the rest of the world. This trace
gives us a realistic data arrival pattern with On/Off traffic which is typical of
many applications.

Selectivities. In order to control the selectivity, we added two extra at-
tributes to each packet in the trace and assigned each attribute a uniform
value in the range [1,100]. Then the selectivity of the select and join operators
is uniformly assigned in the range [0.1,1.0] by using predicates defined on the
introduced attributes. Since the performance of a policy depends on its behavior
toward different classes of queries, where a query class is defined by its global se-
lectivity and cost, we chose to use the same selectivity for operators that belong
to the same query. This enables us to control the creation of classes in a uniform
distribution to better understand the behavior of each policy (e.g., Figure 13).

Costs. Similar to selectivity, operators that belong to the same query have
the same cost, which is uniformly selected from five possible classes of costs.
The cost of an operator in class i is equal to: K × 2i time units, where i ∈ [0,4]
and K is a scaling factor that is used to scale the costs of operators to meet
the simulated utilization (or load). Specifically, we measure the average inter-
arrival time of the data trace, then we set K so that the ratio between the total
expected costs of queries and the inter-arrival time is equal to the simulated
utilization.

Policies. We compared the performance of our proposed policies to the two-
level scheduling scheme from Aurora where Round-Robin (RR) is used to sched-
ule queries and Rate-Based (RB) is used to schedule operators within a query.
Collectively, we refer to the Aurora scheme in our experiments as RR.

We also considered the SRPT policy where the priority of an operator segment
is inversely proportional to its total ideal processing time, as well as the Chain
scheduling policy [Babcock et al. 2003] which minimizes memory usage.

Here is a list of the rest of the policies considered in our experiments:

—FCFS: First Come First Served policy for minimizing maximum response
time (Section 4.1).

—LSF: Longest Stretch First policy for minimizing maximum slowdown
(Section 4.1).

—HR: Highest Rate policy for minimizing average response time
(Section 3.1.1).

—HNR: Highest Normalized Rate policy for minimizing average slowdown
(Section 3.3).

—BRT: Balance Response Time policy for minimizing �2 norm of response times
(Section 4.3).

1http://ita.ee.lbl.gov/html/contrib/LBL-PKT.html.
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Table III. Simulation Parameters

Parameter Value

Base-case policies RR, SRPT, Chain
Adopted policies FCFS, LSF, HR, HNR, BRT, BSD
Queries 500 3-operator queries
Operator cost K × 20 – K × 24 Secs
Operator selectivity 0.1 – 1.0
Window interval 1 – 10 Secs
System Utilization 0.1 – 0.99

Fig. 6. Avg. slowdown vs. system load.

—BSD: Balance Slowdown policy for minimizing �2 norm of slowdowns
(Section 4.2.2).

Table III summarizes the simulation parameters described above.

9. EXPERIMENTS

In this section, we present the performance of our proposed policies under the
different QoS metrics. We also present results on the implementation of the
BSD policy as well as the performance of the PDT strategy for scheduling shared
operators.

9.1 Performance under Different Metrics

In this section, we present the performance of our proposed policies under the
different QoS metrics.

9.1.1 Average Slowdown. Figure 6 shows how average slowdown increases
with utilization. Clearly, HNR, our proposed policy, provides the lowest slow-
down followed by HR. For instance at 0.7 utilization, the slowdown provided by
HNR is 74% lower than that of RR, 51% lower than SRPT, and 18% lower than
HR. At 0.97 utilization, HNR is 75% lower than RR, 53% lower than SRPT,
and 20% lower than HR.
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Fig. 7. Avg. response vs. system load.

Fig. 8. Max. response time vs. system load.

9.1.2 Average Response Time. As expected, this improvement in slowdown
by HNR would lead to an increase in response time compared to HR as shown
in Figure 7. For instance, at 0.7 utilization, HNR’s response time is 4% higher
than HR and it is 7% higher at 0.97 utilization.

9.1.3 Maximum Response Time. In terms of worst-case performance, Fig-
ure 8 shows that FCFS provides the lowest maximum response time which is
75% lower than HR at 0.97 utilization. However, that improvement comes at
the expense of poor average-case performance, as shown in Figure 7 where the
average response time provided by FCFS is 630% that of HR.

9.1.4 Maximum Slowdown. Similar to FCFS, Figure 9 shows that LSF
reduces the maximum slowdown by 80% compared to HNR. However, that im-
provement comes at the expense of poor average-case performance (as depicted
in Figure 10).
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Fig. 9. Max. slowdown vs. system load.

Fig. 10. Max. vs Avg. slowdown for HNR, LSF, SRPT, and BSD.

9.1.5 Trade-Off in Slowdown. Figure 10 shows that BSD can strike a fine
balance between average slowdown and maximum slowdown. For instance, as
shown in Figure 10, at 0.95 utilization, BSD decreases the maximum slowdown
by 44% compared to HNR while decreasing the average slowdown by 80% com-
pared to LSF under the same utilization.

9.1.6 �2 norm of Slowdowns. As mentioned above, the trade-off between
average and maximum slowdowns is easily captured using the �2 metric. Fig-
ure 11 shows the �2 norm of slowdowns as the utilization of the system increases.
The figure shows that BSD reduces the �2 of slowdowns by up to 57% compared
to LSF and by 24% compared to HNR.

9.1.7 �2 norm of Response Times. Similar to BSD, BRT reduces the �2 norm
of response times by up to 51% compared to FCFS and 23% compared to HR as
shown in Figure 12.
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Fig. 11. �2 of slowdowns vs. system load.

Fig. 12. �2 of response times vs. system load.

9.1.8 Slowdown per Class. To gain better insight into the behavior of the
different policies toward different classes of queries, we split the workload into
distinct classes (as suggested in Acharya and Muthukrishnan [1998]). Tuples
belong to the same class if they were processed by operators with similar costs
and selectivities. In Figure 13, we show the slowdown of tuples processed by
the class of low-cost queries (i.e., queries where an operator cost is K × 20)
and different selectivities. The figure shows how HR is unfair toward the low-
selectivity queries which leads to significant increase in the slowdown of the
tuples processed by those queries. HNR is still biased toward high-selectivity
queries, yet less than HR. Similarly, BSD is less biased than HNR. That bal-
ance allowed BSD to provide the best �2 norm of slowdowns as shown in
Figure 11.

9.1.9 Performance over Time. Figures 14, 15, 16, and 17 show the perfor-
mance of different scheduling policies over simulation time in the interval from
108 to 4×108μsec. The figures show that our proposed policies provide the best
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Fig. 13. Slowdown per class for low-cost queries.

Fig. 14. Response time over time.

performance over time for each of the optimization metrics especially at peak
times where traffic is more bursty.

9.1.10 Impact of Selectivity. To further study the impact of selectivity, we
conducted an experiment where we assigned the same cost to all operators
while varying the maximum value of selectivity assigned to an operator. For
instance, if the maximum selectivity is set to 1.0, then the selectivity value
assigned to an operator is uniformly distributed in the range [0.1,1.0], whereas
if the maximum is 0.5, then the selectivity value assigned to an operator is
uniformly distributed in the range [0.1,0.5] etc.

Figure 18 shows the �2 norm of slowdowns for the setting described above.
The figure shows that when the maximum selectivity is 0.1, then HR, HNR,
and BSD provide almost the same performance since all operators will have the
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Fig. 15. Slowdown over time.

Fig. 16. �2 of response times over time.

same selectivity of 0.1. As the maximum value of selectivity increases, HR will
favor queries with higher selectivity over those with lower selectivity resulting
in a high �2 norm of slowdowns compared to HNR and BSD. The figure shows
that BSD always provides the best performance since it considers both the ideal
processing time of a query as well as the age of its pending tuples. For instance,
when the maximum selectivity is 0.5, BSD reduces the �2 norm of slowdowns
by 44% compared to HR and by 19% compared to HNR; at a maximum of 1.0,
the �2 norm is reduced by 61% compared to HR and by 27% compared to HNR.

9.1.11 An Oracle Scheduling Policy. In order to validate our general strat-
egy of using output rate (or normalized output rate) for multiple CQ scheduling,
we introduce what we call an oracle scheduling strategy. The oracle strategy
has the ability to “peek” into an input tuple and determine if it will generate
an output event or will be discarded.
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Fig. 17. �2 of slowdowns over time.

Fig. 18. �2 of slowdown vs. maximum operator selectivity.

Clearly, the oracle strategy is not implementable in a real system as it re-
quires processing the input stream (in the same way continuous queries do),
before deciding what to schedule. As such, we are introducing this strategy
only for the sake of comparison, since it takes the “guess” out of the scheduling
decision. Specifically, at each scheduling point, the oracle strategy is able to
compute the exact output rate of a query as opposed to its expected output rate
as computed by our proposed policies.

As an example, consider a continuous query Q with 5 pending tuples, where
only the 5th one is an event. Under regular scheduling, each of the 5 inputs
is an event with probability S (which is the selectivity of the query), whereas
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Fig. 19. Performance of an oracle scheduling policy compared to regular scheduling.

under the oracle strategy, only the 5th tuple is an event with probability 1.0
and the other tuples are known to be discarded. Given this information, the
oracle can compute the instantaneous output rate of Q as 1.0 (the number of
tuples produced) divided by the amount of time needed to process the 5 pending
tuples.

Clearly, the oracle strategy has the advantage of not relying on selectivity
estimation in making the scheduling decision. This is especially beneficial when
the expected selectivity deviates significantly from the exhibited one. This is
illustrated in Figure 19, where we plot the ratio in performance between regular
policies (HR and HNR) and oracle policies (HR-O and HNR-O) while increasing
the maximum selectivity in the system (as in the previous experimental setup).
The figure shows that at low maximum selectivity (i.e., 0.1), the oracle can
improve the performance by up to 80%. As the maximum selectivity increases,
the gains decrease and drop to 12% when the maximum selectivity is 1.0. The
reason is that at low selectivity there is a higher chance that an input tuple is
not an event. However, only the oracle knows accurately if it is an event or not,
which allows it to make a better decision. As the maximum selectivity increases,
there are more queries in the system with high selectivity which means that
there is a higher chance that a regular policy’s guess about a tuple being an
event is correct. This brings the performance of regular policies close to the
oracle at higher values of maximum selectivity.

Given the above comparisons, it is clear that, in general, using variants of
output rate is the right strategy to schedule CQs. However, the exhibited gains
in performance depend on the accuracy in computing the rate as illustrated in
Figure 19.

9.1.12 �2 norm for Multi-Stream Queries. BSD also provides the lowest
�2 norm of slowdowns for multi-stream queries as shown in Figure 20. In this
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Fig. 20. �2 of slowdown for multi-stream queries.

experimental setting, we generated a workload where queries receive input
tuples from 2 data streams, generated following Poisson arrival. In this work-
load, the costs and selectivities of the operators are assigned uniformly as before
and the windows are in the range of 1 to 10 secs. Figure 20 shows that BSD
improves the �2 norm by up to 14% compared to HNR.

It is also interesting to notice the large improvement offered by BSD over
policies like RR and FCFS. For instance, at 0.9 utilization, BSD improves the
performance 17 times compared to RR, and by 15 times compared to FCFS.
The reason is that RR and FCFS do not exploit selectivity which plays a more
significant role in the case of multi-stream queries where the selectivity of the
join operator often exceeds 1.0.

9.2 Memory Usage

Besides CPU, memory is another resource that needs to be considered in a
DSMS. For this reason, we also studied the memory requirements of each of
the proposed scheduling policies. Figure 21 shows the average memory usage
of our proposed policies, along with that of the Chain policy [Babcock et al.
2003] that was designed to minimize memory usage; we are including Chain as
a yard-stick for comparison.

Figure 21 shows how policies that optimize for slowdown (i.e., the HNR and
BSD) reduce the memory usage compared to those that optimize for response
time (i.e., the HR and BRT). For instance, HNR reduces the memory usage by up
to 22% compared to HR. Both HNR and HR give higher priorities to queries with
low processing cost. Similarly, those queries are given higher priorities under
policies that optimize for memory usage like Chain, since tuples that belong
to such queries will spend a short time in memory. However, when it comes to
selectivity, Chain gives higher priorities to queries with low selectivities, or in
other words, to queries whose input tuples have a higher chance to be discarded,
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Fig. 21. Memory usage vs. system load.

since they will save memory space. On the contrary, HR gives those queries low
priority since they will not generate results. Meanwhile, since HNR emphasizes
processing cost, it will boost the priority value of a low selectivity query with
low processing cost. Hence, it allows HNR to schedule such queries earlier and
save memory space.

Figure 21 also shows how the BRT and BSD policies provide more savings in
memory usage. The reason is that under such policies, if a low selectivity query
has been waiting for a long time, its priority increases until it is eventually ex-
ecuted. For instance, BSD decreases the memory usage by up to 13% compared
to HNR.

In order to put these results into the proper perspective, we also compared
the performance of Chain to our proposed policies under the different QoS
metrics that we have studied in previous experiments. Figure 22 shows that
Chain consistently suffers under all of the QoS metrics studied in this paper.
For example at utilization 0.97, Chain provides 3 times the average slowdown
of HNR which needs only 2 times the memory of Chain. Similarly, at utilization
0.97, Chain increases the �2 norm of slowdowns by 2.2 times compared to BSD
although BSD requires memory space that is only 1.85 times more than that of
Chain. Thus, BSD is able to also strike a fine balance between improving the
interactive performance within acceptable memory requirements.

9.3 Comparison of Implementation Techniques

To evaluate the impact of the implementation techniques proposed in Section 6,
we compared the performance of four policies: HNR, BSD-Hypothetical, BSD-
Uniform, and BSD-Logarithmic, which are defined as follows:

—BSD-Hypothetical is a version of BSD where we ignore the scheduling
overheads.

—BSD-Uniform uses uniform clustering as in Carney et al. [2003].
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Fig. 22. Performance of Chain under QoS metrics.

Fig. 23. �2 of slowdown vs. number of clusters.

—BSD-Logarithmic uses our proposed logarithmic clustering (described in
Section 6).

In both BSD-Uniform and BSD-Logarithmic, we set the cost of each of the
priority computation and comparison operations to the cost of the cheapest
operator in the query plans.

Figure 23 shows the �2 norm of slowdowns provided by the four policies vs. the
number of clusters (i.e., m) at 0.95 utilization. The figure shows that for BSD-
Logarithmic, when m is small (≤ 6), its �2 might exceed that for HNR, because
the priority range covered by each cluster is large which decreases the accuracy
of the scheduling. However, as we increase m, its performance gets closer to that
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Fig. 24. Efficient implementation of BSD.

of BSD-Hypothetical such that at 12 clusters, its provided �2 norm is only 5%
higher than BSD-Hypothetical. By increasing m beyond 12, its �2 norm starts
increasing again due to increasing the search space. On the other hand, BSD-
Uniform starts at a very high �2 and it decreases slowly with increasing m.
That is, the accuracy of the solution is very poor when the number of clusters is
small (i.e., each cluster range is large). As such, BSD-Uniform starts to provide
acceptable performance (10% higher than BSD-Hypothetical) when the cluster
range is very small (notice that in this setting � ≈ 1.2e + 05).

Figure 24 shows the incremental gains provided by each of the proposed im-
plementation techniques when using 12 logarithmic clusters. The figure shows
that a naive implementation of BSD will increase the �2 norm by 6470% com-
pared to BSD-Hypothetical. By incrementally adding each of the implementa-
tion techniques, we achieve a performance that is only 5% higher than BSD-
Hypothetical; that is, the implementation overhead of the BSD policy is only 5%.

9.4 Operator Sharing

To measure the performance of the sharing-aware versions of HNR and BSD,
we created a workload in which queries are grouped randomly in sets of 10
queries each where all queries within a set share the same select operator.

Figures 25, 26, and 27 show the performance of different scheduling policies
under the response time, slowdown, and �2 norm of slowdown metrics respec-
tively. In each figure, we compare the performance of three variants for imple-
menting the same policy that optimizes the metric under investigation. These
three variants are: Max, Sum, and PDT, defined as follows:

—Max: where the shared operator priority is equal to the priority of that one
segment within the group that has the maximum priority.

—Sum: where the shared operator priority is equal to the aggregation of the
priorities of all the segments in a group.
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Fig. 25. Response for grouped queries.

Fig. 26. Slowdown for grouped queries.

—PDT: where the shared operator priority is equal to the aggregation of
the priorities of the segments in its priority-defining tree (as described in
Section 7).

The figures show that the PDT strategy significantly improves the perfor-
mance of each scheduling policy. For example, Figure 25 shows that, com-
pared to Max and Sum, PDT reduces the response time by 21% and 12% re-
spectively, whereas the reductions in slowdown are 24% and 18% (Figure 26)
and finally, the reductions in the �2 norm of slowdowns are 10% and 8%
(Figure 27).
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Fig. 27. �2 of slowdowns for grouped queries.

9.5 Adaptive Scheduling

In all the previous experiments, queries operated on data that was generated
according to a uniform distribution in the range of [1, 100]. In this experi-
ment, we use a more dynamic setting to study the performance of our adaptive
scheduling mechanism. Specifically, we divide the simulation time into 100 in-
tervals, where the data in each interval is generated according to a Gaussian
distribution that is specified by a mean and a standard deviation. The mean
starts at 50.0, and it is incremented by one with every new interval.

The goal of this set of experiments is to study the behavior of the adaptive
variants of our proposed policies; basically, this means that for the adaptive
policies, selectivity will be estimated dynamically, as described in Section 6.3.

Figure 28 shows the ratio between the performance of the adaptive and the
nonadaptive versions of each policy under the metric optimized by that policy.
For instance, it compares the performance of the adaptive HR (i.e., HR-A) to
the nonadaptive HR under the response time metric. For example, a value of
20% for HR-A vs. HR means that HR-A’s response time is 20% of that of HR.
The nonadaptive HR assumes that data is uniformly distributed, whereas HR-
A monitors the data distribution and adjusts the operators selectivities and
priorities accordingly.

Figure 28 shows that the adaptive versions of all policies always outperform
the non-adaptive ones especially at low values of standard deviation where the
distribution is highly skewed within each interval. For instance, at a standard
deviation of 25, HR-A’s response time is 74% of HR and HNR-A’s slowdown is
76% of HNR, whereas at a standard deviation of 5, these values are 10% and
15% respectively.

Figure 28 also shows that the relative gain provided by HNR-A is lower than
that provided by HR-A. This is because HNR uses the ideal processing time in
its prioritizing function; this makes its non-adaptive version less sensitive to
the fluctuations in selectivity. Similarly, the relative gains provided by BRT-A
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Fig. 28. Ratio of the adaptive scheduler performance vs. the static one for different metrics.

and BSD-A are lower than HR-A, since both BRT and BSD use the wait time
in their prioritizing functions.

Obviously, the improvement in performance provided by adaptive schedul-
ing depends on the choice of values for the monitoring window length and the
aging parameter α. In the results shown in Figure 28, we selected a window of
length 100 input tuples and a value of α equal to 0.175. In order to choose these
specific values, we explored the combinatorial search space of the two param-
eters. We observed that, in general, very low values of α yield a very unstable
system as it gives very low weight to the old observations, while high values of
α result in an almost static system that cannot adapt fast enough to changes.
Similarly, for the window length, a short window does not have enough data
to provide good estimates of selectivity, while long windows provide outdated
statistics.

Samples of the search space are provided in Figures 29 and 30 (at standard
deviation 5 as in Figure 28). In particular, in Figure 29, we plot the performance
of the adaptive scheduler compared to the static one when α is equal to 0.175 and
variable window length. Similarly, in Figure 30, we plot the performance when
the window length is 100 and α is variable. The figures show that, in general,
windows between 50 and 150 tuples and αs between 0.1 and 0.25 provide the
best performance.

10. RELATED WORK

The growing need for monitoring applications has led to the development of sev-
eral prototype DSMSs [Carney et al. 2002; Motwani et al. 2003; Carney et al.
2002; Cranor et al. 2003; Chandrasekaran et al. 2003; Hammad et al. 2004].
These prototypes utilize new techniques for the efficient processing of continu-
ous queries over unbounded data streams. For example, Viglas and Naughton
[2002] proposed rate-based query optimization as a replacement to the tradi-
tional cost-based approach. Also, new techniques for processing aggregate CQs
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Fig. 29. Impact of monitoring window length on adaptive scheduling.

Fig. 30. Impact of α value on adaptive scheduling.

appeared in Li et al. [2005], while techniques for processing join CQs appeared
in Golab and Ozsu [2003].

For multiple queries, multi-query optimization has been exploited by Chen
et al. [2002] to improve system throughput in the Internet and by Madden
et al. [2002] for improving throughput in TelegraphCQ. TelegraphCQ uses a
query execution model that is based on eddies [Avnur and Hellerstein 2000]. In
that model, the execution order of operators is determined at runtime. This is
particularly important when the operators’ costs and selectivities change over
time. Similar to TelegraphCQ, our policies can work in a dynamic environment
with support for monitoring the queries’ costs and selectivities, and updating
the priorities whenever it is necessary.
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Operator scheduling has been addressed in several research efforts [Urhan
and Franklin 2001; Carney et al. 2003; Babcock et al. 2003; Hammad et al.
2003; Sutherland et al. 2005]. Urhan and Franklin [2001] propose the rate-
based (RB) scheduling policy for scheduling operators within a single query to
improve response time. Aurora [Carney et al. 2003] uses a policy called Min-
Latency (ML) which is similar to the rate-based one; ML minimizes the average
tuple latency in a single query. For multiple queries, Aurora uses a two-level
scheduling scheme where Round Robin (RR) is used to schedule queries and
ML (or RB) is used to schedule operators within the query.

Aurora also proposes a QoS-aware scheduler which attempts to satisfy
application-specified QoS requirements. Specifically, each query is associated
with a QoS graph which defines the utility of stale output; the scheduler then
tries to maximize the average QoS. In this paper, we focused on system QoS met-
rics that do not require the user to have any prior knowledge about the query
processing requirements or to predict the appropriate QoS graph. Specifically,
we developed policies that minimize the average response time as well as the
average slowdown for multiple CQs that include join and shared operators.
We also considered balancing the worst- and average-case performance, and
presented policies to do so for response time and for slowdown.

Multi-query scheduling has also been exploited to optimize metrics other
than QoS. For example, Chain is a multi-query scheduling policy that optimizes
memory usage [Babcock et al. 2003]. The work on Chain has also been extended
to balance the trade-off between memory usage and response time [Babcock
et al. 2004]. Another metric to optimize is Quality of Data (QoD). In our work
in [Sharaf et al. 2005], we propose the freshness-aware scheduling policy for
improving the QoD of data streams, when QoD is defined as freshness.

Table IV lists the scheduling policies discussed previously. For each policy, it
states the optimization metric targeted by the policy. It also states if the policy
is used in the context of a single query or multiple queries and whether or not
the policy handles multi-stream queries that contain join operators.

11. CONCLUSIONS AND FUTURE WORK

In this article, we considered the problem of scheduling multiple heterogeneous
CQs in a DSMS with the goal of optimizing QoS for end users and applications.
To quantify such QoS we first used the traditional metric of response time, which
we defined over multiple CQs, including CQs that contain joins of multiple data
streams. We also considered slowdown as another QoS metric, since we believe
it to be a more fair metric for heterogeneous workloads, and, as such, more
suitable for a wide range of monitoring applications.

Having defined the QoS metrics to optimize, we developed new scheduling
policies that optimize the average-case performance of a DSMS for response
time and for slowdown. Additionally, we proposed hybrid policies that strike a
fine balance between the average-case performance and the worst-case perfor-
mance, thus avoiding starvation (which is crucial for event detection CQs).

Further, we have extended the proposed policies to exploit operator sharing in
optimized multi-query plans and to handle multi-stream queries. We have also

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2008.



5:42 • M. A. Sharaf et al.

Table IV. Classification of Priority-Based Scheduling Policies for CQs (policies in bold are
presented in this paper)

Supported CQs
Policy and Reference Objective Single Multiple Join

RB Rate-based Average
√ × √

[Urhan and Franklin 2001] Response Time
ML Min-Latency Average

√ × ×
[Carney et al. 2003] Response Time

RR Round Robin Average
√ √ ×

[Carney et al. 2003] Response Time

HR Highest Rate Average
√ √ √

§3.1.1 Response Time
HNR Highest Normalized Rate Average

√ √ √
§3.3 Slowdown

FCFS First Come First Served Maximum
√ √ √

§4.1 Response Time
LSF Longest Stretch First Maximum

√ √ √
§4.1 Slowdown

BRT Balance Response Time �2 norm of
√ √ √

§4.3 Response Time
BSD Balance Slowdown �2 norm of

√ √ √
§4.2.2 Slowdown

Chain Chain Maximum
√ √ √

[Babcock et al. 2003] Memory usage
FAS Freshness-Aware Scheduling Average

√ √ ×
[Sharaf et al. 2005] Freshness

augmented the proposed policies with mechanisms that ensure their adaptivity
to changes in workload. Finally, we have evaluated our proposed policies and
their implementation experimentally and showed that our scheduling policies
consistently outperform previously proposed policies.

As the experimental results show, the magnitude of improvement in per-
formance provided by our proposed policies depends on the considered metric
as well as the query workload and the characteristics of the input data streams.
For instance, we showed that the improvement is more significant when queries
cover a large selectivity range. We also showed the need for good estimations
of selectivity and processing costs, as well as efficient implementation and ap-
proximation algorithms. Our experimental results also show the trade-off in
optimizing for QoS and optimizing for memory usage. As part of our future
work, we are planning to study policies that balance the trade-off between the
two objectives.

We are also planning to study the problem of scheduling multiple window-
based continuous aggregate queries, which is currently an open research prob-
lem. Having that new policy in place, we believe it would be very rewarding
to study the performance of all our proposed policies under more complicated
workloads. That is, workloads in which different kinds of queries exist at the
same time (i.e., filters, joins, or aggregates) as well as workloads with more
complicated query structures (e.g., multi-way joins, or queries with shared join
and aggregate operators).
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We are also considering incorporating the proposed policies as part of the
scheduling component in an exiting DSMS prototype, through our AQSIOS
project. This will provide us with the ability to assess the actual gains pro-
vided by these policies in a real-system implementation. It will also provide us
with insights of the scheduling overheads involved and the appropriate approx-
imation methods to use in order to balance the trade-off between scheduling
benefits and overheads.

Additionally, we are interested in developing policies that are able to balance
the trade-off between different QoS metrics as well as QoD metrics. Finally,
we would like to investigate policies that consider query importance and/or
popularity in the scheduling decision.
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