
Multiple-Query Optimization

TIMOS K. SELLIS
University of California, Berkeley

Some recently proposed extensions to relational database systems, as well as to deductive database
systems, require support for multiple-query processing. For example, in a database system enhanced
with inference capabilities, a simple query involving a rule with multiple definitions may expand to
more than one actual query that has to be run over the database. It is an interesting problem then to
come up with algorithms that process these queries together instead of one query at a time. The main
motivation for performing such an interquery optimization lies in the fact that queries may share
common data. We examine the problem of multiple-query optimization in this paper. The first major
contribution of the paper is a systematic look at the problem, along with the presentation and analysis
of algorithms that can be used for multiple-query optimization. The second contribution lies in the
presentation of experimental results. Our results show that using multiple-query processing algorithms
may reduce execution cost considerably.

Categories and Subject Descriptors: H.2.0 [Database Management]: General; H.2.4 [Database
Management]: Systems-query processing; 1.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods and Search--heuristic methods

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Common access paths, deductive databases, query optimization,
relational databases, sharing of data

1. INTRODUCTION

In the past few years, several attempts have been made to extend the benefits of
the database approach in business to other areas, such as artificial intelligence
and engineering design automation. As a result, various extensions to database
query languages have been suggested, including QUEL* [181, designed to support
artificial intelligence applications; GEM [31], to support a semantic data model;
and the proposal of [111, for support of VLSI design databases. A significant part
of extended database languages is support for multiple command processing. In
[26] we proposed a set of transformations and tactics for optimizing collections
of commands in the presence of updates. Here, we will concentrate on the
problem of optimizing the execution of a set of retrieve-only commands (queries).

This research was sponsored by the U.S. Air Force Office of Scientific Research grant 83-0254 and
by the National Science Foundation under grant DMC-8504633.
Author’s address: Department of Computer Science, University of Maryland, College Park, MD,
20742.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1988 ACM 0362-5915/88/0300-0023 $01.50

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988, Pages 23-52.

24 l Timos K. Sellis

There are many applications where more than one query is presented to the
system in order to be processed. First, consider a database system enhanced with
inference capabilities (deductiue database system) [8]. A single query given to
such a system may result in multiple queries that will have to be run over the
database. As an example, consider the following relation for employees
EMP(name, salary, experience, dept-name). Assume also the existence of a set of
rules that define when an employee is well paid. We express these rules in terms
of retrieve commands in QUEL [28].

/* An employee is well paid if he(she) makes more than 40K */
Rule 1. retrieve (EMP.all) where EMP.salary > 40

/* An employee is well paid if he (she) makes more than 35K provided
he(she) has no more than 5 years of experience */

Rule 2. retrieve (EMP.all) where EMP.salary > 35 and EMP.experience 5 5
/* An employee is well paid if he(&) makes more than 30K provided

he(she) has no more than 3 years of experience */
Rule 3: retrieve (EMP.all) where EMP.salary > 30 and EMP.experience 5 3

Then, given a query that asks

Is Mike well paid?

the system will have to evaluate all three rules in order to come up with the
answer. Because of the similarities that Prolog [6] clauses have with the above
type of rules, our discussion on multiple-query processing applies to the optimi-
zation of Prolog programs as well, assuming that secondary storage is used to
hold a Prolog database of facts. As a second example, consider cases where queries
are given to the system from various users. Then batching all users’ requests is a
possible processing strategy. In particular, queries given within the same time
interval T may be considered for batched processing. However, a major problem
with this approach is the effect on response time. It is unacceptable to delay a
user’s request due to other more expensive queries. Although it is a very inter-
esting problem to find criteria for batching multiple requests, we will gear the
discussion toward a system like the rule-based system mentioned above, where a
single user request is expanded to many actual queries. Finally, some proposals
on processing recursion in database systems [14, 201 suggest that a recursive
Horn clause should be transformed to a set of other, simpler Horn clauses
(recursive and nonrecursive). Therefore, the problem of multiple-query process-
ing arises in that environment as well, yet in a more complicated form due to the
presence of recursion.

Current query processors cannot optimize the execution of more than one
query. If given a set of queries, the common practice is to process each query
separately. However, there may be some common tasks that are found in more
than one of these queries. Examples of such tasks may be performing the same
restriction on a relation or performing the same join between two relations.
Taking advantage of these common tasks, mainly by avoiding redundant page
accesses, may prove to have a considerable effect on execution time. This problem
of processing multiple queries and especially the optimization of their execution,
will be the focus of this paper. Section 2 presents an overview of previous work
ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

Multiple-Query Optimization . 25

in the area. Section 3 first defines the query model that will be used throughout
this paper and then presents a formulation of the multiple-query optimization
problem. Section 4 presents our approach to the problem and introduces, through
the use of some examples, algorithms that can be used to solve the multiple-
query optimization problem. Then, Sections 5 and 6 present these algorithms in
more detail. Section 5 suggests an algorithm that allows the executions of the
queries to interleave, thus improving the performance compared to a serial
execution, and Section 6 discusses a more general heuristic algorithm. Finally, in
Section 7 we present some experimental results, and the last section concludes
the presentation of the multiple-query processing problem by summarizing our
results and suggesting some ideas for future research.

2. RELATED WORK

Problems similar to the multiple-query processing problem have been examined
in the past in various contexts. Hall [12, 131, for example, uses heuristics to
identify common subexpressions, especially within a single query. He uses oper-
ator trees to represent the queries and a bottom-up traversal procedure to identify
common parts. In [9] and [lo], Grant and Minker describe the optimization of
sets of queries in the context of deductive databases and propose a two-stage
optimization procedure. During the first stage (“Preprocessor”), the system
obtains at compile time information on the access structures that can be used in
order to evaluate the queries. Then, at the second stage, the “Optimizer” groups
queries and executes them in groups instead of one at a time. During that stage
common tasks are identified and sharing the results of such tasks is used to
reduce processing time. Roussopoulos, in [24] and [25], provides a framework for
interquery analysis based on query graphs [30], in an attempt to find fast access
paths for view processing (“view indexing”). The objective of his analysis is to
identify all possible ways to produce the result of a view, given other view
definitions and base relations. Indexes are then built as data structures to support
fast processing of views.

Other researchers have also recently examined the problem of multiple-query
optimization. Chakravarthy and Minker [3, 41 propose an algorithm based on
the construction of integrated query graphs. These graphs are extensions of the
query graphs introduced by Wong and Youssefi in [30]. Using integrated query
graphs, Chakravarthy and Minker suggest a generalization of the query decom-
position algorithm of [30]; however, this algorithm does not guarantee that the
access plan constructed is the cheapest one possible. Kim, in [17], also suggests
a two-stage optimization procedure similar to the one in [lo]. The unit of sharing
among queries in Kim’s proposal is the relation that is not always the best thing
to assume, except in cases of single relation queries.

The work of [7] and [19] on the problem of deriving query results based on the
results of other previously executed queries is also related to the problem
of multiple-query optimization. Finally, Jarke discusses in [16] the problem of
common subexpression isolation. He presents several different formulations
of the problem under various query language frameworks such as relational
algebra, tuple calculus, and relational calculus. In the same paper, he also
describes how common expressions can be detected and used according to their
type (e.g., single relation restrictions, joins, etc).

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

26 l Timos K. Sellis

Q,;Q:, ,Q,,

OPTIMIZER

Global Access Plan

Fig. 1. Multiple-query processing systems architecture.

What distinguishes our approach to multiple-query processing is the decision
to use existing query optimizers as much as possible. However, since not all
relational database systems have been designed on the basis of the same query
processing concepts, we will differentiate between two alternative architectures
that can be used for a system with multiple-query processing capability. Figure
1 illustrates the two approaches. Architecture 1 can be used with minimal changes
to existing optimizers. A conventional Local Optimizer generates one (“locally”)
optimal access plan per query. The Plan Merger is a component that examines
all access plans and generates a larger plan, the “global” access plan, which is in
turn processed by the Run-Time System. This architecture is particularly inter-
esting for systems that compile queries and save results in the form of access
plans (e.g., System-R [l], POSTGRES [27]).

On the other hand, there are systems that do not store access plans for future
reuse (e.g., INGRES [28]). To make our framework general enough to capture
these systems as well, we introduce Architecture 2. The set of queries is processed
by a more sophisticated component, the Global Optimizer, which in turn passes
the derived global access plan to the Run-Time System for processing. Hence,
Architecture 2 is not restricted to solely using locally optimal plans already stored
in the system. Notice also that this architecture can be used for the development
of a multiple-query optimization module from scratch (for example, the optimizer
for a deductive database system [lo]).

The purpose of the following sections is to exhibit optimization algorithms
that can be used for multiple-query optimization either as Plan Mergers or as
Global Optimizers. The algorithms to be presented differ in the complexity of
the Plan Merger and on whether Architecture 1 or 2 is used. The tradeoffs
between the complexity of the algorithms and the optimality of the global plan
produced are also discussed.
ACM Tramactions on Database Systems, Vol. 13, No. 1, March 1938.

Multiple-Query Optimization l 27

3. FORMULATION OF THE PROBLEM

We assume that a database D is given as a set of relations (RI, Rz, . . . , R,), each
relation defined on a set of attributes. A simple model for queries is now described.
A selection predicate is a predicate of the form R.A op cons, where R is a rela-
tion, A an attribute of R, op E (=, #, <, 5, >, ~1, and cons some constant.
A join predicate is a predicate of the form R, .A = R2.B where RI and Rz are
relations, and A and B are attributes of RI and Rz, respectively (equijoin).
For simplicity we will assume that the given queries are conjunctions of selection
and join predicates and all attributes are returned as the result of the query (i.e.,
we assume no projection on specific attributes). Clearly, the above model excludes
aggregate computations or functions as well as predicates of the form R1.A op
R,.B = R,.C. Extending a system to support such predicates is possible but would
require significant increase to its complexity. The restriction on conjunctive
queries only is not a severe limitation since the result of a disjunctive query can
be considered as the union of the results of the disjuncts, i.e., each disjunct can
be thought of as a different query. Equijoins are chosen as the only join operator;
this seems quite natural considering the most common types of queries. Finally,
not allowing projections enables us to concentrate on the problem of sharing
common results rather than the problem of detecting if the result of a query can
be used to compute the result of another query. However, had we assumed
projection lists as well, the complexity of the algorithms that detect results which
can be shared among queries would be higher (see [7] and [19] for such algo-
rithms).

A task is an expression relname + expr. relname is the name of a temporary
relation used to store an intermediate result or the keyword RESULT, indicating
that this task provides the result of the query. expr is either a conjunction of
selection predicates over the same relation or a conjunction of joins between the
same two, possibly restricted, relations. For example, the following are valid task
expressions:

El: R,.A=lOandR,.Cs30
E2: R, .A = &.B and R, .C = R,.D
E3: (R, .A = lO).C = (R2.B < 3O).D

The cases of joins like those in E3 cover queries that are processed in a
“pipelining” way, not by performing the selections first followed by a join. For
example, one way to process E3 is by scannning the relation RI and having each
tuple with qualifying A value be checked against R2 tuples. There is no need to
store intermediate results for either RI or R2. Our model is general enough to
include this kind of processing as well. In the remaining discussion, tasks will be
referred to as if they were simply the expr part, unless otherwise explicitly stated.
We next define a partial order on tasks.

Definition 1. A task ti implies task tj (ti + tj) iff ti is a conjunction of selection
predicates on attributes AI, AZ, . . . , Ak of some relation R, and tj is a conjunction
of selection predicates on the same relation R and on attributes A,, AZ, . . . , Ar
with 1~ k, and it is the case that for any instance of the relation R the result of
evaluating ti is a subset of the result of evaluating tj.

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

28 l Timos K. Sellis

Definition 2. A task ti is identical to task tj(ti E tj) iff
(a) Selections: ti + tj and tj 4 ti
(b) Joins: ti is a conjunction of join predicates E1.A1 = E2.B1, E1.AP = E2.Bz,

. . . , E1.Ah = EP.Bk and tj is a conjunction of join predicates E; .A1 = E6.B1,
E;.Az = E;.Bz, . . . , EI .A& = E: . Bk where each of El, EP, E: and Ei is a
conjunction of selections on a single relation and E, is identical to EI and
E, is identical to E6 (“identical” under the above definition of identical
selections).

Based on the above definitions, we will use the phrase “common subexpres-
sions” to describe pairs of tasks tl and tz where either one implies the other or
they are identical. Next, we define the notion of an access plan.

Definition 3. An access plan for a query Q is a sequence of tasks that produces
the answer to Q. Formally, an access plan is an acyclic directed graph P =
(V, A, L) (V, A, and L being the sets of vertices, arcs, and vertex labels,
respectively) defined as follows:

-For every task ti of the plan introduce a vertex Vi.
-If the result of a task ti is used in task tj, introduce an arc Ui + Vj between the

vertices vi and uj that correspond to ti and tjp respectively.
-The label L(ui) of vertex vi is the processing done by the corresponding task ti

(i.e., relname t expr).

Example 1. Consider the following query on the relations EMP(name, age,
dept-name) and DEPT(dept-name, num-of-emps) (with obvious meanings for the
various fields)

retrieve (EMP.all, DEPT.all)
where EMP.age 5 40
and DEPT.num-of-emps 5 20
and EMP.dept-name = DEPT.dept-name

One way to process this query is

TEMPl c EMP.age I 40
TEMPP c DEPT.num-of-emps 5 20

RESULT c TEMPl .dept-name = TEMP2.dept-name

The graph of Figure 2 shows the corresponding access plan. Notice that, in
general, there may exist many possible plans that can be used to process a query.

Next we define a cost function cost: V + Z (Z is the set of integers) on nodes
of the access plan graph. In general this cost depends on both the CPU time and
the number of disk page accesses needed to process the given task. However, to
simplify the analysis, we will consider only I/O costs; including CPU costs would
only make the formulas more complex. Therefore,

cost(ui) = the number of page accesses (reads or writes) needed to process task ti

The cost Cost(P) of an access plan P is defined as

COSt(P) = C COSt(Ui)
“;E v

(1)

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

Multiple-Query Optimization l 29

TEiUP I -

Ehw.a~gc < 40 -

7

TEMP2 -

DEPT.nunl-of-emps 5 20

Fig. 2. Example of an access plan.

Assume now that a set of queries d =]Q1, QZ, . . . , Q,,] is given. We will refer
to the minimal cost plans for processing each query Qi individually, as locally
optimul plans. Similarly, we use the term globally optimal plan to refer to an
access plan that provides a way to compute the results of all n queries with
minimal cost. Due to common subexpressions, the union of the locally optimal
plans is, in general, different from the globally optimal plan. Finally, let Bestcost
be a function that given a query Qi gives the cost of the (locally) optimal
plan PT. Hence, B&cost (Qi) = Cost(PT) = minpi~9~[Co.st(Pi)], where 9i is the
set of all possible plans that can be used to evaluate Qi.

Consider now a system that is given a set & of queries and is required to
execute them with minimal cost. According to the above definitions, a global
access plan is simply a directed labeled graph that provides a way to compute
the results of all n queries. Based on this formulation, the problem of multiple-
query optimization becomes

Given n sets of access plank 91, 92, . . . , Y,,, with 9i = (PiI 9 Pi29 . . . , P+j being
the set of possible plans for processing Qi, 1 5 i 5 n,

Find a global access plan GP by “merging” n local access plans .(one out of each
set pi) such that Cost(GP) is minimal.

The Plan Merger or the Global Optimizer of Figure 1 performs the “merging”
operation mentioned above. It is the purpose of the following sections to define
this operation and derive algorithms that find GP.

4. MOTIVATION FOR ALGORITHMS

The major issue in multiple-query processing is the redundancy due to accessing
the same data multiple times in different queries. Recognizing all possible cases
where the same data is accessed multiple times requires, in general, a procedure
equivalent to theorem proving, including the retrieval of data from the database.
Our intention here is to detect common subexpressions looking only at the logical
expressions used to describe queries, that is, by simply isolating pairs of expres-
sions el and e2-where el + e2. For example, el may be EMP.age 5 30 and e2 may
be EMP.age 5 40. Then e, + e2. However, we do not consider cases where

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

30 l Timos K. Sellis

e2 may be EMP.dept-name = “shoe”, and it happens in the specific instance of
the database that all employees under 40 years old work in the shoe department.
Unless such a rule is explicitly known to the system in the form of an integrity
constraint or functional dependency, it is not possible to detect that e1 + e2
without looking at the actual data stored [2, 5, 151. Because several algorithms
have been published in the past on the problem of common subexpression
isolation [7, 19, 231, we will not attempt here to present a similar algorithm. It
is assumed that a procedure that decides, given two expressions el and e2, if
el + e2 or e2 + el, is available.

A global access plan that is derived based on the idea of temporary result
sharing should be less expensive compared to a serial execution of queries.
However, this cannot be true for any database state. For. example, sharing
temporary results may prove to be a bad decision when indexes on relations are
defined. The cost of processing a selection through an index or through an
existing temporary result clearly depends on the size of these two structures. The
experimental results of Section 7 give some interesting results regarding that
issue. In general, a multiple-query optimization strategy should be compared to
a conventional one, where no sharing is assumed, and the cheapest one should
be selected (Finkelstein makes a similar argument in [7]). The conventional
strategy will be computed one way or the other since, as mentioned above, locally
optimal plans for the queries are always available.

In this paper we will examine two types of algorithms that agree with the two
types of architectures shown in Figure 1. The first two algorithms consider only
access plans that are locally optimal. Algorithm AS (Arbitrary Serial Execution)
simply executes these plans in an arbitrary order (conventional approach). This
corresponds to Architecture 1 of Figure 1 with the Plan Merger absent, that is,
no optimization is performed. We include AS in our discussion to be used solely
as a reference for the rest of the algorithms. Algorithm IE (Interleaved Execution)
allows queries to be decomposed into smaller subqueries that now become the
unit of execution. Therefore, a query is not processed as a whole but rather in
small pieces, the results of which are assembled at various points to produce the
answer to the original query.

Example 2. To illustrate algorithm IE, consider the following database,

EMP(name, age, salary, job, dept-name)
DEPT(dept-name, num-of-emps)
JOB(job, project)

with the obvious meanings for EMP, DEPT, and JOB. We also assume that there
are no fast access paths for any of the relations, and that the following queries

(Q1) retrieve (EMP.all, DEPT.all)
where EMP.age 5 40
and DEPT.num-of-emps 5 20
and EMP.dept-name = DEPT.dept-name

(Qz) retrieve (EMP.all, DEPT.all)
where EMP.age 5 50
and DEPT.num-of-emps 5 10
and EMP.dept-name = DEPT.dept-name

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1933.

Multiple-Query Optimization l 31

are given. Finally, suppose that both Q1 and QZ have optimal plans that construct
temporary results based on the constraints on age and num-of-emps. If we run
either Q1. or QZ first, we will be unable to use the intermediate results from the
restrictions on EMP.age and DEPT.num-of-emps effectively. However, the follow-
ing global access plan is more efficient (for clarity, hereafter, unless otherwise
stated, we show the plans in terms of QUEL queries instead of directed graphs)

retrieve into tempEMP (EMP.all)
where EMP.age 5 50

retrieve into tempDEPT (DEPT.all)
where DEPT.num-of-emps 5 20

retrieve (tempEMP.all, tempDEPT.all)
where tempEMP.age 5 40
and tempEMP.dept-name = tempDEPT.dept-name

retrieve (tempEMP.all, tempDEPT.all)
where tempDEPT.num-of-emps 5 10
and tempEMP.dept-name = tempDEPT.dept-name

because it avoids accessing the EMP and DEPT relations more than once.
Algorithm IE can generate very efficient global access plans especially in cases

where restrictions reduce the sizes of the original relations significantly. The
function of the Plan Merger, in the case of algorithm IE, is to “glue” the plans
together in a way that provides better utilization of common temporary (inter-
mediate) results.

The second algorithm we present, algorithm HA (Heuristic Algorithm), is
based on searching among local (not necessarily optimal) query plans and building
a global access plan by choosing one local plan per query. Architecture 2 of
Figure 1 applies to this case. The effectiveness of algorithm HA is illustrated
with the following example.

Example 3. Suppose we are given the queries

(Q3) retrieve (JOB.all, EMP.all, DEPT.all)
where EMP.dept-name = DEPT.dept-name
and JOBjob = EMP.job

(Q,) retrieve (EMP.all, DEPT.all)
where EMP.dept-name = DEPT.dept-name

to be processed over the database of Example 2. Assume also that Q3 and Q4 have
optimal local plans

(PSI) retrieve into TEMPI (JOB.all, EMP.all)
where JOB.job = EMP.job

retrieve (TEMPl .all, DEPT.all)
where TEMPl .dept-name = DEPT.dept-name

(Pdl) retrieve (EMP.all, DEPT.all)
where EMP.dept-name = DEPT.dept-name

respectively. Notice that PSI and Pdl do not share the common subexpression
EMP.dept-name=DEPT.dept-name. Algorithm HA considers, in addition to PSI,

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

32 - Timos K. Sellis

the following plan for query Q3

(Ps2) retrieve into TEMPl (EMP.all, DEPT.all)
where EMP.dept-name = DEPT.dept-name

retrieve (JOB.all, TEMPI .all)
where JOB.job = TEMPl .job

Clearly, this allows the multiple-query optimization algorithm to consider more
useful permutations of the plans.

In addition, HA uses some heuristics to reduce the number of permutations of
plans it has to examine in order to find the optimal global plan.

We emphasize again the fact that algorithm IE works only on locally optimal
plans and tries to achieve sharing based on these plans. Although that may not
be the optimal strategy, we argue that given these plans, the algorithm suggested
will make the best use of existing temporary results. If not many temporary
results are created (e.g., in the “pipeline” way of processing a join), simply no
sharing will be possible. Algorithms IE and HA are examined in more detail in
the following two sections.

5. INTERLEAVED EXECUTION ALGORITHM

Since the sequence in which the queries are run is chosen arbitrarily in algo-
rithm AS, the global plan GP that is produced is simply the concatenation in an
arbitrary way of the locally optimal plans. Therefore, for any order of processing
(execution) E = (PcP$. e e Pt), with ik E (1,2, . . . , n) and all ik distinct, the cost
of the global access plan will be

Cost(GP) = i Bestcost
i=l

(2)

As mentioned in the previous section, the basic idea behind algorithm IE is to
allow the execution of various access plans to interleave. This is achieved by
decomposing the given queries into smaller subqueries and running them in some
order, depending on the various relationships among the queries. Then, the
results of subqueries are assembled to generate the answers to the original queries.
The only restriction imposed is that the partial order defined on the execution
of tasks in a local access plan must be preserved in the global access plan as well.

Algorithm IE proceeds as follows. First, the queries that possibly overlap on
some selections or joins are identified by checking the base relations that are
used. For any query Qi E & that overlaps with some other query, we consider the
corresponding local access plan P* (Vi, Ai, Li) and define a directed labeled graph
GP(Globa1 Access Plan) that represents the “union” of all such local plans.
Formally, the graph GP(GV, GA, GL) is defined as follows:

-GV= Ur’, Vi
-GA = Ur=, Ai
-For every Ui E Vi, GL(Ui) = Li(Ui).

We will also assume that the result node of query Qi contains the keyword
RESULTi to indicate that this specific node provides the answer to that query.
Based on this graph, the algorithm performs some simple steps that introduce
ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

Multiple-Query Optimization l 33

Fig. 3. Basic merge operation.

the effects of sharing among various tasks. Figure 3 illustrates the basic trans-
formation. The temporary relation TEMPl created by subquery SQi can be further
restricted to give the result of subquery SQP (SQz + SQ1). Therefore, TEMPl can
be used as the input to that last subquery, instead of EMP. This is accomplished
by adding a new arc from the node representing SQ1 to the corresponding node
for SQ2. Also the relation name in SQP is changed to TEMPl .

After building the graph GP, the following transformations are performed in
the order they are presented

IEl. (Proper Implications) For a task Vi, let Uj be the nodes such that
GL(ui) + GL(Uj) and GL(Uj) + GL(ui). We denote by uj* the strongest condition
that can be performed on some of ui)s input relation(s) so that the result of uj*
can still be used to answer Vi. By “strongest” we mean that uy’s result is the
smallest in terms of pages, among all such Uj’s. Once the Uj* nodes have been
found, we apply the merge operation of Figure 3 on ui to substitute input relations
with the result of Uj

IE2. (Identical Nodes) In the case where there is a set C of nodes such that
all its members produce identical temporary relations, we choose the one belong-
ing to the plan P,? with the least index j as the representative node uj* of C.
Then, as in step IEl we apply the merge operation of Figure 3 on all nodes
ui E C - (uj*) to substitute input relations with the result of Vi*.

IE3. (Recursive Elimination) Because steps IEl and IE2 may have intro-
duced new nodes that are now identical, step IE2 is repeatedly applied until it
fails to produce any further reduction to the graph GP. An example of such a
case is a join performed on two relations that are restricted with identical selection
clauses. Step IE2 will merge each pair of identical selections to a single one (by
substituting temporary relation names); then, in the next iteration, the two join
nodes will also be merged into a single node.

The result of the above transformation is a directed graph GP’, which is
guaranteed to be acyclic if the initial graphs P? are acyclic. This is due to the

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

34 - Timos K. Sellis

TEMPl-

Eh4P.age 2 40

TEMPZ +

DEPT.nemps 5 20

RESULT +

TEMPl.dept = TEMPZ.dept

TEh4Pl+

EMPage 5 50

\
TEMPZ +

DEPT.oemps < 10 \

/ :::d; = TEMPZ.dept (

Fig. 4. Initial global access plan.

TEMPI c

EMP.agr 5 50

TEMPll +
TEMP:! +

TEMPl.age 5 40
TEh.lPOl - DEPT.nemps 2 20

TEhlPP.nemp, 2 10

RESULT -
TEMPl.depl = TEhlPOl.drpl

RESULT -
TEMPl l.dept = TEMP’Z.dept

Fig. 5. Global access plan after transformation IE 1.

fact that any transformation performed on the graph in all cases adds new arcs
that go always from less to more restrictive tasks. Therefore, a cycle is not
possible, for it would introduce a chain of proper implications of the form u1 +
u2 * *a* =a Ul. Finally, using the directed arcs of GP’ a partial order on the
execution of the various tasks can be imposed. That is the global access plan that
algorithm IE suggests.

Example 4. Consider again queries Q1 and Q2 of Example 2. Figures 4,5, and
6 show the initial access plan graphs, the graph GP after transformation IEl,
and the final global access plan graph (as a sequence of QUEL operations),
respectively. (In Figures 4 and 5 we use nemps for num-of-emps and dept for
dept-name).

Notice how in this case the algorithm makes use of the common subexpressions
DEPT.num-of-emps % 20 and EMP.age 5 50.

Estimating the cost of the global plan imposed by the graph GP’, we have

Cost(GP’) = i Bestcost - .zs SCZU~~~~(S) (3)
i=l

where CS is the set of all (maximal) common subexpressions found in the local
access plans and savings(s) is the cost that is saved if the temporary result of a
ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

__,’

Multiple-Query Optimization l 35

retrieve into TEMPl (EMP.all)
where EMP.age < 50

retrieve into TEMP2 (DEPT.all)
where DEPT.num-of-emps S 20

retrieve into TEMPll (TEMPl.all)
where TEMPl.age < 40

retrieve into TEMPPl (TEMP2.all)
where TEMP2.num-of-emps 2 10

retrieve (TEMPll.all.TEMP2.all)
where TEMPll.dept-name = TEMP2.dept-name

retrieve (TEMPl.all.TEMP2l.all)
where TEMPl.dept-name = TEMP2l.dept-name

Fig.6. Finalglobalaccess plan.

common subexpression s instead of base relations is used. In this example
CS = (EMP.ageSO,DEPT.num-of-empsS20). The function savings is defined
as follows:

Let R be a relation and s1 and s2 be two subexpressions defined on R such that
s2 can be processed using the result of s1 instead of R. Let also CR be the cost
of accessing R to evaluate s1 and C,, be the cost of accessing the result of s1 to
evaluate s2. We assume that the results of s1 and s2 are stored for later use
(temporary results). Then, without sharing any common results, the cost of
processing s1 is CR(to read the data) + C,,(to write the result). The cost is
similar for s2. With sharing, the savings that can be achieved is

savings(s2) =
{

cl2 - c.9, if s2 * s1
cR + c,, if s2 = s1

In the first case instead of accessing R we access the result of sl, hence the
savings of CR - C,,. In the second case more savings are achieved because not
only does R not need to be accessed (since the result of s2 is identical to that
of sl), but the temporary result of s1 can also be used as is as the result of s2.
Therefore, there is no need to write the result of s2 in a separate temporary
relation.

Concerning the complexity of the algorithm, it can be observed that steps IEl
and IE2 of the above algorithm require time in the order of II:=, 1 Vi I, where k
is the number of queries represented by their representative plans in graph GP
and Vi is the set of vertices for plans Pi*, 1 5 i 5 k. The number of times N
step IE2 is executed as a result of the recursive elimination of common subgraphs
generally depends on the size of common subexpressions and, in the worst case,
is the depth of the longest query plan. The total time required by the algorithm
is therefore in the order of N e II:=, 1 Vi I.

We now move on to discuss a more general algorithm that can be used to
process multiple queries. As mentioned in the beginning of this section, the
heuristic algorithm to be described also captures more general transformations
than the ones allowed here (simple relation name change).

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

36 l Timos K. Sellis

6. HEURISTIC ALGORITHM

As it was illustrated through Example 3, merging locally optimal plans to produce
the global access plan is not always the optimal strategy. The main reason is that
there is more than one possible plan to process a query, yet algorithm IE
considers only one of them, i.e., the locally optimal plan. Using suboptimal plans
may prove to be better. Grant and Minker in [9] present a Branch and Bound
algorithm [21] that uses more than locally optimal plans. One assumption they
make is that queries involve only equijoins while all selections are of the form
R.A = colts. In this section, we propose a general framework for the design of a
heuristic multiple-query optimization algorithm. Then, we show how the algo-
rithm of Grant and Minker can be mapped onto our more general algorithm, and
we suggest some further improvement that aims to better performance. To
simplify the presentation of the algorithm we will also make here the assumption
that all queries have equality predicates. At the end of the section extensions
that can be made to include more general query predicates are discussed.

As shown in Figure 1, the Global Optimizer receives as input a set of queries
B = 141, 42, . . . , Qn). Then for each query Qi, a set of possible plans S$ =
(Pi19 Pi29 * * . , Piki) that can be used to process that query is derived. The algorithm
HA considers optimizing a set of queries instead of a set of plans, which was the
case with algorithm IE. Considering more than one candidate plan per query has
the desirable effect of detecting and using effectively all common subexpressions
found among the queries.

We will model the optimization problem as a state space search problem and
propose the use of an A* algorithm [21]. In order to present an A* algorithm,
one needs to define a state space, the way transitions are done between states
and the costs of those transitions.

Definition 4. A state s is an n-tuple (Plj,, Pzj,, . . . , Pnj,), where Pij, E
(NULL] U gi. If Piji = NULL it is assumed that state s suggests no plan for
evaluating query Qi. We denote 9 to be the set of all possible states.

Definition 5. Given a state s = (Pv,, P2jz, . . . , Pnj,), we define a function
next: 9 + Z (i2 is the set of integers) as follows

next(s) =
min(i] Piji = NULL] if (i] Pij, = NULL) # 0
n + 1 otherwise

Let ~1 = (Plj,, Pzj,, . . . , Pnj,,) and ~2 = (Plk,, Pzk,, , . . , P,,k,) be two states such
that s1 has at least one NULL entry. Also let m = next(sl). A transition T(s,, sp)
from state ~1 to state s2 exists iff Pik; = Pij;, for 1 5 i < m, P,,,k, E P,,, and
P+ = NULL, for m < i I n.

Definition 6. The cost tcost(t) of a transition t = T(sl, s2) is defined as the
additional cost needed to process the new plan P,, introduced at t (according
to Definition 5), given the (intermediate or final) results of processing the
plans of sl.

From the way transitions are defined, it is evident that the first NULL entry of
a state vector, say at position i, will always be replaced by a plan for the
corresponding query Qi. Finally, we define the initial and final states for the
ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

Multiple-Query Optimization * 37

Plan

Table I. Costs for Tasks in Each Plan

Task cost Task cost Task cost Total

PE.1 t:1 40 tL 30 t& 5 75

SZ tk* 35 t& 20 55

PI31 th 40 th 10 tb 5 55

PI32 t& 10 t& 30 t& 10 50

PE3 t& 30 tb 20 50

algorithm. The state so = (NULL, NULL, . . . , NULL) is the initial state of the
algorithm and the states SF = (Pij,, Pzj,, . . . , Pnj,) with Piji # NULL, for all i,
are the final states.

The A* algorithm starts from the initial state so and finds a final state SF such
that the cost of getting from so to SF is minimal among all paths leading from so
to any final state. The cost of such a path is the total cost required for processing
all n queries. Given a state s, we will denote by scost(s) the cost of getting from
the initial state so to s.

In order for an A* algorithm to have fast convergence, a lower bound
function h is introduced on states. This function is used to prune down the
size of the search space that will be explored. If the algorithm of Grant and
Minker [9] is modeled under the framework we just proposed, that is as an
A* algorithm over the specific state space, the function h : ~7 + Z applied on a
given state s = (Plkl, Pzk,, . . -, Pnk,) will be

eSt-COSt (Piki) i min [eSt-COSt(Pij,)] - SCOSt(S) (5)
i=nert(s) ii

The function est-cost is defined on tasks as follows

cost(t)
est-cost(t) = -

nq
(6)

where n, is the number of queries the task t occurs in and cost is the cost function
on tasks that was introduced in Section 3. The idea behind defining such a
function is that the cost of a task is amortized among the various queries that
will probabily make use of it. For a plan Pii,, it is assumed that

&-COSt(Piji) = C est-cost(t)
EPU.

(7)

It is easy to see that est-cost(Pij,) 5 Cost(Piji), the cost of plan Pij, as defined in
equation (l), and therefore the A* algorithm is guaranteed to converge to an
optimal solution [21]. Let us give an example, also drawn from [9], which will
motivate the dicussion that follows.

Example 5. Suppose two queries Q5 and Q6, are given along with their
plans: PSI, Psz, PG,, Psz, Pe3. We will use tfj to indicate the kth task of
plan Pij. Table I gives the costs for the tasks involved in each plan, and the

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

38 l Timos K. Sellis

identical tasks are

tj, = t&; t& = t&; 2-2
t52 = ts3;

Given the actual task costs and the sets of identical tasks, the estimated costs
(e&-cost) for these tasks are:

Table II. Estimated Cost for the Tasks

Task tk t61 th tA* tt* t:, t:, t:* t& G-3

Estimated cost 20 15 5 35 10 10 5 10 10 30

and the estimated costs for the plans are:

Table III. Estimated Cost for the Plans

Plan PE.1 P62 &I Pm Pa3

Estimated cost 40 45 35 35 40

Based on the above numbers and the construction procedure outlined, Figure 7
shows the search space 9 along with the costs of transitions between states
and estimated costs of going from intermediate to final states. Tracing the
A* algorithm we get

so = (NULL, NULL) /* expand state so */
sl = (& , NULL) /* expand state s1 */
s2 = (&, NULL) /* expand state s2 */
SF = (P52, 83) /* the final solution */

yielding (P52, P63) as the best solution. Notice that with this set of estimators
the algorithm exhaustively searches all possible paths in the state space.

It is exactly this bad behavior of the algorithm that we will try to improve by
examining more closely the relationships among various tasks. For example, in
the case presented above, it is clear right from the beginning that plan PSI will
not be able to share both of its tasks til and t& with plans P,, and Ps2, respectively,
since only one of these two latter plans will be in the final solution (final state).
Therefore, the value est-cost(P51) is less than what could be predicted after
looking more carefully at the query plans. It is a known theorem, in the case of
A* algorithms, that with a higher estimator the algorithm will take (at most) as
many steps as with a lower one (see [21], Result 6, p. 81). Hence, estimating the
cost function better will enable the algorithm to converge faster to the final
solution.

We have developed an algorithm that, given a set of queries, their plans, and
the set of identical tasks, computes a “good” estimator function. Using a graph
model, we identify which plans are impossible to coexist in the final state reached
by the A* algorithm. Then, the lower bound function h is defined in a way
that will assign high cost to such plans: hence making them unlikely to be con-
ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

Multiple-Query Optimization l 39

<NULL,

75

/
NULI, :,

\ < &?,P63>

Fig. 7. Example search space for A* algorithm (numbers in paren-
theses show lower bound function values).

sidered during the search. Due to lack of space, this algorithm is presented in
Appendix 1. We show here how the result of the preprocessing phase improves
the performance of the algorithm.

Example 6. Suppose the two queries, Q5 and Qs, of Example 5 are given. The
new estimators of plan costs will be derived based on the preprocessing algorithm.
Given the costs as in Example 5, the algorithm of Appendix 1 computes the
following (estimate) costs for the plans:

Table IV. Computation of (Estimated)
Costa for the Plans from the Algorithm

in Appendix 1

Plan PSI pm pm Pa, Pea

Estimated cost 55 45 35 35 40

Notice that the cost of plan PSI was underestimated by the Grant and Minker
formula. Tracing the A* algorithm, we see that it explores the following states

s,, = (NULL, NULL) /* expand state so */
sl = (Phz, NULL) /* expand state s1 */
SF = (Pm R33) /* the final solution */

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

40 l Timos K. Sellis

yielding again (Ps2, Ps3) as the optimal solution with cost 85. Notice that if
the commands were executed sequentially it would have cost Cost(P,,) +
Cost(P,,) = 105. Therefore, a total savings of 19% was achieved using the
global optimization algorithm. Moreover, compared to the trace of the previous
subsection, it can be seen that exhaustive search is avoided because of the high
cost estimates for some paths.

We can summarize algorithm HA as follows: First, for all queries that do not
share any task results with other queries, we find the originally cheapest plan
and put it in the final processing sequence E. For the rest of the queries, the HA
algorithm is used to construct the global access plan:

HAl. (Estimate Plan Costs) Apply the preprocessing algorithm (described in
Appendix 1) to obtain a good lower bound function h.

HA2. (Run A* Algorithm) Run the A* algorithm described above to obtain
the execution plans.

HA3. (Find Global Access Plan) Let 9 be the set of all plans derived from
the previous step. Integrate these plans to obtain the final global access plan.

The integrating process in step HA3 is very similar to the one described for the
interleaved execution algorithm where local plan graphs are merged together.
Examining the estimated cost of the global access plan, we have

Cost(GP) = 2 Cost(P) - 1 savings(s) 63)
PE.9 SECS

where CS represents the total number of subexpressions found among the n plans
in the final state SF (not necessarily locally optimal) and savings(s) is the cost
savings function defined by eq. (4). Regarding the complexity of the algorithm
HA, we must notice that it is very hard to analyze the behavior of an A* al-
gorithm and give a very good estimate on the time required. In the worst case,
of course, it may require time exponential on the number of queries, but on the
average the complexity depends on how close the lower-bound function esti-
mates the actual cost. However, the A* algorithm with the new estimator func-
tion we proposed will not take more steps than the originally suggested
A* algorithm. This is based on the fact that for any plan P it is true that the
estimator function est-cost(P), computed by the algorithm of Appendix 1, is
greater than or equal to the one suggested in eq. (7). Given the definition of h(s)
in eq. (5), this means that the lower-bound function is also better. Therefore, as
mentioned above, with the help of a known theorem from [21] our algorithm will
give a solution in at most the same number of steps as the Grant and Minker
algorithm.

Finally, note that the algorithm described is correct only in the cases where
queries use solely equijoins and equality selection clauses. If arbitrary selection
clauses are used, the A* algorithm presented above will not find the optimal
solution. This is true because the imposed order in which the state vectors are
filled (i.e., in ascending query index) may not result in the best utilization of
common subexpression results. As an example, consider two queries, Q1 and Q2,
such that Q1 has a more restrictive selection than Qz. Then clearly it would be
better to consider executing Q2 first since, in that case, the result of Q2 can be
ACM Transactions on Database Systems, Vol. 13, No. 1, March 1968.

Multiple-Query Optimization . 41

used to answer Q1, the opposite being impossible. This problem with the heuristic
algorithm can be easily fixed by changing the transitions to fill not the next
available NULL slot in a state s, as it was done before through the use of next(s)
(see Definition 6), but rather any available (NULL) position of s. This results in
larger fanout for each state and clearly more processing for the A* algorithm.
The cost function est-cost is defined similarly with the difference that, in addition
to identical tasks, pairs of tasks ti and tj such that ti + tj and tj + ti must be
considered as well. However, the general algorithm we suggested can still be used,
it is only the transitions between states and cost functions that need be adapted.

7. SOME EXPERIMENTAL RESULTS

We expect that for a large number of applications and query environments
multiple-query optimization will offer substantial improvement to the perform-
ance of the system. In a series of experiments, we have simulated these algorithms
using EQUEL/C [22] and the version of INGRES that is commercially available.
The experiments were run over a slightly modified version of the set of queries
that Finkelstein used in [7]. The reason such a set was chosen was primarily
because Finkelstein’s example was realistic and secondly because it can be used
to expose all interesting parameters of the problem (see the discussion that
follows). The database schema used was modeling a world of employees, corpo-
rations, and schools that the employees have attended, the relations being
Employees, Corporations, and Schools, respectively. All eight queries, along with
a brief description of the data they return, are shown in Appendix 2. Seven
different sets of queries QSETl-QSET7 were formed by randomly choosing
queries out of the original set, shown in Appendix 2. The queries within each of
these sets were processed

(a) as independent queries;
(b) as the Interleaved Execution algorithm suggests; and, finally,
(c) as the Heuristic algorithm suggests.

Table V describes some characteristics of the sets QSETl to QSET7. The second
column indicates the number of queries used in each set, and the third column
shows which queries from Appendix 2 were specifically used.

The above sets of queries were tested in various settings. First, unstructured
relations were used with their sizes varied according to Table VI. Second, the
same experiments were performed with structured relations. Specifically, the
following structures were used

isam secondary index on Employees(experience)
isam primary structure on Corporations(earnings)
hash primary structure on Schools(sname)

The above choices were made in order to make locally optimal plans as cheap as
possible. Finally, in another series of experiments the given queries were slightly
modified by changing the constants used in one-variable selection clauses. The
goal was to introduce higher sharing among the queries. Higher sharing is
achieved when more queries can take advantage of the same temporary result.

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

42 l Timos K. Sellis

Table V. Query Sets Used in Experiments

Query set

QSETl
QSETP
QSET3
QSET4
WETS
QSETG
QSET7

Number
of queries

2
2
4
2
4
I
2

Queries

t1,7\
lL6)
IL 2,671
1% 71
(2, 3,4,61
11, 2, 3,4,5,6, 71
17. St

Table VI. Sizes of Relations

Relation Number of tuples

Employees 100-200-500-1000-10000
Corporations 10-20-50-100-500
Schools 20 (fixed)

Recall that the formula that provides an estimate on the cost savings using a
global optimization algorithm is (for n queries Q1, . . . , Qn)

i Bestcost - .J& sahgs(s)
i=l

where CS is the set of common temporary results. Therefore, higher cost reduction
is achieved if more queries can use the same temporary result. By changing the
constants in the qualification of the queries it was possible to check how the size
of CS (i.e., the number of common subexpressions) affected the cost of processing
the global access plans.

The measure used in this performance study was

pERcI = Cost1 U/O) - CO%? U/O)
Cost1 (I/O)

- 100% (9)

where Cost,(I/O) is the number of I/OS required to process all queries assuming
no global optimization is performed. This is the cost of locally optimal plans
generated by the optimizer and assuming that temporary results are always built.
Cost,(I/O) is the corresponding figure in the case where a global access plan is
constructed according to some of the presented optimization algorithms. PERCI
stands for PERCentage of Improvement. The analogous CPU measure was also
recorded, however, the numbers were almost the same and will not be shown. In
the following, the results of the experiments are described in detail.

7.1 Unstructured Relations

Because of the similarity of the results we will group the diagrams according to
the differences observed among the outcomes of the algorithms used for optimi-
zation. Two diagrams are presented: one for query sets QSETl-QSETG and
ACM Transactions on Database Systems, Vol. 13, No. 1, March 1989.

Multiple-Query Optimization l 43

307

Query Sets l-6

PERCI

lo-

01 *
100 1000 10000 100000 100 1000 10000 100000

Size of Employees Size of Employees

64 (b)

Fig. 8. Improvements for unstructured relations: Query sets l-6 and 7.

another for QSET7. For query sets in the first group both IE and HA algorithms
gave exactly the same results (in the sense that the global access plan was the
same). The second group gave different results for the IE and HA algorithms.
Figures 8(a) and 8(b) illustrate how PERCI varies for the two above-mentioned
groups according to the size of the database in the case of unstructured relations.
The size of the database is represented by the size of the Employees relation.
The reasons for choosing that relation was first that all queries were using
Employees (compared to Corporations or Schools) and second the fact that the
diagrams are similar for the Corporations relation as well.

Some comments can be made here for these diagrams. First, there is always a
gain in performance by doing multiple-query optimization, i.e., PERCI 1 0, in
all the experiments run, due to the overlap among the queries. Second, after some
size of the relations, PERCI starts to decrease. This was due to the specific type
of queries used. In particular, because of queries involving joins, the denominator
of formula (9) grows faster than the numerator. In the given queries, the selection
clauses were responsible for the savings in the numerator. That savings increases
with rate proportional to the factor by which a relation is reduced as a result of
performing a restriction on it (i.e., 1 - S, where S is the selectivity of the selection
clause). On the other hand, if joins are included in the queries, Cost,(I/O)
increases with a rate that depends on the cost of the join operation. It turns out
that for small sizes of the relations the latter factor is less than the former, while
after some size this relationship is reversed. Hence, the slight increase followed
by a decrease in the values of PERCI indicated in the above diagrams.

Finally, for the last query set QSET7, the plan generated by HA was signifi-
cantly better than the one generated by IE. By allowing the result of the join
e.employer = c.cname to be shared by both queries 7 and 8, significantly better
performance was achieved.

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

44 l Timos K. Sellis

30- 50-

Query Sets l-6

40.

PERCI PERCZ
20.

10.

0* 0-l
100 1000 10000 100000 100 1000 10000 100000

SIX of Employees Srze of Employees

(a) (b)

Fig. 9. Improvement for structured relations: Query sets l-6 and 7.

7.2 Structured Relations
The same set of experiments was run over a structured database. Relations were
indexed as mentioned in the beginning of this section. The reason for doing these
experiments was to check if the overhead of accessing a relation through a
secondary structure might be higher than the overhead of accessing an unstruc-
tured intermediate result. For example, suppose that retrieving the part of a
relation that satisfies a simple one-variable restriction requires 10 page accesses.
That includes the cost of searching first the index table and then accessing the
data pages. Suppose now that there is an intermediate result, produced by some
other query, that can be used to answer the same restriction clause. If the size of
that intermediate result is less than 10 pages, then it will be more efficient to
process the restriction by scanning the unstructured temporary result than going
through the index table.

Figures 9(a) and 9(b) illustrate how PERUvaries for the two above-mentioned
groups according to the size of the database in the case of structured relations.
Comparing the values of PERCI with the corresponding ones of the previous
subsection, we can observe some decrease of lo-20% for IE and HA depending
on the size of the involved relations. This was expected since using indexes
reduces Cost,(I/O). However, after some size of the Employee relation, PERCI
starts increasing instead of decreasing, which was the case in the experiments of
the previous subsection. This behavior is due to the fact we mentioned above
(i.e., the overhead involved in using an index to access a relation). Moreover, the
above effect is more obvious in cases where the involved relations are large. Then
the size of the secondary indexes is in many cases significantly larger than the
sizes of temporary results. Notice also that for small sizes of the Employee
relation, PERCI is decreasing. That was expected because for small relations
temporary results grow faster in size than the index tables. Finally, we notice
that the relative performance of the three algorithms is not affected by the
existence of indexes (i.e., HA still performs better than IE).
ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

Multiple-Query Optimization l 45

Fig. 10. Performance improvement for higher
sharing.

7.3 Higher Sharing

In this last experiment, the given query sets were run over the same database
with a modification in the queries so that higher degree of sharing is possible.
That effect was introduced by changing the restrictions experience > 20 found
in queries 2,4,5, and 7 to experience I 10. This way, the same temporary result
could be used in the evaluation of more queries, compared to the ones in the
experiments of the previous two subsections. Figure 10 illustrates how PERCI
varied with the size of the database in the case of unstructured relations and for
the first group of query sets (i.e., QSETl-QSETG). Query set 7 was not affected
by this modification in the selection clauses in the sense that no increase in
sharing was possible. Notice that the curve is similar to the one of Figure 8.
However, because of the higher degree of sharing among queries, an increase of
about 10% in the performance improvement was observed.

8. SUMMARY

The first major contribution of this paper lies in the presentation of a set of
algorithms that can be used for multiple-query processing. Although some rele-
vant work has been done in the past, we provide the first systematic way of
designing multiple-query processing algorithms. The main motivation for per-
forming interquery analysis is the fact that common intermediate results may be
shared among various queries. We showed that various algorithms can be used
for multiple-query optimization. More sophisticated algorithms (like HA) can be
used to give better access plans at the expense of increased complexity of the
algorithm itself.

Some of the algorithms proposed were based simply on the idea of reusing
temporary results from the execution of queries, where the processing of each
individual query is based on a locally optimal plan. Using plans instead of queries
enabled us to concentrate on the problem of using efficiently common results
rather than isolating common subexpressions. The heuristic search algorithm
provides a general framework for the design of optimization algorithms. As an
example, we have shown how the algorithm by Grant and Minker can be modeled

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

46 l Timos K. Sellis

under this framework. In addition, we have suggested a preprocessing phase that
derives a better cost estimator function to be used by the A* algorithm.

In general, the result of a global optimization algorithm should always be
compared to what a conventional optimizer can do and the cheapest processing
schedule should be processed. We expect that for a large number of applications
and query environments multiple-query optimization will offer substantial im-
provement to the performance of the system. The experimental results described
in Section 7 are the second major contribution of our work. They constitute the
first empirical results in the area. In a series of experiments, we have simulated
these algorithms and checked the performance of the resulting global access
plans under various database sizes and physical designs. This enabled us to check
the usefulness of these algorithms even in the presence of fast access paths for
relations. The results were very encouraging and showed a decrease of 20-50%
in both I/O and CPU time.

As interesting future research directions in the area of multiple-query optimi-
zation we view the development of efficient algorithms for common subexpression
identification and the extension of the algorithms presented to cover more general
predicates. In addition, we currently focus on developing an analytical model for
a multiple-query processing environment. The experimental results of Section 7
agree with our preliminary analytical results but there is more work that need be
done in this direction. Using a good analytical m,odel will allow us to simulate
various environments with different query mixes.

In a different direction, we view the application of our method in rule-based
systems as a very interesting problem for investigation. For example, Prolog and
database systems based on logic [29] can easily be extended to perform multiple-
query optimization. Finally, some of the techniques that we developed here can
be applied in processing recursion in database environments [141. This is mainly
due to the fact that in evaluating recursive queries one usually processes itera-
tively similar operations. These operations often access the same data, for the
relations accessed are always the same. Investigating how our algorithms can be
used in this recursive query processing environment seems to be a very interesting
problem for future research.

APPENDIX 1

The goal of this appendix is to describe a preprocessing step that computes a
better lower bound function for the A* algorithm of Section 6. Suppose that n
sets of plans gl, pg, . . . , g,, are given, with gi = {Pi,, Pi29 . . . , Pa) (for simplicity,
instead of Pi+ we use Pik to denote plans). Let also tb denote the kth task of
plan Pijs We also assume that the pairs of identical tasks are given. We then
define a directed graph G(V, A) in the following way:

-For each plan Pij that has a task t$ identical to task(s) used for evaluating
other than the ith query, introduce a vertex vii.

-For each pair t; E Pij, t; E PM of such identical tasks there is an arc connecting
the two vertices (vii + vu) if there is no other plan Pkm with a task tl, such
that for some u, t&, = tl;.

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1938.

Multiple-Query Optimization . 47

Fig. 11. Graph G for queries Q6 and Q6.

Given the above definition, a unique graph can be built based on a set of plans
and a set of identities among tasks. Notice that not all plans are needed to build
the graph. Only those having identical tasks among them are considered. Also,
there may be more than one directed edge (Vii + vkl) going from vii to VH if there
are more than one pair of identical tasks involved in plans Pij and PH. In order
to reduce the size of the graph, only one edge Uij --* vkl is recorded for any two
vertices vii and VM that have at least one edge between them. No information is
lost that way. The number of identical tasks found between the two plans is of
no importance.

The goal of the preprocessing phase is to find plans that are most probably
not sharing their tasks with other plans. The algorithm used is a slightly modified
Depth-First-Search (DFS) algorithm. The difference is that in the course of
backing up to the vertex Uij from which another vertex vkl was reached using the
edge Uij + r&l, the identification (subscript) kl is stored in some set associated
with vertex vii. Call that set the Need set of .vertex vii. Then, at the end of the
algorithm, delete from G all vertices that have two or more members k’l’ and kl
in their Need sets, such that k ’ = k. Along with the vertex, its edges (both
out- and in-going) are also marked as OUT. This deletion process is continued
by deleting vertices that have at least one out-going edge marked OUT. The edge
and vertex elimination process stops when no more deletions are possible. Call
the final graph G’(V’, A ‘) and let 9’ be the set of plans Pij that have a
corresponding vertex vii in G’.

What is achieved through that preprocessing phase is the considerable reduc-
tion of the size of the search space explored by the A* algorithm. Only plans
in 9’ are considered in order to derive the est-cost values. To give an example
of the preprocessing phase, we apply the above procedure on Example 5 of
Section 6.

Example 7. We are given again the same two queries Q5 and Qs and five plans:
PSI, Pb2, PSI, Psz, Ps3. The graph of Figure 11 gives the graph G for the set of
plans given.

Suppose that the depth-first-search procedure starts from v51 and us2 for the
left and right part of the graph of Figure 11, respectively. After the DFS has

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

48 - Timos K. Sellis

Fig. 12. Final graph G’.

been performed, the Need sets for the various vertices will be as shown in
Table VII below:

Table VII. Need Set After DFS Has Been
Performed

Vertex Need

V61 (51, 61, 62)
V62 152,63 t
V6l 151,611
US2 (51,621
U63 15% 631

From the above table it can be seen that vertex u51 must be eliminated since it
can reach both u61 and u62 through directed paths. After that, the edges (us1 +
usI), (us1 + Use), (Use + uG2), and (uG2 --, u51) are marked as OUT. This causes
vertices US1 and u62 to be deleted also. No more vertices can be deleted. The
remaining graph is shown in Figure 12.

Finally, 9 = jp52, pG3).

Using the result of the preprocessing phase, we next compute the new estimated
costs for tasks and plans. First, based on the cost function cost defined for tasks,
the following function coalesced-cost on tasks t [9] is defined (coalesced-cost is
identical to the est-cost function of Section 6):

cost(t)
coalesced-cost (t) = -

nq

where nq is the number of queries task t occurs in, and for plans

coalesced-cost(Pij) = 1 coalesced-co&(t)
t-t,

(11)

Now, given a plan Pij and a specific task t$, let @ij be the set of queries Ql, 1# i,
that have a plan that has a common task with Pij. Also, let nij be the number of
plans Pl, that correspond to query Ql in @ij. Then, est-cost is defined as follows

(a) If the plan Pij is not in 9” and nij > 1 for at least one query QL, then

est-cost(Pij) = Cost(Pij) - J$ max[coalesced-cost($)]
QtE@<j

(12)

where .$ = ts,, for some r and s.
(b) If the plan is in 9 or it is not in Pa’ but the above condition on nij does not

hold, then

est-cost(P,) = coalesced-cost(Pij)
ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

Multiple-Query Optimization l 49

If we consider the queries of example 7, the above preprocessing algorithm
provides the following estimated costs (see Section 6):

Table VIII. Estimated Cost

Plan p.51 Pm PSI ps2 PC33

Estimated cost 55 45 35 35 40

Notice that the new values are greater than or equal to the ones derived by Grant
and Minker, thus guaranteeing (a) on the average, less and (b) in the worst case,
the same number of steps for the A* algorithm.

APPENDIX 2

The experiments described in Section 7 were run over the database

Employees (name, employer, age, experience, salary, education)
Corporations (cname, location, earnings, president, business)
Schools (sname, level)

The set of queries used, expressed in QUEL, is shown next. Assuming,

range of e is Employees
range of c is Corporations
range of s is Schools

&I. Get all employees with 10 years of experience or more
retrieve (e.all) where e.experience 2 10

Q2. Get all employees 65 years old or less with 20 years of experience or more
retrieve (e.all) where e.experience 2 20 and e.age zz 65

Q3. Get all pairs (employee, corporation), where the employee has 10 years of
experience or more, and works in a corporation with earnings more than
500K and located anywhere but in Kansas.
retrieve (e.all, c.all)

where e.experience 2 10 and e.employer = c.cname
and c.location # “KANSAS” and c.eamings > 500

Q4. Get all pairs (employee, corporation), where the employee has 20 years of
experience or more, and works in a corporation with earnings more than
300K and located anywhere but in Kansas
retrieve (e.all, c.all)

where e.experience 2 20 and e.employer = c.cname
and c.location # “KANSAS” and c.earnings > 300

Q5. Get all pairs (president, corporation), where the president is 65 years old
or younger, with 20 years of experience or more, and the corporation is
located in NEW YORK and has earnings more than 500K
retrieve (e.all, c.all)

where e.experlence 2 20 and e.age 5 65
and e.employer = c.cname and e.name = c.president
and c.location = “NEW YORK” and c.earnings > 500

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

50 l Timos K. Sellis

Q6. Get all pairs (president, corporation), where the president is 60 years old
OF younger, with 30 years of experience or more, and the corporation is
located in NEW YORK and has earnings more than 300K
retrieve (e.all, c.all)

where e.experience 2 30 and e.age 5 60
and e.employer = ccname and e.name = c.president
and c.location = “NEW YORK” and c.earnings > 300

Q7. Get all triples (employee, corporation, school) where the employee is 65
years old or younger, has 20 years of experience or more and holds a
university degree working for a corporation located in NEW YORK and
with earnings more than 500K
retrieve (e.all, c.all, sall)

where e.experience 2 20 and e.age 5 65
and e.employer = c.cname
and c.location = “NEW YORK” and c.earnings > 500
and e.education = s.sname and s.level = “univ”

QS. Get all pairs (employee, corporation), where the employee is 65 years old or
younger, with 20 years of experience or more and the corporation is located
in NEW YORK and has earnings more than 300K
retrieve (e.all, c.all)

where e.experience 2 20 and e.age I 65
and e.employer = c.cname
and c.location = “NEW YORK” and c.earnings > 300

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Michael Stonebraker, for giving me
the opportunity to work in the area of multiple-query processing and for providing
many helpful comments on an earlier draft. My colleague, Yannis Ioannidis, and
the anonymous referees have provided criticisms and suggestions that have
greatly improved the presentation of this paper. Finally, I would like to acknowl-
edge the Systems Research Center of the University of Maryland for its partial
support through the National Science Foundation grant CDR-85-00108.

REFERENCES

1. ASTRAHAN, M. ET AL. System R: A relational approach to database management. ACM Trans.
Database Syst. 1,2 (June 1976), 97-137.

2. CHAKRAVARTHY, U. S., FISHMAN, D. H., AND MINKER, J. Semantic query optimization in
expert systems and database systems. In Expert Database System-s: Proceedings From the 1st
International Workshop, L. Kershberg, Ed. Benjamin/Cummings, Menlo Park, Calif. 1986,
659-674.

3. CHAKRAVARTHY, U. S., AND MINKER, J. Processing multiple queries in database systems.
Database Eng. $3 (Sept. 1982), 38-44.

4. CHAKRAVARTHY, U. S., AND MINKER, J. Multiple query processing in deductive databases.
Tech. Rep. TR-1554, Dept. of Computer Science, Univ. of Maryland, College Park, Md., Aug.
1985.

5. CHAKRAVARTHY, U. S., MINKER, J., AND GRANT, J. Semantic query optimization: additional
constraints and control strategies. In Proceedings of the 1st International Conference on Expert
Database Systems (Charleston, S. C., April 1986). Institute of Information Management and
Policy, Univ. of South Carolina, Apr. 1986, 259-270.

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1983.

Multiple-Query Optimization l 51

6. CLOCKSIN, W., AND MELLISH, C. Programming in PROLOG. Springer-Verlag, New York,
1981.

7. FINKELSTEIN, S. Common expression analysis in database applications. In Proceedings of the
ACM-SZGMOD International Conference on the Management of Data (Orlando, Fla., June 1982)
ACM, New York, 1982,235-245.

8. GALLAIRE, H., AND MINKER, J. Logic and Data Bases. Plenum Press, New York, 1978.
9. GRANT, J., AND MINKER, J. On optimizing the evaluation of a set of expressions. Tech. Rep.

TR-916, Univ. of Maryland, College Park, Md., July 1980.
10. GRANT, J., AND MINKER, J. Optimization in deductive and conventional relational database

systems. In Advances in Data Base Theory, Vol. 1, H. Gallaire, J. Minker, and J.-M. Nicolas,
Eds. Plenum Press, New York, 1981,195-234.

11. GUT-MAN, A. New features for relational database systems to support CAD applications. Ph.D.
dissertation, Computer Science Div., Univ. of California, Berkeley, June 1984.

12. HALL, P. V. Common suhexpression identification in general algebraic systems, Tech. Rep.
UKSC 0060, IBM United Kingdom Scientific Centre, Nov. 1974.

13. HALL, P. V. Optimization of a single relational expression in a relational data base system.
IBM J. Res. Dev. 20,3 (May 1976), 244-257.

14. IOANNIDIS, Y. Processing recursion in deductive database systems. Ph.D. dissertation, Univ. of
California, Berkeley, July 1986.

15. JARKE, M., CLIFFORD, J., AND VASSILIOU, Y. An optimizing PROLOG front-end to a relational
query system. In Proceedings of ACM-SZGMOD International Conference on the Management of
Data (Boston, Mass., June 18-21,1984). ACM, New York, 1984.296-306.

16. JARKE, M. Common subexpression isolation in multiple query optimization. In Query Processing
in Database Systems, W. Kim, D. Reiner, and D. Batory, Eds. Springer-Verlag, New York, 1984,
191-205.

17. KIM, W. Global optimization of relational queries: a first step. In Query Processing in Datu-
base Systems, W. Kim, D. Reiner, and D. Batory, Eds. Springer-Verlag, New York, 1984,
206-216.

18. KUNG, R., HANSON, E., IOANNIDIS, Y., SELLIS, T., SHAPIRO, L., AND STONEBRAKER,
M. Heuristic search in data base systems. In Expert Database Systems: Proceedings From the
1st International Workshop, L. Kershberg, Ed. Benjamin/Cummings, Menlo Park, Calif., 1986,
537-548.

19. LARSON, P., AND YANG, H. Computing queries from derived relations. In Proceedings of
Znternutionul Conference on Very Large Data Bases (Stockholm, Aug. 1985), 259-269.

20. NAQVI, S., AND HENSCHEN, L. On compiling queries in recursive first-order databases. J. ACM
31, 1 (Jan. 1984), 47-85.

21. NILSSON, N. J. Principles of Artificial Intelligence. Tioga, Palo Alto, Calif., 1980.
22. RELATIONAL TECHNOLOGY, INC. EQUEL/C User’s Guide. Version 2.1, Relational Technology,

Inc., Berkeley, Calif., July 1984.
23. ROSENKRANTZ, D. J., AND HUNT, H. B. Processing conjunctive predicates and queries. In

Proceedings of the International Conference on Very Large Data Bases (Montreal, Oct. 1980),
64-72.

24. ROUSSOPOULOS, N. View indexing in relational databases. ACM Trans. Database Syst. 7, 2
(June 1982), 258-290.

25. ROUSSOPOULOS, N. The logical access path schema of a database. IEEE Trans. Softw. Eng.
SE-& 6 (Nov. 1982), 563-573.

26. SELLIS, T., AND SHAPIRO, L. Optimization of extended database languages. In Proceedings of
the ACM-SZGMOD International Conference on the Management of Data (Austin, Tex.,
May 1985), ACM, New York, 1985,424-436.

27. STONEBRAKER, M., AND ROWE, L. The design of POSTGRES. In Proceedings of the ACM-
SZGMOD International Conference on the Management of Data (Washington D. C., May 28-30,
1986). ACM, New York, 1986,340-355.

28. STONEBRAKER, M., WONG, E., KREPS, P., AND HELD, G. The design and implementation of
INGRES. ACM Trans. Database Syst. 1,3 (Sept. 1976), 189-222.

29. ULLMAN, J. Implementation of logical query languages for data bases. ACM Trans. Database
Syst. IO, 3 (Sept. 1985), 289-321.

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1938.

52 l Timos K. Sellis

30. WONG, E., AND YOUSSEFI, K. Decomposition: A strategy for query processing. ACM Trans.
Database Syst. 1,3 (Sept. 1976), 223-241.

31. ZANIOLO, C. The database language GEM. In Proceedings of the ACM-SZGMOD International
Conference on the Management of Data (San Jose, Calif., May, 1983). ACM, New York, 1983,
207-218.

Received September 1986; revised January 1987; accepted June 1987

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988.

