
Implementing Atomic Actions
on Decentralized Data

DAVID P. REED

Massachusetts Institute of Technology

Synchronization of accesses to shared data and recovering the state of such data in the case of failures
are really two aspects of the same problem--implementing atomic actions on a related set of data
items. In this paper a mechanism that solves both problems simultaneously in a way that is compatible
with requirements of decentralized systems is described. In particular, the correct construction and
execution of a new atomic action can be accomplished without knowledge of all other atomic actions
in the system that might execute concurrently. Further, the mechanisms degrade gracefully if parts
of the system fail: only those atomic actions that require resources in failed parts of the system are
prevented from executing, and there is no single coordinator that can fail and bring down the whole
system.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems--distributed databases; D.4.3 [Operating Systems]: File Systems Management--distrib.
uted file systems; H.2.2 [Database Management]: Physical Design--deadlock avoidance, recovery
and restart; H.2.4 [Database Management]: Systems--distributed systems, transaction processing;,
H.2.7 [Database Management]: Database Administration--logging and recovery

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: time-domain addressing, two-phase commit, stable storage,
nested atomic actions

1. INTRODUCTION

T h e r e s e a r c h r e p o r t e d h e r e was b e g u n w i t h t he i n t e n t i o n of d i scove r ing m e t h o d s
for c o m b i n i n g p r o g r a m m e d ac t ions on d a t a a t m u l t i p l e d e c e n t r a l i z e d c o m p u t e r s

in to c o h e r e n t ac t ions f o r m i n g a p a r t of a d i s t r i b u t e d app l i ca t i on p r o g r a m . T h e

p r i m a r y conce rns were t h a t i t be easy to c o o r d i n a t e such c o m b i n e d ac t ions w i t h

o t h e r c o n c u r r e n t ac t ions access ing t h e s a m e data , a n d t h a t i t be easy to h a n d l e

fa i lu res in any p a r t of t h e c o m b i n e d act ion.

This research was supported in part by the Defense Advanced Research Projects Agency of the
Department of Defense and monitored by the Office of Naval Research under contract no. N00014-
75-C-0661.
Author's address: Laboratory for Computer Science, Massachussetts Institute of Technology, Cam-
bridge, MA 02139.
This paper was originally accepted for publication in Communications of the ACM. The CACM
department editor responsible for the paper was Anita K. Jones. The author kindly agreed to publish
the paper in ACM Transactions on Computer Systems.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1983 ACM 0734-2071/83/0200-0003 $00.75

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983, Pages 3-23.

4 David P. Reed

In the course of the research it became clear that coordinating access to data
and recovery from failures were complementary mechanisms aimed at achieving
the same goal: providing data and program modules whose behavior is easily
specified without consideration for the details of the choice of data representation
or the sequence of primitive steps executed that achieve the behavior. This
goal is the familiar "information-hiding principle" elucidated by Parnas [17].
Atomic actions make the construction of such modules straightforward: by im-
plementing operations of a module as atomic actions, concurrency and failure
can be ignored.

We describe a new method for synchronization and failure recovery that can
be easily implemented in a decentralized system. We concentrate here particularly
on the application of this method to the implementation of atomic actions. More
general applications are described in the author's doctoral dissertation [19].

In the discussion that follows, we first define atomic actions and discuss the
problems of implementing atomic actions in a decentralized system. We then
describe a way of thinking about objects as sequences of unchangeable versions,
object histories, that reflect the sequence of changes made to the object over
time. Updating an object is thought of as creating a new version, while reading an
object is thought of as selecting the proper version and obtaining its value. As
part of this discussion, we describe two complementary techniques for coordinat-
ing the versions of multiple objects--the possibility, which is a group of tentative
versions created by updates that can be "simultaneously" added to the object
histories, and pseudotime, which is a timelike ordering of events used to select
the versions of objects that are read and created by a particular program. An
example illustrating how the techniques work then follows. Finally, we compare
these methods with traditional synchronization and recovery mechanisms.

2. ATOMIC ACTIONS

We define an atomic action as a program-specified computation that, although
composed of primitive computational steps executed at different times and in
different places, cannot be decomposed from the point of view of computations
outside the atomic action. During the execution of atomic actions, intermediate
states of data objects that arise will never be observed by computations outside
the atomic action. During the execution of an atomic action, objects whose values
are read by steps of the atomic action can be modified only by other steps
belonging to the atomic action during the execution of the atomic action.

Concurrency and failure both threaten to decompose atomic actions. Two
concurrent programs accessing a shared variable can interact in such a way that
intermediate states of data within one program are observed by the other. If one
program modifies the variable while the other is executing, the behavior of the
first can be affected. Similarly, a program that halts because of a failure will leave
intermediate states of data objects exposed. To say that a program specifies an
atomic action means that the program must be atomic even in the face of
concurrent execution and failures. We refine our definition by the following two
requirements on the set of computational steps in an atomic action Ap specified
by program P.
ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

Implementing Atomic Actions on Decentralized Data • 5

(1) Concurrency atomicity. For all executed steps o not in Ap, either o precedes
all steps in Ap or o follows all steps in Ap.1

(2) Failure atomicity. Either all steps in Ap complete, or none of them complete.

To illustrate these concepts, we use a simple example. Consider a bank
database, where each account is represented by an object whose value is the
balance of the account {this is an extremely simplistic banking system, of course).
To transfer money between two accounts, one account's balance must be debited
and the other credited. If complex banking transactions are allowed to proceed
concurrently, undesirable behavior may occur. For example, two transactions
trying to debit the same account may operate incorrectly if both read the value
before either writes back its debited value. If an audit operation reads the
balances between the debit and credit for some transaction, some money may
appear to be missing. Failure can have equally disastrous results, leaving accounts
in an inconsistent state.

More abstractly, structuring a system using atomic actions is a key way to
assure consistency within the system. Consistency is usually proved inductively:
the system is initially consistent (basis) and each operation is shown to take a
consistent state into a new consistent state (induction step). By making the
operations atomic actions, we can ignore concurrency and failures in the proof,
because the equivalence to a total ordering is assured. We can ignore failures
because each operation is executed wholly or not at all. Consistency is just one
example of a property proved by induction on sequences of atomic actions; we
can also ignore concurrency and failure in proving other inductively proved
properties if the operations are atomic actions.

Thus, built-in atomic actions simplify the programmer's task in coping with
unplanned concurrency and failure. The programmer of an atomic action writes
his program without concern that other computations will interfere with data it
touches. The specification of an atomic action need describe only the ultimate
effect on shared data in terms of the data's initial state and any other inputs to
the action, without need to describe any intermediate states assumed by the data,
since such intermediate states are not visible to computations outside the atomic
action. Thus the implementation of the atomic action can be significantly modi-
fied (e.g., doing the credit before the debit, or doing both simultaneously) without
propagation of changes to actions outside the atomic action.

Our concept of atomic actions is quite similar to that of Lomet [16] and also to
the sphere of control described by Davies [5, 6]. If all computations in the system
perform all their data accesses as part of atomic actions, then the observable
behavior of the system will be the same as a serial schedule, as in the definition
of atomic transaction developed by Eswaran et al. [10].

Recovery blocks [18] are also closely related to atomic actions, but recovery
blocks have no explicit provision for synchronization. The crucial insight we have

1 If all steps 0 are part of some atomic action, then concurrency atomicity is the same as serializability
[11]. But we allow here for actions tha t are not concurrency atomic. An important example is the
backup or undo action, which restores the state of a set of objects to that which existed at some point
in the past. Such an action should be failure, but not concurrency, atomic.

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

6 David P. Reed

made is that the atomic action abstraction arises from consideration of the
programmer's need to design a program without concerning himself with inter-
actions from concurrent computations. This leads to the idea of hiding interme-
diate states within the atomic action, and thus implies both the required syn-
chronization and recovery.

3. THE DECENTRALIZED SYSTEM

It is fairly easy to understand the atomic action abstraction and its implications--
the trick is to provide the mechanics that allow atomic actions to be implemented.
We are particularly concerned with the mechanics of implementing atomic actions
in a decentralized distributed computer system. By decentralized computer
systems we mean a set of computer nodes each consisting of processor, memory,
and permanent storage (disk), connected together by a communications network.
Each node can be used as an autonomous computer. The network provides
sharing of information between these nodes. It is this sharing of information
among programs executing on distributed nodes that must be coordinated.

Communication among nodes is by message passing. The arrival of messages
at nodes causes execution of programs that may result in modifying data at that
node or retrieving data from that node. In what follows data are modeled as
recordlike objects that may contain references to other data objects either on the
same site or on other sites. The algorithms that manipulate such objects are
assumed to be implemented by programs existing at multiple sites that commu-
nicate by message passing.

We assume that individual nodes are capable of providing atomic stable
storage, that is, storage blocks that do not lose their contents as a result of failure,
and for which there are actions that read and write entire storage blocks
atomically. By atomic, we mean that a write operation will either successfully
write the specified data value or else fail in such a way that the previous data
value is left unchanged. No other outcome {e.g., half the data is changed) should
be possible. Lampson and Sturgis have argued that it is practical to provide such
storage and have suggested a technique for implementing it in [15]. For simplicity
of discussion, atomic stable storage is assumed to be the basis for all data
structures described here. However, most of the data structures need only be in
stable storage, that is, storage that does not lose its contents, but for which
failures during a write may leave data incorrect.

The failures we consider all take the form of failing to carry out a requested
action. For example, a message may be lost, a processor may stop in the middle
of a program, or a node may reject a request because it violates protection
constraints. Many failures can be transformed into this class--for example,
garbled data messages may be transformed into lost messages by using error
detecting codes. We do not consider failures where one action is attempted and
results in a quite different, yet valid, action occurring instead.

Six objectives related to the distributed system shaped our solution to the
problem of implementing atomic actions. These are as follows:

(1) Maximize node autonomy, while allowing multisite atomic actions. The
maintenance of individual objects should be the responsibility of the node
ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

Implementing Atomic Actions on Decentralized Data 7

containing the object. Consequently, the implementation of synchronization and
recovery should be decentralized. However, nodes must work in concert to
support the implementation of atomic actions involving objects on multiple nodes
{e.g., the case where the source and destination bank accounts are kept on distinct
computers).

(2) Modular composability of atomic actions. It should be possible to combine
separately written programs that manipulate shared data objects into one atomic
action, without the need to plan all such combinations in advance. Many schemes
for synchronizing access to data fail to satisfy this goal, because mutual exclusion
mechanisms, such as critical sections [9], synchronizers [2], and monitors [12],
require advance knowledge of all potentially conflicting users of shared data to
design the proper synchronization. Such knowledge may not always be available,
unless the data accessed by all programs in the distributed system can be known
at the time a new atomic action is created--a condition that may be difficult to
achieve in practice. For example, in a system where autonomous users can
implement new atomic actions, the names of objects accessed by each atomic
action would have to be stored in some central registry.

(3) Support for data-dependent access patterns. There are important cases
where the set of objects to be accessed by an atomic action cannot be predicted
in advance. In the bank example such a requirement might arise if one could
associate a "reserve account" with one's normal account. If the balance of the
normal account is too low to satisfy a debit, the reserve account is debited instead.
Then one cannot know what accounts will be accessed without accessing them.
Another example occurs if objects may contain pointers to other objects.

(4) Minimize additional communication. By doing the necessary synchroni-
zation at the time and place where shared objects are stored, one can avoid the
need for finding and synchronizing with remote conflicting actions. In a system
with shared memory, coordination can be achieved inexpensively by locking
objects to be accessed before use, and unlocking after the last use. Such locking
is inexpensive because all processes can easily access the locks and because
deadlock 'detection or avoidance can be centralized. In a distributed system,
locking requires interactions among nodes that use the objects and therefore
substantial communications delays. We thus would like a solution that uses a
minimum amount of internode message passing. It is preferable that coordination
of processes accessing the same object be done as part of the access operations
themselves, and locally to the node containing the object for reasons of perform-
ance and autonomy. The best arrangement would be that only the message
passing needed to request the actual reads and writes of objects occur. Our
scheme achieves this minimum.

(5) No critical nodes. A critical node is one whose failure prevents the entire
system from being used. Certainly when a node fails, the data it holds become
inaccessible. However, it should be possible for computations that do not use data
on the failed nodes to proceed.

(6) Unilateral aborting of remote requests. Recovery from failures is made
difficult in a distributedsystem by the peculiar nature of communication failures.
In particular, when a requestor requires a service from a server that involves
modifying data objects stored at the server, certain kinds of communication

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

8 David P. Reed

failures will leave the requestor in doubt as to whether the server has performed
the requested action or not. Further actions by the requestor usually require
successful completion of the request at the server to ensure internode consistency.
The requestor must wait until the server state can be ascertained, but this can
take a very long time. If the requestor holds resources needed by other compu-
tations, then such a failure can cause deadlock. We thus would like a mechanism
that allows for unilaterally aborting an atomic action, without the need to
communicate with all the nodes involved in an atomic action.

4. IMPLEMENTING ATOMIC ACTIONS

In order to understand our approach to synchronization, it is helpful to think
about the following noncomputer example. Suppose the personnel officer of a
company is charged with determining raises for all employees, by reviewing and
updating their personnel folders accordingly. The personnel officer must also
submit the total change to higher management for approval. The way he would
proceed would be to choose the date at which the raise is to be effective, then
process folders one at a time, perhaps going back to alter an earlier choice he had
made. The updated salary would not replace the existing salary; instead it would
be placed in the folder as a tentative increase, effective as of a certain date,
pending approval by the manager. Queries about the salary by the employee or
a credit bureau would still show the old salary if processed before the effective
date, but if a query were to arrive after the effective date, it would be necessary
to check whether the increase was approved. Once the manager received the
report and authorized the increase, the salary change would become effective.
Thereafter, to clean up the folders, the personnel officer might go to each folder
and stamp the new salary "approved," but this only makes answering queries
quicker by eliminating the check of whether the increase was approved.

We now elaborate this strategy in terms useful for the computer. To do so, we
need to develop three new concepts: (i) use of a timelike ordering, pseudotime, to
define the interaction between operations on an object (effective dates); (ii)
representation of each object as an object history of versions (the sequence of
salaries); and (iii) grouping of tentative versions into sets called possibilities that
facilitate backward error recovery (the new salaries before authorization). To
develop each concept, we describe the properties of each and then a plausible
implementation.

We then specify READ and WRITE operations on objects (procedures for
accessing folders). Unlike the usual READ and WRITE operations, the behavior
of our READ and WRITE is defined in terms of pseudotime, possibilities, and
object histories. Once we have defined READ and WRITE, we use them to
implement atomic actions.

4.1 Object Versions

We think of each object as a sequence of versions. 2 Each WRITE to an object
creates a new version, installing it into the sequence of versions, which represents

2 Our use of object versions is similar to the treatment of synchronization in [21], though our
mechanism using known histories and pseudotime is quite different. Also closely related is the practice
of using version numbering for modifications to fries, as in TENEX [4], though such operating systems
provide no mechanism for interfrie consistency.

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

Implementing Atomic Actions on Decentralized Data 9

the history of the object as known so far-- the object history. Once created, a
version's value does not change. The pseudotime of the write is recorded with the
version and is used to order the version properly with respect to other versions.
To READ from an object at pseudotime p, p is used as described below to select
the proper version of the object to return.

To simplify the following discussion, we assume that the complete sequence of
versions belonging to an object history is stored. We show later how to improve
the situation so that for most objects only the current version is actually stored.
For now, we ask that the reader suspend disbelief on this point until we have
described the basic implementation of objects.

4.2 Backward Error Recovery

Before continuing the discussion of how READS and WRITES manipulate the
object history, we must describe the way failure recovery works. If a failure
prevents an atomic action from being completed, any WRITE the atomic action
had done to shared data should be aborted to satisfy the requirement that no
intermediate states of atomic actions are visible outside the atomic action. For
this reason, new object versions are written in two steps. First, each WRITE
operation creates a tentative version, called a token, in the appropriate object
history. Thereafter, if the atomic action is committed, all the tokens it has created
are converted to permanent versions, but if the atomic action is aborted, all the
tokens it has created are removed from their object histories.

A token can be thought of as a version whose existence is conditional upon the
later completion of the atomic action that created it. We call the set of tokens
created by an atomic action a possibility, since it represents a new state of the
system whose existence is conditioned by the successful completion of the creating
atomic action. At the beginning of an atomic action, a new possibility is created.
Each WRITE done by the atomic action creates a new token and adds that token
to the possibility. When the atomic action completes successfully, it commits the
possibility, so that all of its tokens become versions.

Possibilities have two important properties. First, the commit step is atomic;
even though an arbitrary number of tokens may belong to the possibility, and
those tokens may be at many nodes, there should be no way for a failure to cause
only part of the commit step to be completed, changing only some tokens into
versions. Second, we wish to ensure that, if the atomic action never completes, all
of the tokens will be erased. We detect that an atomic action will not complete by
using a time-out, so that if the atomic action goes into a loop, for example, we can
still ensure that the tokens will eventually be erased or converted into versions.

Until the time the atomic action is either committed or aborted, the final state
of the tokens created by the atomic action is in doubt. While the status is in
doubt, computations that belong to the atomic action may need to read the value
of its tokens, but computations outside the atomic action must be prevented from
reading the tokens until the atomic action is completed, lest they obtain values
that will be erased by a subsequent failure of the atomic action.

As an illustration of why tokens must be visible to the atomic action that
creates them, but not visible outside that action until the action is completed,
consider our bank example again. Suppose that we wish to do two transfers out
of the same account as one atomic action. One way to do this is to call on the

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

10 David P. Reed

version of
object A

next
stort
end
CR /

dora

version of
object B

next /
start
end
CR

data

commit record

state of
possibility

timeout

one of: "unknown"
"committed"
"aborted"

Fig. 1. Versions of several objects shar ing a commi t record.

transfer action described earlier twice, once to do each tranfer. The source
account will then be debited twice, with the second debit action reading the
reduced balance resulting from the first debit action. This reduced balance will
be represented as a token in our model, visible to the second part of the double
transfer action, but not visible to other computations yet, since a failure may
occur before the second credit is completed, necessitating aborting the whole
double transfer.

4.2.1 Implementing Possibilities. An implementation for possibilities works as
follows. The state of a possibility is represented by a record in atomic stable
storage called a commit record, which records the state of the possibility and the
time of its time-out (see Figure 1). When initaUy created, a commit record is in
the "unknown" state. Committing the possibility is done by changing the state
atomically to the "committed" state. Aborting the possibility is accomplished by
changing the state to "aborted." If the state is still "unknown" after the time-out
elapses, the next time the state is examined, that activity will change the commit
record's state to "aborted."

Every WRITE or READ operation uses a parameter (see Section 4.4) that is
an identification for the commit record for the atomic action containing that
WRITE or READ. Each version (whether token or not) contains a commit record
pointer, stored by the WRITE operation that created it. When a p,'ogram wants
to read a version, this commit record is first compared with the commit record
associated with the READ. If the same commit record is used for the version and
the READ, then the READ is part of the same atomic action as the WRITE that

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

Implementing Atomic Actions on Decentral ized Data * 1 1

created the version; so it does not matter if the commit record is still in the
"unknown" state. If different commit records are used, then the READ operation
checks the state of the version's commit record. If the version's commit record is
"committed," then the READ operation returns the version's value. If the commit
record is found to be "aborted," then the READ operation erases the version and
another version is selected (see Section 4.4 for discussion of how READs select
the version read). Finally, if the commit record is in the state "unknown," the
READ operation waits; this wait is bounded by the time-out on the commit
record.

4 . 3 P s e u d o t i m e

We usually describe the effect of reads and writes to an object in terms of the
time ordering of the reads and writes. Thus, a READ returns a value determined
by the latest WRITE that precedes the READ. In order to achieve synchroni-
zation between actions that manipulate shared data, we must then provide means
for controlling the real-time ordering of READs and WRITEs. In a decentralized
system, because of communications failures and delays, correctly enforcing rela-
tive time orderings between actions is difficult and slow.

In our approach to synchronization, we have replaced.the real-time ordering
with ordering by a timelike, totally ordered set called pseudotime. Each READ
and WRITE operation is assigned a particular pseudotime, and READs and
WRITEs to shared objects behave such that a READ returns the value written
by the latest (in the pseudotime ordering} WRITE that precedes {again, in
pseudotime) the READ. The thing that makes pseudotime ordering easier to deal
with than real-time ordering is that we are able to devise a decentralized way of
reserving ranges of pseudotime values that does not require communication
among the participants.

Pseudotime must also have two other properties. First, if two steps of a
computation are ordered such that step A must occur before step B {e.g., if B
waits for A to finish), then the pseudotime for step A must precede (in the
pseudotime ordering} that of step B. This property ensures that sequential
programs still behave in the same way as they do in a system where real-time
orderings define the meaning of reads and writes to shared data.

The second property loosely links the rate of increase of pseudotime to real
time. Basically, we would like the pseudotime ordering of two events to correspond
to their real-time ordering whenever the events occur far enough apart in real
time. Thus we do not care what pseudotime ordering is assigned to nearly
simultaneous events that are not ordered parts of the same computation. We do
care, though, that two events that are observed to be ordered from outside the
system be ordered in pseudotime in the same way.

The pseudotime of an event is generated from a pseudotemporal environment.
Each computation has, as part of its execution state, a pseudotemporal environ-
ment (PTE) which generates the pseudotimes used by steps of that computation
in reading and writing shared data. We describe only the PTEs of atomic actions
here.

To guarantee that other atomic actions do not see intermediate states of
objects modified by other atomic actions, we require that for any two atomic
actions, A and B, either all steps of A must precede (in pseudotime) all steps of

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

12 David P. Reed

B, or all steps of B must precede all steps of A. We achieve this by constraining
the sets of pseudotimes that are used in each atomic action so that either all
pseudotimes used in A precede all those used in B, or all those used in B precede
all those used in A.

There are two important operations on pseudotemporal environments and
pseudotimes. To create a new pseudotemporal environment for an atomic action,
one executes the following:

pte ~-- CreateAtomicPTE().

The resulting object is a generator of pseudotimes. To generate the next
pseudotime from a PTE, one executes the following:

pt ~ NewPT(pte}.

The result is a pseudotime greater than all pseudotimes previously generated
using PTE.

4.3.1. Implementing Pseudotime. We briefly describe an implementation of
pseudotime and PTEs that is suitable for a distributed system. The implemen-
tation uses approximately synchronized real-time clocks at each node of a
distributed system. Clocks can be synchronized easily to within microseconds
using the WWV radio time standard broadcast by the National Bureau of
Standards. Lamport's clock synchronization mechanism would also suffice [14].
These clocks are used to create time stamps that are unique. To the value read
from the clock, a unique site identifier is concatenated as the low-order bit~.
Thus, even though two sites need not communicate, it is guaranteed that the sets
of time stamps they generate are disjoint.

A pseudotemporal environment for an atomic action is represented as a two-
component structure consisting of a time stamp obtained at its creation, and a
time stamp read as part of the last selection of a pseudotime from the PTE. For
simplicity, assume that each of these quantities is specified as an N-bit integer.

A new pseudotime is selected from the pseudotemporal environment by getting
a time stamp and prefixing it with the time stamp of creation of the PTE (see
Figure 2}. The time stamp read must be greater than the time stamp of all prior
selections; if not, either the new selection must wait, or the real-time clock must
be set forward. The real-time clock value read also replaces the time stamp last
selected in the PTE.

Comparison of pseudotimes is done by treating them as binary fractions, where
the leftmost digit is the high-order bit of the creation time stamp of the source
PTE. As a result of this definition, the pseudotimes in one PTE always are less
than any pseudotimes selected from a PTE created later. If two PTEs are created
"simultaneously" at different sites, pseudotimes from each will be ordered by the
order induced by the site identifiers that make time stamps unique in their low-
order digits.

Thus far, we have discussed the PTEs and pseudotimes associated with atomic
actions. Data accesses made by programs outside of atomic actions nonetheless
use pseudotimes. Such pseudotimes are derived from a simpler kind of PTE that
consists only of a cell containing the time of last selection. A new pseudotime is
selected by just reading a time stamp and storing it in the PTE. Treating these

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

Implementing Atomic Actions on Decentralized Data 13

Fig. 2.

PTE

pseudo-time real time c lock
(2N bits~ at current site

Selecting a new pseudo t ime f rom pseudo tempora l env i ronmen t for an a tomic action.

N-bit time stamps as binary fractions orders them correctly with respect to the
{longer) time stamps belonging to atomic actions.

The use of time stamps for synchronization was originally developed by
Johnson and Thomas [13]. Later work by Thomas [23] and Bernstein et al. [3]
has carried this approach further. We were inspired by these approaches, though
they did not use the time stamps in the way we have described.

4.4 Coordinating Object Reading and Writing

We now define the READ and WRITE operations in terms of the above concepts.
The READ operation selects the proper version of the object, ensures that it is
readable, by the requesting computation, and returns the value. The WRITE
operation creates a token in the object history. Additional parameters to the
READ and WRITE operations specify the pseudotime and possibility to be used
in each operation. In a practical system, these additional parameters would be
provided implicitly by the system; we give them explicitly to simplify our notation.
Thus, we have the operations

v ~-- READ(o, p, q)

and

WRITE(o, v, p, q)

where v is the value, o is the object identifier, p is the pseudotime, and q is the
possibility.

Before discussing the implementation of READ and WRITE operations, it is
important to emphasize that we place n o constraint on the real-time order of
processing of READ and WRITE operations on an object. Thus a READ of an
object at pseudotime p may arrive at and be processed by the node containing

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

14 • David P. Reed

the object before a WRITE whose pseudotime is less than p. In a distributed
system, delays in transmitting messages may be unbounded as a result of network
congestion or transient failures, resulting in such out-of-order arrivals. Since
nodes are not ominiscient, they will process READ soon after arrival, although
there may be some point in holding a READ for a small amount of time in case
the WRITE arrives slightly late. If a WRITE with a pseudotime less than an
already executed READ arrives at a site, it cannot be executed, for that would
cause the value previously returned by the READ to be incorrect. Consequently,
such a late-arriving WRITE will be rejected.

In order to keep track of the reads that have been executed, each version
records the maximum pseudotime of the READs that have accessed that version.
A late-arriving WRITE is detected by the fact that its pseudotime p is in the
interval between the pseudotime of the WRITE creating a version and the
maximum READ pseudotime of that version.

To execute the write command WRITE(o, v, p, q), the system first checks to
see if there is already a version that exists at the pseudotime p. If so, then an
error is signaled. Otherwise, a new token is created and sorted into the object
history according to the pseudotime p. The pseudotime p and possibility q are
recorded in the version.

To execute the operation v *-- READ(o, p, q), we must first determine which
version is the proper one to access. The READ operation must use the version
created by the WRITE with largest pseudotime that does not exceed p. To
determine if we can return the value of the version, we first check whether the
possibility recorded by the WRITE is the same as q. If so, the value of the version
can be returned; if not we check to see if the version is committed, by testing the
state of the possibility recorded when it was written. If the state is "unknown,"
then the READ operation waits until the state becomes either "aborted" or
"committed." If the state is "committed," then the value of the version can be
returned as the result of the READ. If the state is changed to "aborted," then the
version is removed from the object history and the previous value is returned.
Before the value is returned, the maximum read pseudotime is updated to p if
necessary.

For illustrative purposes, we can represent object histories as a sorted linked
list of versions, as in Figure 3. Each version contains a value (DATA), the
pseudotime of the WRITE that created it (PTW), the maximum read pseudotime
(PTR), and the identifier of the possibility that created it (a pointer to a commit
record, CR). The list is sorted in order of decreasing pseudotimes. Figure 3 also
shows how we WRITE(o, v, p, q) by adding a token. This token becomes a
version if and when the state of q is changed to "committed," or it will be deleted
if and when q's state is changed to "aborted."

5. EXECUTING AN ATOMIC ACTION

An atomic action consists of a prologue, an epilogue, and the sequence of steps
that carry out the desired actions. The prologue consists of constructing a new
pseudotemporal environment for the atomic action and a new commit record.
The epilogue consists of changing the state of the commit record from "unknown"
to "committed." If the commit record is already in the aborted state, due to a

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

Implementing Atomic Actions on Decentral ized Data • 15

I
I
I
I
I
I
\

I object heoder I

/
/ / =

I /
I I
I I

I
I
I
\

PTW:P

PTR : P

CR:Q

do ta :v

PTw
PTR

data •

)
J

PTW

PTR

CR

data

\

" ~ PTW

PTR

CR

data

new version from update
at pseudo-time P in
possibility

Q s t a t e

timeout

\

Fig. 3. Object history.

time-out or a unilateral attempt to abort the action, the commit record's state is
not changed and the fact that the atomic action has failed is reflected to the
invoker. The epilogue must be executed only when it is known that all steps of
the atomic action have finished correctly. Thus, positive acknowledgments must
be received from all remote nodes that execute parts of the atomic action. 3 If the
epilogue is not executed (as when the node that would execute it crashes}, the
time-out on the commit record will eventually cause the tokens created by the
failing atomic action to be erased.

All reads and writes executed by the atomic action are done by executing
READ and WRITE operations with pseudotimes obtained from the atomic
action's PTE and with the commit record constructed in the prologue. The PTE

3 Actually, no t all s teps have to succeed. T h e atomic act ion m a y provide for th is in the a l ternat ive
steps.

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

16 David P. Reed

BI'

Q:

object heoder I~

commit record
for atomic action

I "unknown" ",~

timeout

\
\

\

PTW: P2
PTR : P2
CR:Q

M I-amount

PTW: X
PTR: Y--~ P I
CR: -

MI

new token version read
created by by step 2
step 3

-N

Fig. 4. Object history of B1 after step 3 of transfer.

provides the atomic action with exclusive access to a range of pseudotimes tha t
will not be used by other programs. Thus a version wri t ten as par t of the atomic
action will be observable by o ther computat ions only if it is the final version of
tha t object wri t ten by the atomic action; versions with pseudot imes earlier than
the final one cannot be re turned as a result of a R E A D with a pseudot ime later
than those in the atomic action's PTE.

5.1 Example Atomic Action
Let us consider the case of the t ransfer between two bank account balances, B1
and B2, in more detail. T h e atomic action is executed as six steps, as follows. If
any of steps 2-5 fail, the whole action is abor ted by not executing step 6. Th e
t ime-out on the possibility will eventual ly erase all tokens written, bu t if a failure
is detected, the atomic action may choose explicitly to set the possibility's state
to "abor ted" to speed things up.

1. Create a new possibility Q and a new pseudotemporal environment E.
2. Select pseudotime P1 from E, and READ(B1, P1, Q, balance).
3. Select P2 from E, and WRITE(B1, P2, Q, balance-amount).
4. Select P3 from E, and READ(B2, P3, Q, balance).
5. Select P4 from E, and WRITE(B2, P4, Q, balance + amount).
6. Try to change the state of Q from "unknown" to "committed."

Because of the order of the steps, we know tha t P1 < P2 < P3 < P4, and tha t
all pseudot imes used in o ther computat ions are e i ther less than P1 or greater
than P4. As a result, step 2 will read a version of B1 and step 3 will create the
succeeding version. Figure 4 shows the state of B l ' s object history after step 3.

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

Implementing Atomic Actions on Decentralized Data 1 7

B2:

new version / write ofo
/ ot P4 is rejected

because P5 • P4>Z

P TR: Z
PTR: W ~-~,P5
CR: -

M2

Fig. 5.

version read
by step 4

Object his tory of B2 after s tep 4 of t ransfer and a R E A D at P5.

Similarly, step 4 will read a version of B2, and step 5 will create the succeeding
version. Note that another program executing a read on B1 whose pseudotime is
later than P2 will wait until step 6 is completed or the atomic action is aborted.

Problems may occur, however, if some other computation executes a READ on
B1 or B2 with a pseudotime greater than P4. Consider the case of a READ(B2,
P5) that is processed before the above transfer executes step 5. Then the
value returned by the read at P5 will be the value of a version created before P1,
and that version's maximum read pseudotime will be set to P5. The object history
for B2 at this point is shown in Figure 5. When step 4 is executed, it will return
the same value in its READ, but the write in step 5 will be rejected. The transfer
atomic action will then fail, either explicitly changing Q's state to "aborted," or
just by doing nothing and letting the commit record time out.

This case of READs aborting WRITEs should not be too surprising. It is
analogous to aborting an atomic action because of a detected deadlock in a
scheme that uses locking to achieve synchronization. The likelihood of frequent
aborts due to this cause grows with the frequency with which separate atomic
actions at tempt to use the same object nearly simultaneously. We believe that in
a decentralized system, such conflicts will be relatively rare, and so the overall
performance degradation will be acceptable. It seems to be a price that must be
paid in order to allow atomic actions to be constructed without knowledge of the
other users of data they modify.

6. PRAGMATIC IMPLEMENTATION ISSUES

To implement these ideas effectively and efficiently, there are several issues that
must be addressed. Here we outline approaches to some of these.

6.1 Representation of Versions

With two exceptions, versions are never modified once created. If we can eliminate
the need for any modifications, we can benefit (a) in performance because fewer
writes to stable storage will be needed and (b) by allowing versions to be
implemented in a write-once stable medium such as an optical disk. As part of
the SWALLOW project [1, 20, 22], we have solved these problems. To eliminate
the need for modifying the chain pointers when adding a token, we restrict the

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

18 • David P. Reed

implementation to adding new versions at the front of the list (so only more
current versions can be added). To eliminate the need for modifying the maximum
READ pseudotime, we observe that if new versions can be added only on the
front of the list, then we need to store a maximum READ pseudotime only for
the most recent version. The other maximum READ pseudotimes will be replaced
by an implied value just less than the WRITE pseudotime of the next version.
The maximum READ pseudotime for the latest version can be stored in the
object header, or in a separate table maintained in faster storage that maps each
object header to its maximum READ pseudotime. This latter strategy was finally
chosen for SWALLOW. The table can be compressed by restricting the length of
time, 8, that ar/atomic action can run before writing. Then the table need only
store the maximum pseudotimes of current versions created less than 8 time units
ago. For all other objects, the maximum READ pseudotime will be T - 8 where
T is the current real time.

6.2 Impact of Distribution on Availability

The trick we used to ensure failure atomicity is to make the commit action for all
tokens in a possibility atomic by representing the state of the possibility in one
place--the commit record. There are two drawbacks to this trick. First, if data
objects are stored on multiple nodes, reading a version will often involve delay
due to accessing the commit record. However, once a read of a version discovers
that the commit record is in the committed state, that information can be
recorded with the version, so that later reads need not check the commit record
state. Once all versions have recorded the state of the commit record (either
turning from tokens into ordinary versions, or being erased), the commit record
can be deleted. Second, the node containing the commit record becomes a critical
resource, since its unavailability will prevent the state of many objects from being
ascertained. This problem can be alleviated by distributing the commit record's
state on multiple nodes, using a voting strategy [19].

6.3 Pruning Object Histories

For most practical systems, our implementation so far suffers from a serious
problem. Since all versions of an object are stored forever, the total storage used
by the system will increase at a rate proportional to the update traffic in the
system. Consequently, we would like to be able to throw away old versions of the
objects in the system. We can do this pruning of versions without much additional
mechanism, however.

Before explaining how the pruning works, though, it is worthwhile to consider
why one might n o t want to throw away old object versions. One reason is that
the object histories provide exactly the information needed to go back to an
earlier state of the system and restart it. One need merely pick a pseudotime that
does not correspond to a point in the middle of an atomic action (in terms of the
implementation sketched above, any N-bit time stamp is such a pseudotime),
and use it to READ all the objects in the system. Since the objects are read in
between atomic actions, the system state thus read will be consistent. This kind
of checkpointing and backup to previous states is usually added on as a separate
mechanism to systems without explicit mechanisms to support atomic actions.
As a result, checkpoints in such systems usually can contain inconsistent data.
ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

Implementing Atomic Actions on Decentralized Data 19

Another use for maintaining old versions is to support very large, slow, read-only
atomic actions. If a read-only atomic action is executed in a system that maintains
only one version of each object (e.g., as in a system that uses locks for synchro-
nization), then it will either delay all computations that use the data it reads until
it completes, or it will not be able to complete because writes to data it needs will
make it impossible to access a consistent system state. If old versions are kept
around, a very slow read-only atomic action will always be able to find the
versions that it needs, even though writes at larger pseudotimes are executed,
creating new versions. Such large read-only transactions do occur in practice,
usually as the result of a need to provide an unanticipated kind of summary
report about information maintained in a large database. Finally, we note that if
a naturally write-once storage technology {such as laser-written optical storage)
is used, retaining old versions is unavoidable (so we can "make a virtue out of
necessity").

Assuming that we want to prune old versions, the only problem is to ensure
that we do not allow writes to take place that would create new, different versions
in the same range of pseudotime where an old one exists. We must also make
sure that at least the most current committed version of each object is retained.

A simple and practical pruning mechanism works as follows: whenever a version
has a pseudotime less than the most recent committed version, it is eligible for
pruning. We only prune versions whose PTR field is less than a threshold equal
to T - d where T is the current real time, as obtained from the node's N-bit real-
time clock, and d is a positive constant. The significance of d is that the only
objects for which noncurrent versions are retained are those that were written by
atomic actions that started within the last d time units. If d is zero, then only the
most recent committed version of each object and any tokens created by atomic
actions in progress are kept. Essentially this is equivalent to a locking strategy.
Setting d to be greater than zero retains some old versions, so that late-arriving
reads (from large read-only actions) can proceed. A good value for d can be
chosen by noting,the likely amount of time between the start of an atomic action
and the time its last read arrives at the node containing the object read.

The amount of storage used for objects if this pruning algorithm is used is
roughly the sum of two quantities--the total amount of storage used for the
"current" versions of all the objects, plus the storage needed to hold any other
versions of objects that were created by writes in the last d time units. The
second quantity is roughly constant, assuming a constant update traffic, and is
proportional to the overall system update traffic. Since most large databases do
not have a high update traffic (i.e., a very small part of the database is actually
modified during any short time period), the overhead is likely to be small.

If pruning occurs, the algorithms for READ and WRITE described earlier need
to be modified so that READs and WRITEs whose pseudotime is older than
T - d are rejected. Such rejections add another way in which atomic actions
abort.

6.4 Extensions

A major goal is that atomic actions be modularly composable operations. That is,
one can implement atomic actions so that new atomic actions can be constructed
out of previously existing atomic actions without either (a) modifying the preex-

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

20 David P. Reed

isting implementations or {b) requiring that the new actions know what objects
the preexisting atomic actions access. Locking mechanisms for providing syn-
chronization or recovery for atomic actions make it difficult thus to compose
atomic actions because of the need to have at least one instant of time where all
data touched by an atomic action are locked. Composing atomic actions in a
system based on locking thus requires extending the time during which an object
is locked.

Implementing composable atomic actions requires extending pseudotemporal
environments and possibilities. PTEs are extended so that a nested atomic action
has exclusive access to a contiguous subset of the pseudotimes in its containing
atomic action's PTE. Similarly, possibilities are given a hierarchically nested
structure. The details of these extensions can be found in the author's disserta-
tion [19].

A commit record can be deleted after the last token referring to it is either
aborted or committed. This deletion requires an augmented protocol presented
in [20].

In a distributed system, where communication is costly, it may improve
performance to encache the state of an object at a site other than its home site.
Versions of objects provide a useful unit of encachement, and strategies for
distributing new versions of encaching sites can use the fact that the {object
name, pseudotime) pair uniquely identifies the version.

If READs and WRITEs to objects in a distributed system are requested by
messages, the mechanisms outlined in this paper work correctly, even if the
communications system reorders the messages, duplicates them, or loses them.
The reason for this is that the pseudotime and possibility required for each
READ and WRITE provide enough identification to order each READ or
WRITE request's effect on the object, and to ensure that a request is idempotent
(may be executed repeatedly, with the same effect as if executed once).

7. CONCLUSIONS

In this paper, we have concentrated our attention on one aspect of synchroniza-
t ion-contro l of simultaneous access to shared data objects. It has been traditional
to treat shared data synchronization with the same ideas and mechanisms as
other problems of synchronization, such as disk queue scheduling and processor
multiplexing, even though synchronization of access to data is a very simple and
important case. The power of synchronization mechanisms has been measured
by determining what "synchronization problems" they can and cannot solve,
where such problems often have little to do with the important case of concurrent
access to data.

As we have seen, by treating data synchronization alone, we need not be so
concerned about the timing of programs accessing data, but rather we can
concern ourselves with the more relevant requirement that the program access
the correct states of the data. The division of synchronization into two classes,
data access synchronization and process (timing) synchronization, seems to be a
useful and powerful division.

Our view that a data object really stands for a sequence of states and that
accesses (reads and writes) to the object are operations on that sequence is rather
powerful. Pseudotime can be thought of as a naming mechanism for successive

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

Implementing Atomic Actions on Decentralized Data 21

states of all objects in the system. Because we implement programs with that
naming mechanism, programs accessing shared objects can be defined without
need to consider their timing explicitly. Since timing of programs is one of the
attributes of program execution over which the designer has little control (espe-
ciaUy in distributed systems), reducing the importance of timing in understanding
program execution simplifies the design task.

Pseudotimes and possibilities provide a "language" for describing the desired
coordination of actions. In a distributed system, a remote request specified in
high-level terms ("perform this set of account transfers") can be qualified with a
pseudotemporal environment and possibility to ensure atomicity. This qualifica-
tion can be specified without the requestor knowing what steps are carried out by
the server. Thus one can ensure atomicity without compromising the ability to
build abstract, modular interfaces. To work correctly, the modules that implement
abstract requests need only pass the PTE and possibility through to the under-
lying READ and WRITE operations. If the basic operations are other than
READ and WRITE, then assuming that these other basic operations are designed
so that their state changes correspond to the pseudotime ordering and commit/
abort with the possibility, one can still build atomic actions. Thus our scheme fits
naturally with modular programming styles.

Our two-phase implementation of atomic actions is a close relative of the two-
phase commit described by Gray [11] and Lampson and Sturgis [15]. In particular,
the state of the commit record is analogous to the state of the coordinator process
of Lampson and Sturgis. They also divide writes into two steps, creating a
tentative value to be written and then doing the write. The major difference is
that, in our scheme, the uncommitted state of the token prevents other atomic
actions from reading it. In their schemes, uncommitted data are not stored as
part of the object, which leads to two difficulties. First, additional synchronization
is needed in their schemes, so they use write-locks. Second, writes are stored into
the object only after the entire atomic action is committed, preventing the
possibility of storing results as they are generated, in parallel with the computa-
tion. This parallel storing of results is a potential performance improvement that
results from our scheme.

It is interesting to note that our object semantic model is somewhere between
the traditional von Neumann machine semantics based on changeable memory
locations and the more recent "side-effect-free" machine semantics best illus-
trated by data-flow machine architecture [7]. Although our objects can be
updated, they are built on a substructure consisting of immutable object versions
that correspond to the structured objects available in a data-flow machine. The
immutability of object versions leads to the same advantage that is accrued from
immutability in a data-flow architecture: the timing of concurrent programs is
not important to the behavior of the program. However, by supporting an update
semantics on top of the immutable versions, we support a user view of the system
as an extensive memory with state-changing operations, a view that seems to be
better for interuser sharing. Thus, we may have achieved the "best of both
worlds."

It is worthwhile noting the relationship between the idea of maintaining object
histories and two other ideas. An important notion in managing recovery of
databases is the idea of a log [10]. Normally, a log consists of a time-ordered list

ACM Transact ions on Computer Systems, Vol. 1, No. 1, February 1983.

22 David P. Reed

of all old versions of data objects. Our object histories might be thought of as a
"distributed log." The object history is also closely related to the history arrays
of Dennis and Van Horn [8], which were used to describe the essential orderings
among concurrent programs accessing shared data. In this context it is worthwhile
to note that the idea of synchronization using object histories and pseudotimes
allows us to increase parallelism, though that is not our primary goal. This is
because the essential orderings are captured in the relationships between pseu-
dotime values, rather than in the flow of control between steps of the programs.

In a system designed to be used in building modular abstract operations, both
the synchronization and recovery mechanisms must be designed to preserve the
degree of abstraction of the module interface. Either inadequate synchronization
or inadequate recovery from failures could result in compromising the abstraction,
and therefore both mechanisms must be present and correct to provide such
abstractions. We have shown both a synchronization mechanism and a mecha-
nism that provides limited backward error recovery that work well together in
building atomic actions, a kind of abstract operation. We believe that such
mechanisms must be designed to work together; the traditional approach of
implementing reliability measures and synchronization measures independently
would not work in the distributed computing environment.

ACKNOWLEDGMENTS

Jerry Saltzer read and criticized numerous drafts of this paper, and earlier
performed the same task for the dissertation on which it is based. His help and
encouragement have been primarily responsible for whatever lucidity this discus-
sion has shown. Jim Gray of IBM San Jose Research provided the initial
inspiration for this research during discussions we had in the summer of 1975;
since then, he has been kind enough to share his fund of database "folklore" in
discussing these ideas. Dave Clark, Liba Svobodova, Barbara Liskov, Irene Greif,
Buffer Lampson, Karen Sollins, and Anita Jones have also significantly shaped
these ideas and their presentation.

REFERENCES

1. ARENS, G. Recovery of the swallow repository. S.M. thesis, Dep. of Electrical Engineering,
M.I.T., Cambridge, Mass., Jan. 1981; Tech. Rep. TR-252, M.I.T. Lab. for Computer Science,
Cambridge, Mass., Jan. 1981.

2. ATKINSON, R., AND HEWITT, C. Synchronization in Actor systems. In Conf. Rec. 4th Symp.
Principles of Programming Languages (Los Angeles, Jan. 17-19), ACM, New York, 1977, pp.
267-280.

3. BERNSTEIN, P.A., SHIPMAN, D.W., ROTHNIE, J.B., AND GOODMAN, N. The concurrency control
mechanism of SDD-I: A system for distributed databases (the general case). Tech. Rep. CCA-77-
09, Computer Corporation of America, Cambridge, Mass., Dec. 1977.

4. BOBROW, D.G., BURCHFIEL, J.D., MURPHY, D.L., AND TOMLINSON, R.S. TENEX, a paged time
sharing system for the PDP-10. Commun. ACM 15, 3 (March 1972), 135-143.

5. DAVIES, C.T. Recovery semantics for a DB/DC system. In Proc. 1973 ACM Ann. Conf. (Atlanta,
Ga., Aug. 27-29), ACM, New York, 1973, pp. 136-141.

6. DAVIES, C.T. Data processing spheres of control. [BMSyst. J. 17 (1978).
7. DENNIS, J. First version of a data flow procedure language. Tech. Memo TM-61, M.I.T.

Laboratory for Computer Science, Cambridge, Mass., May 1975.
8. DENNIS, J.B., AND VAN HORN, E.C. Programming semantics for multiprogrammed computa-

tions. Commun. ACM 9, 3 (March 1966), 143-155.

ACM Transactions on Computer Systems, Vo]. 1, No. 1, February 1983.

" Implement ing Atomic Act ions on Decentra l ized Data 23

9. DIJKSTRA, E.~V. Cooperating sequential processes. In Programming Languages, F. Genuys,
Ed., Academic Press, New York, 1968.

10. ESWARAN, K.P., GRAY, J.N., LORIE, R.A., AND TRAIGER, I.L. The notions of consistency and
predicate locks in a database system. Commun. ACM 19, 11 (Nov. 1976}, 624-633.

11. GRAY, J.N. Notes on database operating systems. In Operating Systems: An Advanced Course,
vol. 60, Lecture Notes in Computer Science, Springer-Veriag, New York, 1978, pp. 393-481.

12. HOARE, C.A.R. Towards a theory of parallel programming. In Operating Systems Techniques
C.A.R. Hoare and R.H. Perrott, Eds., Academic Press, New York, 1973.

13. JOHNSON, P.R., AND THOMAS, R.H. The maintenance ofduplicate databases. ARPANETNWG/
RFC 677, DARPANET, Defense Advanced Research Agency, Washington, D.C., Jan. 1975.

14. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21, 7 (July 1978), 558-565.

15. LAMPSON, B., AND STURGIS, H. Crash recovery in a distributed data storage system. To appear.
16. LOMET, D.B. Process structuring, synchronization, and recovery using atomic actions. In Proc.

ACM Conf. Language Design for Reliable Software, SIGPLAN Notices (ACM) 12, 3 (March
1977), 128-137.

17. PARNAS, D.L. On the criteria to be used in decomposing systems into modules. Commun. ACM
15, 12 (Dec. 1972), 1053-1058.

18. RANDELL, B. System structure for software fault tolerance. IEEE Trans. Softw. Eng. SE-1, 2
(June 1975}, 220-232.

19. REED, D.P. Naming and synchronization in a decentralized computer system. Ph.D. Disserta-
tion, Dep. Electrical Engineering and Computer Science, M.I.T., Cambridge, Mass., Sept. 1978;
Tech. Rep. TR-205, M.I.T. Laboratory for Computer Science, Cambridge, Mass., Sept. 1978.

20. REED, D.P., AND SVOBODOVA, L. SWALLOW: A distributed data storage system for a local
network. In Local Networks for Computer Communications, A. West and P. Janson, Eds., North-
Holland, Amsterdam, 1981, pp. 355-373.

21. STEARNS, R., ET AL. Concurrency control for database systems. In Proc. IEEE Symp. Founda-
tions of Computer Science, (October), IEEE, New York, 1976, pp. 19-32.

22. SVOEODOVA, L. Management of object histories in the SWALLOW repository. Tech. Rep. TR-
243, M.I.T. Laboratory for Computer Science, Cambridge, Mass., July 1980.

23. THOMAS, R.H. A solution to the update problem for multiple copy databases which use
distributed control. BBN Rep. 3340, Bait, Beranek, Newman, Cambridge,. Mass., July 1976.

Received November 1979; revised August 1982; accepted August 1982

ACM Transactions on Computer Systems, Vol. 1, No. 1, February 1983.

