
DiVA: Using Application-Specific

Policies to “Dive” Into Vector

Approximations

Konstantinos Tsakalozos1, Spiros Evangelatos2,

Fotis Psallidas3, Marcos R. Vieira4, Vassilis J. Tsotras5 and

Alex Delis2

1Microsoft Corp., London, EC1N 2ST, United Kingdom
2University of Athens, Athens, 15784, Greece
3Columbia University, New York, NY 10027

4Hitachi America Ltd., R&D, Santa Clara, CA 95050
5University of California, Riverside, CA 92521

Email: ad@di.uoa.gr

In high-dimensional data domains, the performance of conventional tree-based
access structures is occasionally outperformed by simple sequential scans. To
this end, the introduction of approximation-based methods helped speed-up
queries by providing compact representations of stored data. Approximation
methods exploit vector quantization to index data mainly presumed to follow
a uniform distribution. In real-world environments however, we mostly encounter
both skewed data and query distributions. To address this dual challenge, we
propose DiVA that combines the selective use of an approximation approach
with an indexing mechanism to organize data sub-spaces in a high fan-out
hierarchical structure. Moreover, DiVA reorganizes its own elements after
receiving application hints regarding data access patterns. These hints or policies
trigger the restructuring and possible expansion of DiVA so as to offer finer
indexing granularity and improved access times in sub-spaces emerging as “hot-
spots”. The novelty of our approach lies in the self-organizing nature of DiVA

driven by application-provided policies; the latter effectively guide the refinement
of DiVA’s elements as new data arrive, existing data are updated, and the nature
of query workloads continually changes. An extensive experimental evaluation
using real data shows that DiVA reduces up-to 64% of the total number of I/Os if

compared to state-of-art methods including the VA-file, GC-tree and A-tree.

Keywords: Self-Organizing Indexing Methods; Accessing Skewed Multi-dimensional Data and
Queries; Vector Approximation Techniques

The Computer Journal, http: // dx. doi. org/ 10. 1093/ comjnl/ bxv097 , October 2015.

1. INTRODUCTION

Numerous applications in the fields of earth and
space sciences, data analysis, scientific computing,
multimedia retrieval, bio-informatics, among others,
operate on multi-dimensional data [1, 2, 3, 4, 5, 6,
7]. To efficiently evaluate similarity-based queries,
data objects from such domains are typically mapped
into data vectors in n-dimensional spaces. To speed
up query evaluation in high-dimensional and large-
volume datasets, specialized index methods have been
proposed [8, 9, 10, 11, 12, 13, 14]). These indexing
schemes use a set of feature vectors, representing objects
in the original domain, and a distance function to
perform similarity searches. The two most common

similarity search operations in such domains are the
Range (i.e., “retrieve all objects within a distance from
a query object”) and the k -Nearest-Neighbor (k-NN)
queries (i.e., “retrieve the k -closest objects to query
object”).

In high-dimensional spaces, tree-based indexing
methods employed to evaluate similarity queries
are ineffective [8]. This is due to the fact
that index performance deteriorates rapidly as the
number of dimensions increases. This renders simple
linear scan an efficient approach [15, 16]. This
“curse of dimensionality” problem has led to the
introduction of approximation-based access methods [9,
17, 18, 19, 20, 21] whose aim is to reduce search

http://dx.doi.org/10.1093/comjnl/bxv097

2 K. Tsakalozos, S. Evangelatos, F. Psallidas, M. Vieira, V. Tsotras, A. Delis

costs by performing sequential scan on compact
and approximate representations of data. In this
context, vector quantization techniques, e.g., VA-
files [15], are effective as they employ scans on
approximate quantized data to partially lift the curse
of dimensionality. By and large, most of the so
far proposed vector quantization techniques assume
uniformly-distributed data. Thus, to overcome this
drawback pre-processing data methods have been
proposed as a way to “smooth” skewed data so
that approximation-based methods can work more
efficiently [22, 23]. Nevertheless, not only skewed data
but also clustered query distributions are frequently
encountered in real-world settings [24, 25].
To curtail I/O costs originating from fruitless

sequential scans in large data-sets, a number of
techniques [26, 27, 28] have attempted to leverage on
hierarchical-based data partitioning structures. For
instance, the A-tree [26] avoids large areas of the
search by introducing the concept of Virtual Bounding
Rectangles (VBRs); they are tightly packed quantized
Minimum-Bounding Rectangles (MBRs). The IQ-
tree [27] employs MBR in a 3-level tree-structure
that points to compressed representations of data
vectors. The space partitioning employed by the GC-
tree [28] provides higher indexing detail in areas of
dense data distribution. Overall, the combined use of
hierarchical space partitioning and data quantization
has shown promise where traditional tree-based and
simple approximation approaches do not perform well.
Nevertheless, these methods are limited by their
predefined and fixed heuristics set at index construction
time. Moreover, these heuristics do ignore application
requirements and possibly changing access patterns.
To addresses the above limitations, we present DiVA

that blends two key characteristics as it:

• combines the selective use of an approximation
approach with an indexing mechanism to manage
data sub-spaces in a high fan-out hierarchical
structure, and

• works in conjunction with application-provided
“hints” (or policies) and exploits changing query
workloads to reorganize itself.

DiVA employs an adaptation mechanism that helps
either “zoom” (or “dive”) into its structure and
provide access to objects with progressively increasing
granularity, or restructure the index in order to more
rapidly materialize queries in certain areas. External
to DiVA software components termed observers,
realize application-specific policies that drive DiVA’s
adaptation mechanism. We describe two such policies:
the first seeks to reduce query turnaround time by
decreasing the overall I/O overhead, while the second
favors specific groups of users.
We present a thorough experimental evaluation of

our proposed DiVA method using a range of real
and synthetic datasets. Our results show that DiVA

outperformed well-known competing methods in terms
of I/Os. For clustered high-dimensional spaces, DiVA
achieves a notable improvement, while for uniformly
distributed spaces, it yields performance comparable to
its best competitor. In summary, in this paper we make
the following contributions:

• we propose the DiVA indexing method that
decouples index expansion from the rest of its
query evaluation operations. DiVA is driven
by application-specific policies registered while
the index is kept on-line. In this way, the
index may rapidly adapt to changes in the
data distribution, or address changes in querying
patterns that may require fine-granularity access to
different sub-spaces. High-level application-specific
requirements are allowed to help the index tuning.

• DiVA selectively adapts its indexing granularity
in specific sub-spaces. This is achieved by its
hierarchical and highly compact structure;

• DiVA uses multiple segments of approximated data
that are sequentially scanned during the query
evaluation. This strategy allows efficient storage
of an arbitrary large number of approximations
in each node, thus achieving good performance in
high-dimensional datasets;

• a prototype-based evaluation shows that DiVA
outperforms a number of previously proposed
access methods for high-dimensional data.

The rest of the paper is organized as follows: in
Section 2, we review the related work. In Section 3, we
formalize the main features of DiVA; Sections 4 and 5,
describe how applications may dictate policies to guide
the expansion and restructuring of DiVA. Section 6
discusses our experimental evaluation and Section 7
offers our conclusions.

2. RELATED WORK

Many indexing schemes for multidimensional data have
been proposed [29, 30] so that queries such as range
and k-NN are handled efficiently. Tree–based indexing
methods attempt to speed up query evaluation by
visiting only fraction of their search space. To maintain
the property that data objects under the same branch
“lie” within the same bounding rectangle or sphere,
such methods deploy rather expensive updates; the
effect of a single such update can affect the entire
structure through repetitive nodes splits all the way
to the root. The X-tree [31] attempts to reduce such
costs by minimizing the overlap of bounding rectangles
through the creation of specialized nodes that extend
the capacity of overload nodes. The SS -tree [32] and
SR-tree [8] respectively use spheres and the combination
of rectangles and spheres as bounding shapes to
represent nodes. There is a similar line of structures
whose operation is based on the distance of index
objects to selected reference points. The M-tree [33] is

DiVA: Using Application-Specific Policies to “Dive” Into Vector Approximations 3

a height-balanced partitioning approach that organizes
objects based on their distance to reference objects
associated to nodes. The iDistance [34] uses a B+-tree
to index the distances of objects to reference objects.
The Omni-Family [35] extends the idea to other index
structures such as the R-trees. To minimize overlapping
among sibling nodes, some indexes employ partitioning
methods that generate non-overlapping cells. In this
respect, the Grid-file [36] organizes cells that adapt
to changing data object distributions while the K-D-
B -trees [37] address diverse data distributions through
space partitioning. Lastly, the hybrid -tree combines
the advantages of both space and data partitioning
approaches [38].
All above approaches suffer from the “dimensionality

curse” [17, 39, 40]. Under fairly common conditions
and as dimensionality increases, sequential scan
eventually outperforms all space partitioning and
clustering methods [15]. The VA-file was proposed
as an alternative method for indexing datasets in
n-dimensional space. The VA-file is an array of
vector approximations with each approximation being
a quantized, compact representation of an original
data vector. The VA+-file [22] uses Karhunen–Loeve
Transformations (KLT) and a scheme of flexible bit
allocation among dimensions to efficiently differentiate
vectors through preprocessing of data. Data vectors
are preprocessed so they become more uniformly
distributed among the n dimensions. The higher the
standard deviation of data over a dimension is, the more
bits are allocated for the quantization of dimension at
hand.
The IQ -tree [27] uses a directory of bounding

rectangles to limit the number of approximations read.
Prior to its creation, the IQ -tree examines the entire
dataset to produce its optimized directory up-front.
The VQ -index [41] divides space into Voronoi cells
according to queries received in order to produce
approximate answers. The data vectors of each cell are
compressed using vector quantization and are placed in
a single file; only pertinent such files are accessed during
querying. The GC -tree [28] partitions index space so
that cells containing clustered data are identified and
further indexed in the lower tree levels. Here, the
cubic cells produced are mapped to disk pages. Cells
containing clusters are split into more fine grained cells
while sparsely populated cells are packed together into
virtual pages.
The A-tree [26] seeks to combine the advantages of

both VA-file and SR-tree [8]. An A-tree is a hierarchy
based on Virtual Bounding Rectangles (VBR) that are
derived from Minimum Bounding Rectangles (MBR)
with quantization. In general, an MBR is enclosed
within a VBR so that no vectors are dropped during
quantization. VBR stored in the inner-tree nodes are
represented in relation to their ascendant MBR so as to
maximize storage efficiency. Due to their smaller size,
numerous VBR can be packed in a data block and thus,

the fan-out of A–tree is increased; due to this property,
the A–tree node layout resembles that of VA-file while
the presence of bounded rectangles underlines influence
from the SR-tree.
In specific application domains, the quality of

results may be traded in favor of faster response
times [41, 42, 43, 44]. Hence, indexing methods
that use Locality Sensitive Hash (LSH) has been
proposed. LSH groups data vectors into bins which
in turn help materialize k-NN queries and it does
produce approximate query results [45, 46, 47]. LSH
functions produce similar hash-values for close-by data
vectors and so help efficiently generate approximate
solutions to similarity queries. Approximate results
may also be provided through dimensionality reduction
methods [48]. We consider dimensionality reduction
methods largely orthogonal to the indexing approaches.
As a matter of fact, dimensionality reduction can serve
as a valuable pre-processing step for indexed data;
nevertheless, it can by no means replace indexing. In
similar spirit, in [49] bloom filters are used to trade
accuracy for performance.
Unlike the above hash-based mechanisms [45, 46, 47,

49, 50], DiVA provides exact answers to both range
and k-NN queries. In contrast to VA-file, DiVA offers
multiple levels of progressive index-granularity through
its hierarchical organization. DiVA differs from most
tree-based counterparts in that a node may store an
arbitrary high number of approximations which are
sequentially scanned. In [26, 27, 28], tree nodes are
mapped into disk blocks. In DiVA, a node consists of
files that simply grow allowing for almost unlimited fan-
out, i.e., DiVA delegates the allocation of more spaces
for a node to the file system.
It is worth pointing out that previous existing

methods [18, 19, 41, 26, 27] heavily rely on static
and/or predefined rules (e.g., node utilization) to
initiate the creation of new nodes and/or re-organize
their structures. In contrast, DiVA reorganizes its
structure on-the-fly according to application-provided
policies. As mentioned earlier, such policies are based
on query workload characteristics, application-provided
hints and features of the host computer system.

2.1. The VA-file and Skewed Data

DiVA treats the “dimensionality curse” in the same
way as the VA-file, through vector approximations.
While skewed data and queries are efficiently handled by
structural changes in the hierarchy of its nodes. Here we
describe the salient features of the VA-file, and discuss
how an unbalanced structure can address its limitations.
As dimensionality of the dataset increases a serial

scan is eventually more efficient than space partitioning
and clustering [15]. For each point (vector) in
the n-dimensional space the VA-file produces an
approximation vector that is ultimately used to improve
the performance of the sequential scan. To construct

4 K. Tsakalozos, S. Evangelatos, F. Psallidas, M. Vieira, V. Tsotras, A. Delis

these compact vector approximations, the space is
divided into 2b cells, with b being the-bit length of each
approximation. Each VA-file vector belongs to a single
cell and each vector within a cell is approximated by
the b bit representation of the corresponding cell. When
more than one vectors fall within the same cell, the same
representation is repeated in the approximations array.
In this manner, the same approximation may appear
more than once in the VA-file.
The idea behind VA-file is to process queries in a 2-

phase filtering process: in the first phase, a sequential
scan of all vector approximations locates candidate
cells. For each approximation the lower and upper
distance bounds are computed; in the second phase,
cells that are not pruned during the first phase are
further examined. The trade-off between cost and
accuracy of the sequential scan in the 2-phase filtering
is controlled by the parameter b. As b increases the
space cells become smaller and we expect them to
include less approximations. Smaller cells call for longer
sequential scans (first phase) but less vectors to be
examined within during the second phase. Since vector
approximations are placed sequentially in the same file,
the VA-file achieves good performance when pages are
placed sequentially on the disk. The reason is that
this approach makes efficient use of cache and prefetch
mechanisms available in the current systems.
In light of clustered data however, large numbers

of vectors tend to fall within the same cell as they
feature identical approximations. Here, approximations
offer limited capacity in differentiating among the
populous clustered data vectors that now have to be
all retrieved. Further more, the VA-file offers the same
index granularity (b bits) across the entire dataset.
Thus, there is no differentiation between “hot” and
“cold” space areas.
To alleviate the above limitations, DiVA adopts a

hierarchical structure where higher index granularity
is offered through lower level nodes. Such granularity
adjustments accommodate both skewed data as well as
skewed queries. Quantization is employed to produce
vector approximations, which are stored in nodes of a
hierarchical structure. Extra nodes are used to index
particular space areas and bare significant resemblance
to VA-files. Each child node provides higher index
detail over a portion of the area indexed by its parent.
The end structure is an unbalanced tree (more levels
are used to index “hot” areas). Balancing such
structure would needlessly increase index granularity
across the entire search space. Moreover, “hot” areas
should be scanned first, to accommodate this the
proposed structure intentionally restructures itself in an
unbalanced form.

2.2. Earlier Work on DiVA

A preliminary version of our work appeared in [51].
Compared to this, the current extended version entails

the following:

• in-depth discussions on several key architectural
aspects of DiVA: We present how the event–based
mechanism enables the implementation of multiple
application driven policies. Subsection 4.2 outlines
the tuning options of such adaptation policies.
We also present and evaluate the FGU policy
(Section 5.2) that allows for specific users groups
to be favored over others.

• detailed presentation of important core operations:
Sections 3.2 and 3.3 outline the data layout and the
way we manipulate bits in ways that help achieve
the sought performance. The behavior of DiVA’s
internal components is evaluated in Section 6.1.

• in-depth discussions on the interface operations of
the proposed index. In addition to the k-NN algo-
rithm, we also present the implementation of the
range search as well as the vector insertion algo-
rithm along with pertinent complexity analyses.

• improved and comprehensive experimental evalua-
tion of our approach: Using prototypes we have de-
veloped, we carried out a wide range of diverse ex-
periments that reveal both pros and cons of DiVA
and other examined techniques. The latter include
the competing GC -tree [28] access method as well
as the VA-file, the VA+-file and the A-tree.

• comprehensive comparison with prior work in
the area: This related work section outlines a
number of prior research efforts and qualitatively
compares how our proposed DiVA approach
advances the work through its unique feature of
“diving” fast into query regions of interest as
well as its DiVA’s hint-based application driven
reorganization method.

3. THE DIVA INDEX

DiVA is a non-balanced hierarchical structure whose
every node resembles to the VA-file. An non-balanced
structure was chosen since in high-dimensional spaces,
balanced structures generally result in large, ineffective
bounding volumes. Approximation data are used to
speed up the search within each node; every such
node also contains data vectors. This approach aims
to combine the good properties of VA-files in high
dimensional spaces with DiVA’s hierarchical structure
that offers enhanced refinement indexing capabilities.
Node creation and index maintenance are controlled by
application-specific policies. Finally, DiVA by design
carries out I/O operations using only forward file seeks
so as to better exploit the underlying storage subsystem.

3.1. Structure and Operation of DiVA

Non-uniform data sets accessed via skewed query
access patters necessitate fine(r) index granularity
in corresponding data sub-spaces. DiVA uses a
hierarchical structure of nodes whose every successive

DiVA: Using Application-Specific Policies to “Dive” Into Vector Approximations 5

V7

V2

V3

C3C2C1

V4

V5

V6

V8

V9

C1.1 C1.2 C1.3 C1.4

V5 V6 V7 V8V9

C4

C3

C1.3

V1

C1.4C1.1

C1

C1.2

C2

V2V1V3 V4

Indexed Space Nodes

a−files

r−files

FIGURE 1. Sample of a DiVA structure in a 2-D space.

level provides for greater indexing accuracy. A DiVA
node is similar to the organization of the VA-file and
comprises of two files:

a) a file with approximations termed a-file, and
b) a file of records termed r-file holding data vectors

or pointers to other nodes.

Approximations stored in the a-file are produced
through quantization of the corresponding data vectors.
This lossy approximation process, introduces a degree
of uncertainty in the exact location of the original data
vector. In essence, each approximation represents a
rectangular cell in the indexed space. In Figure 1, we
present one such 2-dimensional space indexed by DiVA.
Each vector Vx belongs to a cell according to the prefix
of its coordinates. Thus data vectors belonging to the
same cell, have also the same approximation. On the
right side of Figure 1, we show the structure of DiVA.
Cells C1, C2, C3 have corresponding entries in the root
node. Cell C4 does not appear in the index since it does
not contain any data vectors. For the approximations
of C2 and C3, there are two lists of data vectors. The
list corresponding to C2 contains data vectors V2, V3
and V4, while the list of C3 consists of a single vector.
Cell C1 is further indexed by a second level node. The
approximation of C1 in the r-file of the root node points
to a record which in turn points to a child node. The
child node contains the approximations of cells C1.1,
C1.2, C1.3, C1.4 and the corresponding data vector
lists in the child node’s r-file.
Contrary to the VA-file, DiVA always stores each

distinct vector approximation only once, regardless of
the number of data vectors in the approximation cell.
In effect, vectors of the same cell are stored in a list of
records formed inside the r-file. For example, vectors
V3, V2 and V4 are placed in a list for they belong to
cell C2.
A single record in the r-file may be either a) a pointer

to a child node or b) part of a list of data vectors. All
entries in a records’ list contain data vectors from the
same space cell. The same applies to all data vectors
encountered by following a pointer to a child node.
Lower level nodes are used to further divide a cell into
multiple cells with higher granularity. For instance in
Figure 1, cells C1.x are used to subdivide cell C1.

Each stored approximation has a corresponding
record in the r-file. In our current implementation a
record is an array of dimension values. The size of
the array is the same as the number of dimensions
(one value per dimension)6. By having the n–
th approximation correspond to the n–th record in
the r-file, we eliminate the need for pointers in the
a-file which in turn allows for tighter packing of
approximations. The absence of pointers from the a-file
to corresponding records in the r-file may demand an
occasional record relocation during insertion. During
such a data vector insertion, any record already
occupying the corresponding position of the new
approximation has to be moved to the end of the r-file.
Two pointers, stored in each record, are used to connect
the vectors of the same cell in a circular doubly-linked
list. This doubly linked-list organization renders the
relocation of records a constant cost operation.
The structure of DiVA allows us to store an

arbitrarily high number of approximations per node.
Yet, to guarantee the uniqueness of approximations,
during insertion, the entire a-file has to be scanned.
This insertion cost can be lowered by performing
batch insertions of data vectors; we have implemented
this batch insertion technique to speed-up our
experimentation.

3.2. Approximations and Data Packing

DiVA enables us to provide higher indexing granularity
for specific areas of interest. Varying levels of vector
quantization allow us to adapt the indexing granularity.
Each n–dimensional data vector v is a sequence of
coordinates {c1, ..., cn−1, cn} and in turn, for dimension
i, each coordinate ci is represented by a sequence
of bits (bil, b

i
l−1, ..., b

i
1) with l being the bit length

of the coordinate at hand. Starting from the root
node the most significant bits of each dimension are
used to construct the approximations. Moving to
lower levels in the index hierarchy, more bits are used
for the quantization process. The number of bits
used from each coordinate/dimension adjusts the index
granularity.
The root node approximations follow the form:

{(b1l , b
1

l−1, ..., b
1

r1
), (b2l , b

2

l−1, ..., b
2

r2
), ...,

(bil, b
i

l−1, ..., b
i

ri
), ..., (bnl , b

n

l−1, ..., b
n

rn
)}

where ri is the number of bits used to build the
approximation for the ci coordinate. Approximations
of the above form have a bit-length m=

∑n
i=1(l− ri+1)

and partition the indexed space into 2m cells. A
child node would provide higher granularity through
approximations that use more bits than its parent.
That is done by choosing si ≤ ri, ∀i ∈ [1, n]. In
producing the approximations at hand, the dimensions
where si = ri are ignored as no extra bits are used.

6 It is trivial to replace the above vector representation to any
object as long as we have away to extract the dimension values.

6 K. Tsakalozos, S. Evangelatos, F. Psallidas, M. Vieira, V. Tsotras, A. Delis

Yet, we must have at least one dimension contributing
a minimum of at least one additional bit. Thus, we
require that ∃i ∈ [1, n] : si < ri. The approximation of
a child node is of the following form:

{(b1l , b
1

l−1, ..., b
1

s1
), (b2l , b

2

l−1, ..., b
2

s2
), ...,

(bil, b
i

l−1, ..., b
i

si
), ..., (bnl , b

n

l−1, ..., b
n

sn
)}

Each child node provides further indexing detail
to a single cell of the parent node. Data vectors
stored in the child node always “fall” within the
parent cell. Therefore, the most significant bits per
dimension of the produced approximations are common
for all approximations of the child node. These
common bits are stored only once, in the a-file of each
node, and are not repeated in every approximation.
Consequently, the aforementioned child approximations
that are ultimately stored are of the form:

{(b1r1−1, b
1

r1−2, ..., b
1

s1
), (b2r2−1, b

2

r2−2, ..., b
2

s2
), ...,

(biri−1, b
i

ri−2, ..., b
i

si
), ..., (bnrn−1, b

n

rn−2, ..., b
n

sn
)}

The per dimension quantization steps may vary from
node to node and are decided upon node creation. DiVA
can produce suitable quantization steps by performing
statistical analysis 7 on the data and queries within the
area of the node that is being created.
In Figure 2, we present a 3-dimensional data vector

along with approximations of three levels. For the first
dimension the root approximation uses the two most-
significant bits, the first child approximation uses the
third and forth bits, while the third level approximation
uses only the fifth bit. As Figure 2 depicts, we
concatenate bits of all three dimensions to form the
approximations of the three levels. The gradual increase
of the used bits in child nodes results in progressively
smaller, non-cubic, cells.

3.3. A Rapid Binary “Within Range” Opera-
tion

During a range query, the search algorithm has to be
able to rapidly determine whether a given data vector
falls within the query area. The implementation of this
“within range” operation largely depends on the shape
of the query area. In DiVA, we define the range query
area as the area enclosed in an n-dimensional rectangle,
rectilinear to the coordinate axes. A rectangle P is
defined by providing two of its opposite vertices, most
commonly the vertices pmin and pmax, which are the
closest and farthest vertices to the origin respectively.
The test to determine if a vector v is located inside
a rectangle P = (pmin, pmax), as given in Equation 1,
requires 2n comparisons:

inside(P, v) =

n
⋂

i=1

pmin
i ≤ vi ≤ pmax

i (1)

7Outlined in Algorithm 5

DiVA has to determine if a vector falls within a
query area using only a vector approximation. Each
approximation corresponds to a cell, with a certain
volume, in the indexed space. An approximation cell
is identified by a quantized vector va and has length
di, equal to the quantization step, in each dimension.
An approximation va can be entirely contained within
a rectangle P or partially overlap with P (Equations 2
& 3). If an approximation is contained in the query
area P , we can safely conclude that the original vector
is within the same area.

contains(P, va) =

n
⋂

i=1

pmin
i ≤ vai ≤ pmax

i − di (2)

overlaps(P, va) =

n
⋂

i=1

pmin
i − di ≤ vai ≤ pmax

i (3)

The aforementioned checks (Equations 2 & 3)
requires first unpacking the approximated data to
reconstruct the coordinates vai of the quantized vector.
The reconstruction requires a series of bitwise masking,
shifting and XOR operations that have a significant
CPU overhead. To address this issue, we develop a more
relaxed yet faster predicate which can quickly disqualify
non needed vector approximations. We call this
predicate “quick within-range”. The approximations
that pass this test have to be unpacked and checked
using Equation 2 & 3.
The quick within-range predicate is based on the

principle that the binary representations of all numbers
within a certain range, have a common prefix. Checking
a binary number c for a known prefix {pn, pn−1 . . . pk}
requires one bitwise AND (⊗) operation with a mask
m={1n, . . . 1k, 0 . . . 0} to isolate the most significant
bits of c and a comparison of the result to the value
p={pn, pn−1 . . . pk, 0 . . . 0}:

c⊗m = p (4)

If the Equation 4 holds true then Equation 5 is also true.
This means that the binary operation of Equation 4 is
equivalent to that of 5:

n
∑

i=k

pi2
i ≤ c ≤

n
∑

i=k

pi2
i +

k−1
∑

i=0

2i (5)

Any number within a range [a, b] has the same prefix
as the longest common binary prefix of a and b. In other
words, some of the most significant bits of any number
in that range are known. By applying this property
on the n inequalities of Equation 3, we construct n
bitmasks mi that isolate the common prefixes from the
boundaries of each interval. We combine these values in
a vector m=(m1, . . .mn) and by approximating vector
m we obtain a mask ma=approximate(m). When ma

is applied on an unpacked vector approximation, it

DiVA: Using Application-Specific Policies to “Dive” Into Vector Approximations 7

b8 b7 b8 b7 b8 b6 b5 b6 b7 b6 b4 b5 b5 b4 b3

b8 b1b2b7 b6 b5 b4 b3b8 b1b2b7 b6 b5 b4 b3 b8 b1b2b7 b6 b5 b4 b3 b8 b1b2b7 b6 b5 b4 b3

Root Approximation Approximation Level 3Approximation Level 2

Dimension 1 Dimension 2 Dimension 3

parent of parent of

FIGURE 2. A 3-D, 8 bit vector along with approximations for the root and two children nodes.

isolates the bits whose expected values are already
known. These bits are expected to have the same
values with qa=ma⊗ approximate(px), where px is one
of the vertices of the query area. Finally, any packed
approximation va can be checked against Equation 6
using only a bitwise AND followed by an equality
operation.

va ⊗ma = qa (6)

If Equation 6 is not true for a given vector
approximation, we can then rapidly conclude that the
vector in question does not overlap with the query area;
thus, it is excluded from further examination.
The effectiveness of the “quick within-range” predi-

cate depends on the number of common bits in the two
data points defining the query range. In a query range
with a mask of f bits turned on and data distributed
uniformly we expect to find vector approximations that
have to be unpacked with a probability of 1/2f .

4. APPLICATION–DRIVEN DIVA REORGA-
NIZATION

Statistics along with heuristics are commonly used to
pinpoint “hot” areas in search spaces [26, 27, 28]. In
practice however, index granularity and performance
of the corresponding structure are predominantly
affected by factors that become known at run-time.
These factors include dynamic characteristics exposed
by the application layer as well as features of the
underlying hardware. Hence, conventional approaches
that predominantly use data and query distributions
to identify hot-spots are not always effective [26, 27,
28]. As application requirements are impossible to
be known a-priori, we introduce the notion of user-
provided policies that help decide when and how to
re-organize DiVA. These policies are realized within
software components we call observers.
An observer monitors DiVA’s operation and inter-

cepts events that occur during query evaluation. Us-
ing this information, an observer helps realize a policy
to identify highly-contented sub-spaces and guide index
expansion and restructuring by providing “hints”. Fig-
ure 3 shows the interaction among observer, index and
application. Applications are expected to designate an
observer (and thus a refinement policy) that suits their

needs. We should indicate that DiVA can function un-
der the combined regime of multiple policies through
the simultaneous operation of multiple observers.
Observers implement an interface through which

DiVA can let them know about events occurring during
query evaluation. Events that get reported include:

a) start and end of query evaluation,
b) time when a node is accessed,
c) scan time of a record representing a cell,
d) number of approximations and data vectors

examined,
e) number of candidates identified during an a-file

scan and
f) final set of results.

All above events are accompanied by a session ID so
that statistics of different user queries can be readily
identified. A description of all events is provided in
Section 4.1 where we present DiVA’s range and k-NN
search algorithms.
As index refinement is deemed costly, we allow

the application to determine the most suitable period
during which DiVA can carry out its re-organization.
Once index refinement is triggered, the observer
identifies existing hot-spots thus far. DiVA tunes its
query performance so that traffic on such hot-spots can
be addressed.

Policy Stats

results

queries

hints events

DiVA Structure

A
pp

lic
at

io
n

Observer
refine/

signaling

FIGURE 3. Interaction of DiVA elements with application
layer.

The cost of sending/receiving events between DiVA
and an observer is the penalty incurred by a single
C++ function call. In general, we anticipate that an

8 K. Tsakalozos, S. Evangelatos, F. Psallidas, M. Vieira, V. Tsotras, A. Delis

observer will be mostly a light-weight process as it
intercepts and stores simple facts. Occasionally, when
an application necessitates DiVA’s re-structuring the
respective observer may have to carry out significant
processing to identify hot-spots. This lengthy
operational costs affects the time required to complete
the re-organization in question. As observers realize
application-specific policies for which DiVA remains
agnostic, accurate overhead estimations for the re-
structuring cannot be readily established. Anytime the
application seeks a new performance optimization, a
respective observer should be realized and register with
DiVA; as soon as the service of an observer is no longer
of value, the application may signal its termination
(Figure 3).
Below in section 4.1, we describe the search DiVA

algorithms along with the events occurring during query
evaluation. Section 4.2 outlines two low-level refinement
operations that heavily influence and assist towards an
effective query evaluation process.

4.1. Algorithms

DiVA supports the full-range of lookup operations
including exact, range and k-NN queries. We present
here the algorithm to insert a data point as well as the
range and k-NN search operations. The exact query
algorithm is similar to the data insertion.

Insertion: The insertion of a data vector, as presented
in Alg. 1, descends recursively into the hierarchical
structure until it finds the node where the vector
must be stored. Initially, the algorithm computes the
approximation of the new vector using the quantization
step designated for the node at hand. Subsequently,
the a-file is scanned for a match of the produced
approximation. This may result in three possible
outcomes: a) the approximation exists and pertinent
data vectors are stored in the current node, b) the
approximation exists but it corresponds to a child node
with higher index granularity and c) the approximation
does not exist in the a-file of the node examined. In the
first two cases, at least one data vector with the same
approximation has already been indexed. When the
approximation found corresponds to a list of records,
the new data vector has to be appended in the r-file
as a new record of the list at hand. This procedure,
denoted as “append” in line 7, ensures that the list
can be traversed by moving only forward in the r-file.
The latter results in reduced I/O seek overhead when
reading the list. When the approximation exists but
the corresponding record is pointing to a child, the
insertion progresses recursively in the child node (line
9). When an approximation is not found in the current
node, the data vector belongs to a cell which is currently
empty. Thus, the new vector has to be added as a new
entry in the node at hand. This requires appending the
produced approximation to the a-file and placing the
data vector to the corresponding position of the r-file.

Algorithm 1 Insertion
Input: n: Starting insertion node
v: Data vector to insert

1: va := approximate v using quantization of n
2: for approx ∈ { approximations in a-file of n} do

3: if approx = va then

4: pos := position of approx in a-file of n
5: rec := record in r-file of n at position pos
6: if rec is a data vector list then

7: append v in list of rec
8: else if rec points to child node with higher index granularity

then

9: call insert(rec.child, v)
10: end if

11: /*v is now inserted*/
12: return

13: end if

14: end for

15: /*approximation va not found in node n. Adding it.*/
16: append va in a-file of n
17: target := position of just appended va in a-file of n
18: if position target in r-file of n is occupied then

19: relocate record from position target to end of r-file of n
20: end if

21: store v at position target in r-file of n

When dealing with a large number of insertions,
Alg. 1 becomes inefficient as it has to traverse the
hierarchical structure for each insertion. We address
this issue by introducing a batch insertion procedure
that takes as input a list of data vectors and a node to
insert the vectors to. We produce approximations for all
data vectors and place them in a hash-table. For each
approximation of the a-file, we perform a look-up in the
hash-table and a potential match is handled identically
to the steps in lines 6 to 10 and 16 to 21 of Alg. 1. The
above approach greatly reduces cost as a large number
of vectors can be inserted within a node in a single pass
through its a-file.
Deleting a data vector has the same cost as the

insertion. However deleting data vectors cause the
respective approximations within the a-files to point
to empty records within the r-file. Such stray pointers
hamper the efficiency of the index. To recover from
this inefficient state we need a compaction phase that
would eliminate the approximations pointing to empty
space cells. The cost of this operation is significant and
depends on the fragmentation ratio present in the r-file.
Updating a single data vector calls for a deletion and a
re-insertion of the data vector as new.

Range Search: Alg. 2 performs the DiVA recursive
range search. There are three distinct phases when
searching a node: first, the a-file is scanned, to locate
candidate approximations (lines 3 to 9). Second, the
records corresponding to the candidate approximations
are examined (while block between lines 11 to 24). And
third, children nodes are visited (for loop in line 26).
This three-phase algorithm ensures that all a-files and
r-files involved are accessed one at a time and in a
record-number ascending order; this reduces the I/O
time by avoiding costly random seeks.
During the a-file scan phase, all space cells,

represented by each approximation, are checked so as
to identify those that are within the range in question;

DiVA: Using Application-Specific Policies to “Dive” Into Vector Approximations 9

Algorithm 2 RangeSearch
Input: r: Query range
n: Starting query node
sessionID: The application level ID associated with the submitted
query
Output: R: Set of query results

1: O ← ∅; C ← ∅
2: sendEvent(rangeStart, sessionID, n.id, r)
3: for i ∈ [1, len(n.approx)] do
4: va← n.approx[i]
5: if r.overlaps(va) then

6: contained← r.contains(va)
7: O ← O ∪ {(i, contained)}
8: end if

9: end for

10: sendEvent(approxScan, sessionID, n.id, O, len(n.approx))
11: while O 6= ∅ do

12: (i, contained)← min(O)
13: O ← O − {(i, contained)}
14: rec ← n.records[i]
15: sendEvent(recordRead, sessionID, n.id, i, rec)
16: if (rec.isVlist() and contained) or (rec.isVlist() and

r.contains(rec.vector)) then

17: R← R ∪ {rec.vector}
18: else if rec.isPointer() then

19: C ← C ∪ {(rec.child, contained)}
20: end if

21: if rec.isVlist() and rec.hasNext() then

22: O ← O ∪ {(rec.next, contained)}
23: end if

24: end while

25: sendEvent(recordScan, sessionID, n.id, C)
26: for all (child, contained) ∈ C do

27: if contained then

28: R← R ∪ allVectorsBeneath(child)
29: else

30: R← R ∪ rangeSearch(r, child)
31: end if

32: end for

33: sendEvent(rangeStop, sessionID, n.id, R)
34: return R

this check exploits the “quick within range” predicate of
Section 3.3. Candidate cells may either partially overlap
with the desired range or be entirely contained in the
query area. This information is exploited as follows:
data vectors belonging to a cell entirely contained in
the query area are added to the results without any
further check. Set O in Alg. 2 is populated with
the record numbers of candidate records that need to
be visited. Each record number is annotated with a
flag indicating if the corresponding approximation is
entirely contained within the query area. All candidate
records are accessed in a record-number ascending order
so that the r-file is scanned using only forward seeks.
That is achieved with the help of function min which
in every loop retrieves the record with lowest number
from set O. If the record examined is part of a data
vectors list with consecutive nodes, line 22 inserts in O
the record number of the next record in the list. This
is done in order to ensure that records are visited in
the correct order. Upon reading a record that carries a
data vector, the vector is checked to determine if it is
contained in the query area. This check is omitted if the
approximation cell is marked to be entirely contained
within the query area.
Records pointing to children nodes are kept in the

C–set and are recursively visited during the last phase
of the algorithm. In this phase, if a child node is
known –with the help of the flag contained– to lead to

data vectors residing in a cell entirely within the query
area, the subtree under that child node is added to the
results without performing any further checks. This is
accomplished through the allVectorsBeneath call. If the
approximation of the child node is partially within the
query area, data vectors under this node are examined
via a recursive call to the range search algorithm.
Observers are informed of the progress of a range

search through the sendEvent calls in lines 2, 10, 15,
25 and 33; the intercepted events indicate the start and
finish of each of the range search phases and also the
accessing of a record in the r-file. The first three input
parameters of each such call are:

– a string literal indicating the type of the message
sent,

– a session ID used to associate the query with an
application level activity, and

– the ID of the DiVA node that the algorithm
examines when the event is sent.

In addition to these three parameters, each sendEvent

informs the observer in use of several search internal
metrics that compute search efficiency statistics. More
specifically, the event in

I) line 2 provides the query,
II) line 10, dispatched after the first phase, includes

the approximations selected and the total amount
of approximations checked,

III) line 15 includes the record read and its position in
the r-file,

IV) line 25 indicates the end of the records scanning
phase and also includes the child nodes that we
have to visit, and finally,

V) line 33 marks the end of the query evaluation and
also includes a pointer to the results gathered.

k-NN Query: Alg. 3 and 4 collaboratively perform
the DiVA k-NN search starting from the root and
then progressing through the nodes recursively. The
results of the search, together with potential matching
record numbers, are kept in the heap-based container
H . Every visited node, is searched in two distinct
phases presented in Alg. 3 and Alg. 4 respectively. In
Alg. 3, the a-file of the node is scanned sequentially
to locate potential matching records. The recursive
nature of the algorithm necessitates the tagging of the
record numbers selected (recno) with the current node
identifier (node-id), so as to differentiate them from
record numbers referring to other nodes. Scanning
the a-file is interrupted if the approximation of the
cell where the query vector belongs is encountered
(line 7 Alg. 3). This cell is likely to contain the
nearest neighbors of the query q, thus we choose to
temporarily interrupt the approximations scanning and
proceed with examining the relevant data vectors by
issuing a call to Alg. 4. After this interruption, we
cancel the scanning of the rest of the approximations

10 K. Tsakalozos, S. Evangelatos, F. Psallidas, M. Vieira, V. Tsotras, A. Delis

in the a-file if we are certain that there are no data
vectors closer than the ones gathered so far. We
perform this check by firstly, making sure that we have
gathered at least k results and secondly, by comparing
the distance of the query vector to closest border of the
enclosing cell against the upper distance of the thus far
k-th nearest neighbor to the query vector. In Alg. 4,
the corresponding records are retrieved from the r-file,
starting from the ones with the greatest potential to be
closer to the query vector q. If a pointer to a child node
is found, a call to Alg. 3 is issued, using the child node
as the starting query node. When the Alg. 3 ends, H
contains the data vectors that form the results of the
query.
H holds two types of elements: a) pairs of the

type (recno, node-id), where recno is the identifier of
a potentially matching record and b) data vectors. For
every element in H , regardless its type, we compute
its upper and lower distance bound from the query
vector q. For a data vector, the distance bounds
coincide with the distance of the vector itself from q.
In the case of a matching approximation, the span
between lower and upper distance bound is the result of
the uncertainty introduced by the lossy approximation
process. Here the bounds computed are passed along
with the corresponding record number to the container
H in line 5 of Alg. 3.
The elements in H are kept in ascending order based

on their upper bound distance. Any element whose
lower distance bound is less than or equal to the upper
distance of the k-th element can be, or lead to, data
vectors among the k nearest neighbors. Thus, if xk is
the k-th element in H , all other items in the container
H must satisfy Equation 7:

lowerBound(x) ≤ upperBound(xk), ∀x ∈ H (7)

Additionally, any item encountered that satisfies
Equation 7, is inserted in H (line 6 Alg. 3 and line 20
Alg. 4). Note that, at any moment, more than k
elements may exist in H .
As k-NN progresses, element insertion and removal

may cause the k-th element in H to change, leading to
the gradual decrease of the upper distance bound of the
k-th element. Consequently, a number of elements, that
no longer satisfy Equation 7 must be dropped from H .
We refer to the process of dropping these elements as
the trim down operation. Overall, Alg. 3 and Alg. 4
seek to minimize the number of record reads by visiting
as early as possible, the areas closer to the query vector
q.
Similar to the events dispatched during the range

search, the events of the k-NN algorithm also include
a string literal, the application provided session ID and
the node ID we are examining. In particular:

• The events of lines 1 and 20 of Alg. 3 mark
the start and finish of the query evaluation, thus
they include the query details and the results.

Algorithm 3 k-NN Search
Input: k: Number of nearest neighbors
q: Query vector
H: Heap-like container of intermediate results
n: Node whose approximations to scan
sessionID: The application level ID associated with the submitted
query
Output: H: Heap-like container of results

1: sendEvent(knnStart, sessionID, n.id, q, k)
2: for va ∈ { approximations in a-file of n} do

3: if va.low(q) ≤ kthElement(H, k).up then

4: recno ← position of va in a-file of n
5: H.insert(recno, va.up(q), va.low(q), id of n)
6: H ← trimDown(H, k)
7: if va.low(q)= 0 then

8: H ← k-NN DataScan(k, q,H, n, sessionID)
9: qva ← approximate q using quantization of n
10: sendEvent(knnDepth, sessionID, n.id, recno, va, H)
11: if closestBorder(qva, q) > kthElement(H, k).up then

12: /*All k-NN were inside qva cell.*/
13: sendEvent(knnStopDepth, sessionID, n.id, H)
14: return H
15: end if

16: end if

17: end if

18: end for

19: H ← k-NN DataScan(k, q,H, n, sessionID)
20: sendEvent(knnStop, sessionID, n.id, H)
21: return H

Algorithm 4 k-NN DataScan
Input: k: Number of nearest neighbors
q: Query vector
H: Heap-like container of intermediate results
n: Node whose records to scan
sessionID: The application level ID associated with the submitted
query
Output: H: Heap-like container of results

1: sendEvent(dataScanStart, sessionID, n.id)
2: O ← entries of H with id equal to that of n
3: while O 6= ∅ do

4: (recno, low, up)← element in O with minimum recno
5: remove from H entry identified by recno and id of n
6: rec← record in r-file of n at position recno
7: sendEvent(recordRead, sessionID, n.id, rec)
8: if rec is part of a data vector list then

9: d← dist(q, vector in rec)
10: if d ≤ kthElement(H, k).up then

11: H.insert(rec.vector, d)
12: end if

13: next← position of the next record in the data list of rec
14: if next > recno then

15: H.insert(next, up, low, n.id)
16: end if

17: else if rec points to child node with higher index granularity
then

18: H ← k-NN Search(k, q,H, rec.child)
19: end if

20: H ← trimDown(H,k)
21: O ← entries of H with id equal to that of n
22: end while

23: sendEvent(dataScanStop, sessionID, n.id, H)
24: return H

As our search performs a depth first search in
cells containing the query vector, we provide
two additional events to inform observers of such
activity.

• Line 10 of Alg. 3 sends an event indicating that
a “dive” is performed and we also mark the
approximation (cell) that caused the search in
depth. In case this activity yields all k-nearest
neighbors, we inform a pertinent observer of the
final results with the event in line 13.

• In Alg. 4, we have two events that mark the start
and finish of the data scan (lines 1 and 23) and

DiVA: Using Application-Specific Policies to “Dive” Into Vector Approximations 11

an event triggered each time we access a record
(line 7).

The computational complexity of the k-NN search
algorithm is affected by the overhead added from
observers processing the events. However, we can
estimate the complexity when no observers are present.
Given that a) the average number of approximations
in a node is n, b) the average number of candidate
records to be checked is m, c) the average number of
branches to child nodes (fan-out) is c, d) the probability
of ceasing the sequential scan of a node due to a
depth first search is p, and e) the cost of using the
heap H is log(k) as we expect it to host k elements,
the computational complexity of the k-NN search is as
follows: In each node we visit n(1− p) approximations
and m(1− p) candidate records. The cost of placing all
approximations and records in the heap is (n+m)log(k);
this is the cost of visiting a single node. To find
the average number of nodes we first compute the
probability of a record pointing to a child node. This
probability is c/n as all approximations are n and the
number of pointers to child nodes is c. In each DiVA
node, we examine m(1 − p) candidate records from
which (c/n)m(1 − p) are, on average, pointers to child
nodes. Therefore, the overall complexity is:

O(c
m(1 − p)

n
(m+ n)(1− p)log(k)) (8)

The above complexity analysis shows how we can
improve the effectiveness of DiVA’s search capabilities.
First, we should try to increase probability p so as to
perform depth first searches on hot areas. Second, keep
c low by adding additional nodes only for space areas
we visit frequently.

4.2. Restructuring Operations for DiVA

DiVA provides two low-level operations that help
transform its structure and so assist in a more efficient
processing of queries:

1. adding a new node: new nodes enhance the
indexing granularity of hot space areas. Space
areas correspond to approximations stored in
DiVA’s a-files. These approximations of hot
areas must be specified in order to increase
the index granularity of the respective hot area.
Furthermore, the approximation must point to a
record (inside the r-file) that is a list of data
vectors. This list will be erased and all its data
vectors will be placed in the new node. The
record that was pointing to the list of data vectors
will be updated to point to the newly created
node. Building the new node requires setting the
granularity of the index. This translates to the
quantization step (bits per dimension) that will
be used to build the new approximations. Both
the approximation -corresponding to the hot-spot-

and the quantization step of the new node have to
be specified by the application-designated observer
(discussed in the next Section).

2. scan first hot-spot areas: to do so, the approxima-
tions representing hot-spot cells must be moved to-
wards the beginning of the a-file. The performance
gain from this reordering stems from the fact that
DiVA carries out a depth-first search when it en-
counters the cell where the query vector belongs
to (line 7 Alg. 3). Placing hot cell approximations
near the beginning of the a-file causes these hot-
spots to be searched first, resulting in the quick
location of the results or a rapid decrease of the
search radius in k-NN queries. With this opera-
tion, we improve the probability p in Equation 8.
In Figure 4, the length of the dashed-arrow corre-
sponds to the number of approximations scanned.
When hot areas are scanned earlier, DiVA may
even skip searching the remainder of the a-file (line
11 Alg. 3).

a−file
r−file

Original placement of approximations

Parent Node

r−file
a−file

Child Node
With Results

Child Node
With Results

After moving ’hot’ approximations forward

Parent Node

FIGURE 4. Moving the cell approximation of the query
vector closer to the beginning of the a-file helps avoid long
sequences of I/Os (as shown in the original placement).

Both of the above operations result into structural
changes. In the case of a new node addition we need
to compute the approximations of the data points in
the new node. When optimizing for “hot” areas we
need to update the data layout. The performance
penalty for such operations may be significant and
will affect not only the index but the operation of
the system serving the end-user applications as well.
The structure optimizations should be triggered when
the application is idle or willing to pay the penalty
incurred. Specifying the frequency of triggering such
restructuring operations is out of the scope of this
manuscript, as this tightly relates to the needs of each
specific application.

5. DIVA APPLICATION-PROVIDED RE-
FINEMENT POLICIES

In this section, we present two application-provided
policies that seek to optimize diverse aspects in DiVA’s
operation: the first policy reduces I/O overheads and
offers wall-time results that are competitive if compared
with those obtained from conventional indexing
approaches [26, 15, 22, 28]. The second policy favors

12 K. Tsakalozos, S. Evangelatos, F. Psallidas, M. Vieira, V. Tsotras, A. Delis

queries of specific cohorts of users by appropriately
exploiting respective user-IDs. Policies can be
developed around the optimization of diverse aspects
of the underlying storage management/medium.

5.1. Policy 1: Minimize Turnaround Time
(MTT)

In its operation, MTT takes into account query
workloads, data distribution, as well as data access and
processing times; the latter are exclusively computer-
system-specific. The observer that implements MTT
produces the hot-spots to be further indexed as well
as the index granularity each of the new nodes should
display.

Identifying hot-spots: A hot-spot corresponds to
a list of records whose further indexing may reap
performance benefits. Frequently-accessed lists are
promising such candidates and can be selected based on
the query-workloads they serve. Data distribution and
access-delays are used to rank lists according to their
indexing prospect and in doing so, MTT evaluates a
score for each such list of records; among those lists, the
one giving the highest score is selected for expansion.
This Score is projected as the difference between future
(Future) and current (Current) processing costs and/or
overheads incurred by operations taking place within
the list of records in question:

Score = Current − Future (9)

Table 1 shows the statistics collected during normal
DiVA operation through the respective emitted events.
these statistics are used in the evaluation of Score (9)
The observer measures the average time R required
to access and process a single record. Similarly, we
obtain the average time s expended in dealing with
a single approximation as well as the initialization
cost o required for opening files hosting DiVA nodes.
R, s and o capture the I/O overhead and processing
times required by underlying computing system DiVA
operates on. Three more statistics, l, h and qs, are
maintained on a per-record-list basis. A list containing
l records is scanned during the evaluation of qs queries.
The total number of records of the list at hand that
were part of the result in those qs queries is denoted
as h (hits). In fact, we maintain very few statistics as
we are only concerned about lists of records that are
actually involved in serving query workload(s). Out of
these lists, we do not consider at all those having a
single data vector as any attempt for further indexing
would incur an overhead higher than reading the vector
itself. Thus, sparse data generate practically very few
statistics whereas clustered data require statistics only
for the cells enclosing a cluster. In what follows, we
consider only a single records list and so the statistics
correspond to the record list at hand.
Using the statistics of Table 1, the current list-scan

cost for all queries qs is:

[!t]

TABLE 1. Statistics maintained by the MTT Observer.
R Cost of accessing and processing a data record

s Cost of accessing and processing an approximation

l Length of records list

h Result hits in current records list

qs Number of queries accessing current records list

o Average initialization cost of node access

Current = qs ×R× l (10)

The estimation of the total future cost is:

Future = qs × (o+Approx + ProjReads) (11)

where o indicates the average delays of initializing
internal structures for accessing a node, Approx is
the expected time expended for scanning through the
approximations that will be created and ProjReads is
the expected delay in reading the records of the new
node.
The time required for scanning the approximations

Approx is proportional to the number of new
approximations as all of them are typically examined
during an a-file scan. Under the assumption that in the
new node each data vector will have a corresponding
approximation, we can estimate the delays entailed in
accessing and manipulating them (Equation 12).

Approx = s× l (12)

ProjReads is an estimate of the per query delay
entailed in accessing the data vectors of the new node.
The expected reads consist of: a) the data vectors that
will be part of the results (as estimated from previous
query evaluations, h) and b) some additional vectors
that will be read but not match the query (misses),
denoted as m in Equation 13. The non-matching
vectors (m) are estimated as follows: the hits of each
query are assumed to be inside an n-dimensional cube.
Any time a new node appears, it partitions the sub-
space containing this n-cube in finer grained cells. The
extra m elements read but dropped from the results are
expected to be in cells that intersect with the surface
of the n-cube. This is depicted in a 2-D example in
Figure 5.
Considering the above, the per-query expected time

cost for reading records is:

ProjReads = R× (h+m)/qs (13)

Providing an exact estimate of m would require us to
access all non-matching records within the sub-space
under examination. This is a costly operation as it
would have to be repeated for every list of records
whose score needs to be computed. To ameliorate this

DiVA: Using Application-Specific Policies to “Dive” Into Vector Approximations 13

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��
��
��
��

Cells disqualified
during search

Areas with misses

Query area

FIGURE 5. A 2-D area inside which a new node
introduces partitions. Results of a query are enclosed inside
the inner dark square.

cost our MTT-policy assumes that the data vectors
located within the sub-space we examine are uniformly
distributed. Under this assumption we are able to
swiftly estimate m for all candidate record lists. The
uniform data assumption is lifted in a later stage where
we have identified the list with the highest score and
we need to determine the bits-per-dimension used in
the creation of the vector approximations. However, for
now and under the uniformity assumption, we estimate
the density D of data vectors within each cell as:

D =
l

2vaBits
(14)

where vaBits is the bit-length of each approximation in
the new node.
If B is the number of cells that intersect with the

surface of the n-cube enclosing the results, we expect on
average only half the volume of these B cells to reside
within the n-cube. Consequently, B×D

2 vectors residing
in the aforementioned B cells will not match the query.
So, Equation 13 becomes:

ProjReads = R× (h/qs +B ×D/2) (15)

The edge e of the n-cube, can be expressed in terms
of cells if we consider the n-cube’s volume V to be
proportional to the number of hits per query:

V = en = h/(qs ×D) ⇒ e = n

√

h/(qs ×D) (16)

Using e, we are able to estimate B, since B is essentially
equal to the surface of the n-cube:

B = 2nen−1 = 2n(
h

qs ×D
)

n−1

n (17)

With the help of Equations 10, 11, 12, 15, 17 the Score
of Equation 9 is computed for each vector list; the
one with the overall highest positive score is selected
for further indexing; negative scores trigger no further
action.

Setting the quantization step: As soon as the
highest scoring record list is identified, MTT determines
the per-dimension quantization step. The number of
bits to be used for the approximations of the new node
are dynamically set according to the standard deviation
and dimensionality of the data being indexed. More

bits are used for high dimensional spaces with vectors
displaying low deviation. The bit allocation among
dimensions follows a heuristic proposed in quantization
theory that is also used in [22]. More bits are assigned
to dimensions over which data have greater variance
so as to maximize the efficiency of the quantized
approximations. Alg. 5 outlines this heuristic. In
each step, we assign one bit to the dimension with the
highest deviation and before assigning the next bit, this
deviation is halved. We derive σ by scanning through all
data vectors in the selected record list. At this stage, we
are only interested in the cost of accessing all elements
of one record list.

Algorithm 5 Deciding the per-dimension bits alloca-
tion
Input: dims: Number of dimensions,
B: Total number of bits,
σi: Standard deviation of data in dimension i
Output: bi: No. of bits assigned to dimension i

1: for i ∈ dims do

2: bi ← 0
3: end for

4: for k ∈ B do

5: z ← arg max(σi)
6: bz ← bz + 1; σz ← σz/2
7: end for

5.2. Policy 2: Favoring Groups of Users (FGU)

With FGU, we show how the separation between
the structure’s re-organization policy from the rest of
DiVA’s operations can serve application-specific needs.
Often applications need to adjust their performance
based on criteria that cannot be predicted in the context
of an indexing method. A typical such example is
applications that differentiate the quality of service
delivered based on the privileges specific classes of users
have.
An observer implementing FGU reduces the I/O

overhead encountered in queries of specific user groups
by exploiting the “scan first” low-level operation of
DiVA. With the “scan first”, hot cells created by
queries of those specific groups are moved towards the
beginning of the search operations (Figure 4). As DiVA
carries out a depth-first node traversal when it comes
across the cell the query-vector belongs to (Alg. 3), it
would be beneficial for that cell to be found in the early
stages of scanning the a-file of the root. In effect, the
root serves as a space partitioning directory through
which queries are dispatched to proper subspaces. FGU
rearranges the cells of the DiVA’s root through suitable
“scan first” operations.
To realize FGU operation, we need to store the

access frequency (f) of each record (recno) of the
root node that triggers a depth-first traversal. The
access frequency is stored in a per user-group (groupID)
fashion. During normal operation the FGU-observer
maintains a list of key-value pairs of the following form:

14 K. Tsakalozos, S. Evangelatos, F. Psallidas, M. Vieira, V. Tsotras, A. Delis

< key, value > = < (groupID, recno), f >

The FGU-observer exploits the session ID of Algs. 2
and 3 to differentiate DiVA’s record access statistics
among separate user groups. This is achieved by using
the groupID as session ID.
As soon as the application decides on refining DiVA

(e.g., when load is low), all records of DiVA’s root node
are ranked. The rank of a record i is computed by the
following summation:

Ranki =
∑

g ∈ groupID

(wg ∗ f{g,i}),

The weight wg assigned to the group g is application
specific and is used to favor important user-groups over
others. Based on the above ranking the FGU -based
observer designates a favorable sequence of records in
DiVA’s root node. This sequence is applied through a
series of “scan first” operations that the policy instructs
DiVA to follow.

6. EXPERIMENTAL EVALUATION

We first examine DiVA in isolation so as to determine
the impact of the encoding used in the approximations
as well as DiVA’s effectiveness when a node is added
in the structure. We then compare DiVA against
other multidimensional indexing methods. In order to
fairly compare such methods with DiVA, we deploy
the MTT -observer that attempts to reduce the overall
I/O volume fetched, as is the case with most indexing
methods. We use both synthetic and real data-sets
while experimenting with our prototype; real data-sets
consist of feature vectors from an image database [52].
Using the real data-sets we show how the second FGU -
observer enhances query performance of specific, user
targeted, space areas.
When k-NN queries are involved, we evaluate DiVA

against Sequential Scan, the VA-file [15], the A-tree [26],
GC -tree [28], and an index we call VApfile. VApfile
is our implementation of the most important features
suggested by the VA+file [22], namely the Karhunen-
Loeve Transformations (KLT) and a dynamic bits-
per-dimension allocation scheme. Both these features
enhance the effectiveness of the VA-file when correlated
data vectors are present in the data distribution.
However, applying the transformation in the entire data
space results in approximate query results. With the
exception of the A-tree, we have implemented in C++
all indexing methods used in our experimentation. The
A-tree is implemented in C and its source code has been
made publicly available [53].
In all our evaluation scenarios, data points are vectors

of 4-byte unsigned integers with an extent up to 232.
Unless otherwise stated, the VA-file and VApfile are set
to create files that are 12.5% the size of the original

 0

 50

 100

 150

 200

 250

 300

 350

 400

 50 100 150 200 250 300

T
im

e
(m

se
c)

Thousands of data vectors

’Quick’ within range
’Slow’ within range

FIGURE 6. Performance gain provided by the “quick
within range” operation used in DiVA.

data, a value commonly used in VA-files [15]. 4 bits per
dimension are also used for the root node of DiVA. The
A-tree uses the default value of 8 KBytes per data page.
To eliminate caching effects and accurately measure

the impact of I/O, we flush caches prior to posting
each query. Cached data affect the adaptation policy of
DiVA in the following way: in low-dimensional spaces
(less than 32) unpacking approximations requires more
CPU processing than data vectors manipulation. So if
both data and approximations reside in memory, DiVA
is more conservative in producing new nodes. On the
other hand, having data residing on disk favors node
creation. In this case, the I/O cost for accessing data
vectors by far exceeds that of accessing approximations,
therefore DiVA introduces more approximations in an
attempt to trade CPU processing time for reduced I/O.
We contacted all experiments on a 3GHz Pentium 4

machine with 2Giga Bytes of main memory running
Linux v.2.6.27.

6.1. Evaluating DiVA in Isolation

“Quick Within Range” predicate: As we discussed
in Section 3.2, DiVA greatly reduces CPU overhead
by quickly identifying that a vector approximation is
not within a range through a few binary operations.
In Figure 6, we measured the impact of the “quick
within range” predicate on the CPU processing time.
During this evaluation, we perform a range query in
a 32-dimensional uniformly populated space and vary
the amount of indexed vectors. As shown, without the
“quick within range” predicate the required CPU time
for the evaluation of a range query is increased by a
factor of 6.

New node addition: DiVA exploits the existence of
hot areas. By selectively adding new nodes, it refines
its operational granularity and “dives” into hot regions
in the search space. To show how DiVA’s structure is
progressively refined with additional nodes as suggested
by the MTT -observer, we force DiVA to create more
nodes than it would normally do by restricting the
quantization step. In particular, DiVA is requested not

DiVA: Using Application-Specific Policies to “Dive” Into Vector Approximations 15

to exceed the limit of 32 bits for approximations stored
in child nodes, while the root node approximations use
8 bits per dimension. Thus, in the used 32-dimensional
space, the root node approximations are 32 bytes long.
This space is populated by a single cluster; it is on
this cluster that we place all queries. The clustered
data follow a Gaussian distribution, so by changing
its standard deviation we show how DiVA reacts to
different levels of data density. Data with higher
variance require more nodes to be effectively indexed.
Figure 7 depicts how DiVA’s behavior is affected by

the addition of new nodes; the graphs show that both
CPU processing time and I/O volume are dramatically
reduced as more nodes are added. We attribute this
to the enhanced indexing provided by the additional
nodes that vastly lower the number of data vectors
read and processed. For both CPU (Figure 7(a)) and
I/O (Figure 7(b)), less than 3 nodes result into no
performance gain, since after each node creation the
entire cluster is still stored in a single record list of
the leaf node. The number of nodes needed to reduce
the I/O and CPU cost of the query is relative to
the data density, as shown by the distributions with
the three standard deviations (500, 1000 and 2000).
After creating a certain number of nodes, no further
performance gain is expected and thus, DiVA refrains
from creating more nodes.

6.2. Synthetic Dataset

Here, we create a synthetic dataset and measure the I/O
performance of DiVA and other indexing methods while
varying the following properties: a) dimensionality,
b) volume of indexed data, and c) percentage of
clustered data vectors. We employ the MTT policy
to drive DiVA’s expansion.
The space we use as the base case consists of 200,000

data vectors featuring 32 dimensions. Out of the
200,000 vectors 50,000 are uniformly distributed and
the rest are grouped into 30 clusters. Members of each
cluster follow the Gaussian distribution with σ = 106.
With this σ value we seek to produce clusters that will
be indexed using a gradually increasing quantization
step. One tenth of the clusters is considered hot and is
targeted by queries. The query load consists of k-NN
queries with k=100.

Dimensionality: we vary the data dimensionality
from 4 to 96 and measure how DiVA fares in terms of
I/O performance (Figure 8). Increasing dimensionality
results in larger data vectors, thus the total size of
the indexed data increases. This trend is common
for all indexing methods of Figure 8. For GC -tree
the trend is harder to identify. Query evaluation in
the GC -tree includes a phase of scanning all data
approximations that yields candidate data vectors. The
approximations have a fixed size regardless the number
of dimensions. In this experiment this constant cost
approximations scanning phase dominates the GC -tree

I/O. DiVA performs grouping of multiple vectors under
a single approximation, thus it manages to surpass
the VA-file performance. With respect to the A-tree
and while experimenting with its publicly available
implementation [53], we were able to evaluate its
performance only up to 56 dimensions. As shown,
DiVA exhibits a clear advantage in the entire range of
dimensions tested.

Volume of vectors: more data vectors force DiVA
to examine more approximations on one hand; on
the other, tree-based indexes try to partition space so
that less data are examined. Therefore, at least in
low-dimensional spaces, they are less influenced by an
increase in data volume. DiVA does combine features
from both sequential search and tree-based access
methods. In this evaluation, we increase the amount of
indexed data in such a way that the proportion between
clustered and uniformly distributed vectors stays the
same. We also keep the number of clusters in space
fixed. Figure 9(a) shows the I/O load for each index in
this evaluation scenario. Thanks to their hierarchical
structure, both DiVA and the A-tree are able to skip
examining large volumes of data. Hence, they are less
affected by increase in data volumes, compared to the
rest of the tested indexes.

 10

 100

 1000

 10000

 100000

8 16 24 32 40 48 56 64 72 80 88 96

V
ol

um
e

(K
B

yt
es

)

Dimensions

DiVA
VA-file
VApfile

Seq. Scan
A-tree

GC-tree

FIGURE 8. Dimensionality impact on indexing methods.

Clustered vectors: VA-file is known to perform
well when there are no clustered data [15]. DiVA
on the other hand, employs its hierarchical structure
to efficiently index both uniform and clustered data.
Our approach is able to “dive in” to areas of interest
and effectively respond to queries targeting cells with
increased index granularity. Here, we vary the
percentage of the clustered data while keeping the total
number of indexed vectors fixed to 200,000.
Figure 9(b) presents the I/O load performance of all

indexes. As data clustering increases, the VA-file is
unable to exploit its approximations and thus, more
data vectors have to be examined. The KLT applied by
the VApfile provides an advantage over the VA-file as
the cluster size increases. By having VA-file like nodes,
DiVA performs similarly to the VA-file in areas with
uniformly distributed data where no further indexing

16 K. Tsakalozos, S. Evangelatos, F. Psallidas, M. Vieira, V. Tsotras, A. Delis

 0

 100

 200

 300

 400

 500

 5 10 15 20 25

T
im

e
(m

se
c)

Number of child nodes

Std. Dev. 500
Std. Dev. 1000
Std. Dev. 2000

0

2000

4000

6000

8000

10000

12000

14000

 5 10 15 20 25

V
ol

um
e

(K
B

yt
es

)

Number of child nodes

Std. Dev. 500
Std. Dev. 1000
Std. Dev. 2000

(a) Processing time (b) I/O

FIGURE 7. Performance for clustered data when increasing the number of nodes in DiVA.

is desired. Under uniformly distributed data, the A-
tree performs better than the VA-file but worse than
DiVA. The A-tree produces 2.18 times more I/O than
DiVA when only 15% of data vectors are clustered. As
more data are moved to the clusters, DiVA extends its
performance lead. In a setting of 90% clustered vectors,
the A-tree reads 3.3 times more bytes than DiVA.

6.3. Image Feature Vectors

The real dataset used during our evaluation consists
of 200, 000 feature vectors extracted from images using
methods similar to [54]. The dimensionality of this
dataset can be adjusted by altering the number of
extracted features. The vector distribution produced
clearly favors the VA-file: for each data vector a unique
approximation is created using the 4 most significant
bits from each dimension. In other words, the majority
of space cells produced by the VA-file contain a single
data vector. Thus, it makes little difference if KLT
is used to treat data correlation by the VApfile. Yet,
as shown in Figure 10(a), there is still room for
improvement using DiVA. The VA-file is set to use
4 bits per dimensions and thus produce approximations
12,5% the size of the data vectors (that use 32 bit per
dimensions). A VA-file of around 10% the size of the
dataset is shown to be most efficient. For DiVA, we
assign only 2 bits per dimension for the approximations
of the root node and then we allow the Minimize
Turnaround Time (MTT) policy to further refine the
index operation by reserving more bits for each new
node. DiVA outperforms the VA-file based indexes by
as much as 64% for a query load consisting of range
queries. This is because with each new node DiVA
increases the number of approximations read while at
the same time reduces the number of fetched records
that contain feature vectors (Figure 10(b)). Due to
the fact that approximations are shorter than feature
vectors and are hierarchically structured, the overhead
sustained by introducing more approximations adds
only 17% to the overall I/O overhead. At the same
time, the fewer record reads reduce the overall I/O by

41% for DiVA.

6.4. Favoring Specific Users

The real data-set is a sparsely populated space and the
distance among data vectors increases even further as
dimensionality increases. This is in favor of the VA-
file and the GC -tree. In the VA-file, each data vector
features a unique approximation while the GC -tree
uses approximations of fixed size regardless the space
dimension. In sparse spaces such as the one we have for
the real data-set, the bounding area specified by GC -
tree’s LPC approximations are enough to effectively
locate a data vector. Therefore, the I/O of the GC -
tree remains unaffected by space dimensionality as
it is dominated by the scan of the fixed-sized LPC
approximations.
Using the Favoring Groups of Users (FGU) observer,

we are able to further improve the performance of
DiVA when accessing specific hot areas. Unlike the
VA-file and the GC -tree, DiVA may skip scanning
approximations in case the requested nearest-neighbors
have already been encountered (Alg. 3). For this to
happen, all vectors returned by a user query have to be
contained in a single cell. This can be easily attained
either by using larger cells – especially in the root node
– or by limiting the number of nearest neighbors a user
can retrieve form a query. Here, we elect to present the
outcome of our evaluation when using k–NN queries
with k=1 (i.e., more focused). This type of queries
are most effectively handled by the GC -tree especially
as dimensionality increases and space becomes sparsely
populated. We also keep the root node set in a way
favorable to the VA-file (i.e., size of approximations:
4 bits per dimension).
For this experiment we assume that all user groups

are of equal importance thus all groups are assigned
a weight (wg) set to 1. Furthermore, user groups are
interested in separate space areas selected randomly at
the beginning of our evaluation. We use the FGU -
observer to have DiVA monitor the query areas of
apparent interest to user(s) and then we re-structure

DiVA: Using Application-Specific Policies to “Dive” Into Vector Approximations 17

 10

 100

 1000

 10000

50 100 150 200 250 300

V
ol

um
e

(K
B

yt
es

)

Thousands of data vectors

DiVA
VA-file
VApfile

Seq. Scan
A-tree

GC-tree
 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90

V
ol

um
e

(K
B

yt
es

)

Percentage of clustered data vectors

DiVA
VA-file
VApfile

Seq. Scan
A-tree

GC-tree

(a) Processing time (b) I/O

FIGURE 9. Performance of indexing methods for synthetic datasets.

 100

 1000

 10000

 100000

14 28 42 56 70 84 98

V
ol

um
e

(K
B

yt
es

)

Dimensions

DiVA
VA-file
VApfile

Seq. Scan
 0

 200

 400

 600

 800

 1000

1 3 5 10 20 30 40 60 80 110 Max

V
ol

um
e

(K
B

yt
es

)

Nodes

Records
Approximations

(a) I/O vs. dimensions (b) I/O vs. dataset size

FIGURE 10. Range query evaluation of DiVA using real dataset.

DiVA so as to optimize its performance for these specific
regions. Figure 11(a) shows the I/O performance
of the A-tree, the VApfile, the VA-file, the GC -tree
and DiVA as the number of dimensions increases.
DiVA configuration presented in Figure 11(b) display
different levels of refinement. “DiVA Orig.” marks
the performance we get when no refinement “scan
first” operations are applied at all, while “DiVA
100%” designates the performance rates we obtain after
refining the index using the FGU policy for all query
regions. The “DiVA Orig.” configuration is able to
outperform the VA-file, since it has the advantage of
scanning only a portion of the approximations. The
performance of “DiVA Orig.” is matched by the GC -
tree for high dimensions in the range we examine (over
85 dimensions).

In the “DiVA 100%” configuration, a query evalua-
tion involves reading only the first few approximations
of the root node’s a-file. One of these approximations
belongs to the vector we are querying for. Figure 11(b)
shows the I/O overhead involved in reading approxi-
mations and records under different refinement levels.
Here, we show the collective overhead involved in 10
different random k–NN queries on a 70-dimensional
real feature vector data-set. As the refinement level
increases, the overhead involved in accessing approxi-

mations decreases rapidly while the record reads stay
the same. This happens as we gradually place hot ap-
proximations towards the beginning of the root’s a-file
while having almost on average one approximation per
record.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we propose DiVA that not only
performs efficient range and k-NN queries in high-
dimensional clustered data spaces but can also
effectively deal with workloads of fine-granularity
queries that present spatial locality. Although DiVA
maintains a hierarchical structure, its node organization
heavily borrows from VA-file. Every DiVA node uses
approximated data to access data vectors within an n-
dimensional sub-space, while the hierarchical structure
provides increasing levels of index detail. In this
manner, DiVA offers fast navigation (“diving”) to query
regions of interest and the structure of its nodes helps
efficiently handle high-dimensional vectors.
External-to-index software components, termed ob-

servers, enforce application specific policies when it
comes to guiding the expansion and restructure of
DiVA. Such application-originated policies that help
drive the re-organization of DiVA may take into ac-
count not only data and query distributions but also

18 K. Tsakalozos, S. Evangelatos, F. Psallidas, M. Vieira, V. Tsotras, A. Delis

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

14 28 42 56 70 84 98

V
ol

um
e

(K
B

yt
es

)

Dimensions

A-tree
VA-file
VApfile

DiVA Orig.
DiVA 30%
DiVA 50%
DiVA 70%

DiVA 100%
GC-tree

(a) I/O vs. % of refined user queries.

 1

 10

 100

 1000

 10000

 100000

 1e+06

0% 30% 50% 70% 100%

V
ol

um
e

(K
B

yt
es

)

Percentage of user queries optimized

Approximations I/O
Records I/O

(b) Approximation and record I/O.

FIGURE 11. High level refinement policy. Favoring specific user groups.

characteristics of the underlying computing system. We
discuss two such policies that we have incorporated into
our detailed prototype. Experimentation with both real
and synthetic datasets shows that DiVA produces sig-
nificant improvements compared to competing methods
such as the VA-file, VA+-file, the GC-tree and the A-
tree.
Our future work plans include: a) the support

for asynchronous messaging between DiVA and the
observer(s), b) the compaction of the records’ lists
stored in the r-file so as to reduce the disk seek
operations, and c) the use of advanced statistical models
in determining the optimal index granularity of hot
space areas.

ACKNOWLEDGEMENTS

We wish to thank the reviewers of this article for their
many insightful and constructive comments. This work
has been partially supported by the D4Science II and
iMarine EU FP7 projects.

REFERENCES

[1] Szalay, A. S., Gray, J., Thakar, A., Kunszt, P. Z.,
Malik, T., Raddick, J., Stoughton, C., and vandenBerg,
J. (2002) The SDSS SkyServer - Public Access to
the Sloan Digital Sky Server Data. Proc. of ACM
SIGMOD, Madison, WI, June.

[2] Batko, M., Falchi, F., Lucchese, C., Novak, D., Perego,
R., Rabitti, F., Sedmidubsky, J., and Zezula, P. (2010)
Building a Web-scale Image Similarity Search System.
Multimedia Tools and Applications, 47, 599–629.

[3] Schaefer, G. (2010) A Next Generation Browsing
Environment for Large Image Repositories. Multimedia
Tools and Applications, 47, 105–120.

[4] Akgl, C., Rubin, D., Napel, S., Beaulieu, C.,
Greenspan, H., and Acar, B. (2011) Content-Based
Image Retrieval in Radiology: Current Status and
Future Directions. Journal of Digital Imaging, 24, 208–
222.

[5] Valle, E., Cord, M., and Philipp-Foliguet, S.
(2008) High-Dimensional Descriptor Indexing for Large
Multimedia Databases. Proc. of the ACM Conf.
on Information and Knowledge Management (CIKM),
Napa Valley, CA, pp. 739–748.

[6] Huang, Z., Shen, H., Liu, J., and Zhou, X. (2011)
Effective Data Co-Reduction for Multimedia Similarity
Search. Proc. of the ACM SIGMOD Int’l Conf. on
Management of Data, Athens, Greece, June, pp. 1021–
1032.

[7] Zhou, X., Zhou, X., Chen, L., and Bouguettaya,
A. (2012) Efficient Subsequence Matching over Large
Video Databases. The VLDB Journal, 21, 489–508.

[8] Katayama, N. and Satoh, S. (1997) The SR-tree:
An Index Structure for High-Dimensional Nearest
Neighbor Queries. Proc. of ACM SIGMOD, Tucson,
Arizona, USA, May. ACM Press.

[9] Sakurai, Y., Yoshikawa, M., Uemura, S., and Kojima,
H. (2002) Spatial indexing of high-dimensional data
based on relative approximation. The VLDB Journal,
11, 93–108.

[10] Tao, Y., Yi, K., Sheng, C., and Kalnis, P. (2010)
Efficient and Accurate Nearest Neighbor and Closest
Pair Search in High Dimensional Space. ACM Trans.
Database Syst., 35, 20:1–20:46.

[11] Yao, B., Li, F., and Kumar, P. (2010) K Nearest
Neighbor Queries and KNN-Joins in Large Relational
Databases (Almost) for Free. Proc. of the IEEE
Int’l Conf. on Data Engineering (ICDE), Long Beach,
California, March, pp. 4–15.

[12] Malik, R., Kim, S., Jin, X., Ramachandran, C., Han,
J., Gupta, I., and Nahrstedt, K. (2009) MLR-Index: An
Index Structure for Fast and Scalable Similarity Search
in High Dimensions. Proc. of the Int’l Conf. Scientific
and Statistical Database Management (SSDBM), New
Orleans, Louisiana, June, pp. 167–184.

[13] Zhang, Z., Ooi, B. C., Parthasarathy, S., and Tung, A.
K. H. (2009) Similarity Search on Bregman Divergence:
Towards Non-Metric Indexing. Proc. VLDB Endow., 2,
13–24.

[14] Zhang, D., Agrawal, D., Chen, G., and Tung, A. (2011)
HashFile: An efficient index structure for multimedia

DiVA: Using Application-Specific Policies to “Dive” Into Vector Approximations 19

data. Proc. of IEEE ICDE Conf., Hannover, Germany,
April, pp. 1103–1114.

[15] Weber, R., Schek, H.-J., and Blott, S. (1998)
A Quantitative Analysis and Performance Study
for Similarity-Search Methods in High-Dimensional
Spaces. Proc. of the Int’l Conf. on Very Large Data
Bases (VLDB), New York, NY, August, pp. 194–205.

[16] Beyer, K. S., Goldstein, J., Ramakrishnan, R.,
and Shaft, U. (1999) When Is ”Nearest Neighbor”
Meaningful? Proc. of the Int’l Conf. on Database
Theory (ICDT), pp. 217–235. Springer-Verlag.

[17] Indyk, P. and Motwani, R. (1998) Approximate
Nearest Neighbors: Towards Removing the Curse of
Dimensionality. 13th Annual ACM Symposium on
Theory of Computing (STOC), Dallas, Texas, May, pp.
604–613.

[18] Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., and
El Abbadi, A. (2001) Approximate Nearest Neighbor
Searching in Multimedia Databases. Proc. of the IEEE
Int’l Conf. on Data Engineering (ICDE), Heidelberg,
Germany, April, pp. 503–511.

[19] Shen, H. T., Zhou, X., and Zhou, A. (2007) An adaptive
and dynamic dimensionality reduction method for high-
dimensional indexing. The VLDB Journal, 16, 219–
234.

[20] Bernecker, T., Emrich, T., Graf, F., Kriegel, H.-
P., Krger, P., Renz, M., Schubert, E., and Zimek,
A. (2010) Subspace Similarity Search: Efficient k-NN
Queries in Arbitrary Subspaces. Proc. of the Int’l
Conf. Scientific and Statistical Database Management
(SSDBM), Heidelberg, Germany, June, pp. 555–564.

[21] Kim, Y., Chung, C.-W., Lee, S.-K., and Kim,
D.-H. (2011) Distance Approximation Techniques to
Reduce the Dimensionality for Multimedia Databases.
Knowledge and Information Systems, 28, 227–248.

[22] Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., and
Abbadi, A. E. (2000) Vector Approximation-based
Indexing for Non-uniform High Dimensional Data Sets.
Proc. of the 9th CIKM Conf., McLean, VA, November.
ACM.

[23] Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., and El
Abbadi, A. (2006) High Dimensional Nearest Neighbor
Searching. Information Systems, 31, 512–540.

[24] Günnemann, S., Kremer, H., Lenhard, D., and
Seidl, T. (2011) Subspace Clustering for Indexing
High Dimensional Data: a Main Memory Index
Based on Local Reductions and Individual Multi-
Representations. Int’l Conf. on Extending Database
Technology (EDBT), Uppsala, Sweden, March, pp.
237–248.

[25] Barclay, T., Slutz, D., and Gray, J. (2000) TerraServer:
A Spatial Data Warehouse. Proc. of ACM SIGMOD
Conf., Dallas, TX, May, pp. 307–318.

[26] Sakurai, Y., Yoshikawa, M., Uemura, S., and Kojima,
H. (2000) The A-tree: An Index Structure for High-
Dimensional Spaces Using Relative Approximation.
Proc. of 26th VLDB Conf., Cairo, Egypt, Sept., pp.
516–526.

[27] Berchtold, S., Bohm, C., Jagadish, H., Kriegel, H.-
P., and Sander, J. (2000) Independent Quantization:
an Index Compression Technique for High-dimensional
Data Spaces. Proc. of the 16th IEEE ICDE, San Diego,
CA, February.

[28] Cha, G.-H. and Chung, C.-W. (2002) The GC-tree:
A High-Dimensional Index Structure for Similarity
Search in Image Databases. IEEE Transactions on
Multimedia, 4, 235–247.

[29] Gaede, V. and Günther, O. (1998) Multidimensional
access methods. ACM Comput. Surv., 30, 170–231.

[30] Samet, H. (2005) Foundations of Multidimensional
and Metric Data Structures (The Morgan Kaufmann
Series in Computer Graphics and Geometric Modeling).
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

[31] Berchtold, S., Keim, D., and Kriegel, H.-P. (1996) The
X-tree: An Index Structure for High-Dimensional Data.
Proc. of the 22th VLDB Conf., Mumbai (Bombay),
India, September, pp. 28–39.

[32] White, D. and Jain, R. (1996) Similarity Indexing with
the SS-tree. Proc. of IEEE ICDE Int. Conf., New
Orleans, Louisiana, February. IEEE Comp. Society.

[33] Ciaccia, P., Patella, M., and Zezula, P. (1997) M-tree:
An Efficient Access Method for Similarity Search in
Metric Spaces. Proc. of the 23rd VLDB Conference,
Athens, Greece, August, pp. 426–435.

[34] Jagadish, H. V., Ooi, B. C., Tan, K.-L., Yu, C., and

Zhang, R. (2005) iDistance: An Adaptive B+-Tree
Based Indexing Method for Nearest Neighbor Search.
ACM Trans. Database Syst., 30, 364–397.

[35] Jr., C. T., Filho, R. F. S., Traina, A. J. M., Vieira,
M. R., and Faloutsos, C. (2007) The omni-family of
all-purpose access methods: a simple and effective way
to make similarity search more efficient. The VLDB
Journal, 16, 483–505.

[36] Freeston, M. (1987) The BANG file: a New Kind of
Grid File. Proc. ACM SIGMOD Conf., San Francisco,
CA, May.

[37] Robinson, J. (1981) The K-D-B-tree: a Search Struc-
ture for Large Multidimensional Dynamic Indexes.
Proc. of SIGMOD, Ann Arbor, MI, April, pp. 10–18.

[38] Chakrabarti, K. and Mehrotra, S. (1999) The Hybrid
Tree: An Index Structure for High Dimensional Feature
Spaces. Proc. of ICDE Int. Conf., Sydney, Australia,
March.

[39] Bellman, R. (1957) Dynamic Programming. Princeton
University Press, Princeton, NJ.

[40] Blott, S. and Weber, R. (2008) What’s Wrong with
High-dimensional Similarity Search? Proc. VLDB
Endow., 1, 3.

[41] Tuncel, E., Ferhatosmanoglu, H., and Rose, K. (2002)
VQ-index: an Index Structure for Similarity Searching
in Multimedia Databases. Proc. of the 10th ACM Int.
Conf. on Multimedia (MM), Juan-les-Pins, France, pp.
543–552.

[42] Weber, R. and Böhm, K. (2000) Trading Quality for
Time with Nearest Neighbor Search. Proc. of the 7th
EDBT Conf., Konstanz, Germany, March, pp. 21–35.

[43] Chen, L., Chang, E., Garcia-Molina, H., and
Wiederhold, G. (2002) Clustering for Approximate
Similarity Search in High-dimensional Spaces. IEEE
Transactions on Knowledge and Data Engineering, 14,
792–808.

[44] Houle, M. and Sakuma, J. (2005) Fast Approximate
Similarity Search in Extremely High-dimensional Data

20 K. Tsakalozos, S. Evangelatos, F. Psallidas, M. Vieira, V. Tsotras, A. Delis

Sets. Proc. of IEEE ICDE Conf., Tokyo, Japan, April,
pp. 619–630.

[45] Gionis, A., Indyk, P., and Motwani, R. (1999)
Similarity Search in High Dimensions via Hashing.
Proc. of the VLDB Conf., Edinburgh, Scotland,
September, pp. 518–529.

[46] Bawa, M., Condie, T., and Ganesan, P. (2005) LSH
forest: Self-tuning Indexes for Similarity Search. Proc.
of the 14th Int. Conf. on World Wide Web, Chiba,
Japan, April, pp. 651–660.

[47] Lv, Q., Josephson, W., Wang, Z., Charikar, M., and Li,
K. (2007) Multi-probe LSH: Efficient Indexing for High-
dimensional Similarity Search. Proc. of 33rd VLDB
Conf., Vienna, Austria, September.

[48] Keogh, E. J., Chakrabarti, K., Mehrotra, S., and
Pazzani, M. J. (2001) Locally Adaptive Dimensionality
Reduction for Indexing Large Time Series Databases.
Proc. ACM SIGMOD Conf., Santa Barbara, California,
USA, May, pp. 151–162.

[49] Athanassoulis, M. and Ailamaki, A. (2014) BF-Tree:
Approximate Tree Index. The VLDB Journal, 7, 1881–
1892.

[50] Sun, Y., Wang, W., Qin, J., Zhang, Y., and Lin, X.
(2014) SRS: Solving c-Approximate Nearest Neighbor
Queries in High Dimensional Euclidean Space with a
Tiny Index. The VLDB Journal, 8, 1–12.

[51] Tsakalozos, K., Evangelatos, S., and Delis, A. (2011)
DiVA: Indexing High-dimensional Data by “Diving”
into Vector Approximations. Proc. of the IEEE Int.
Conf. on Multimedia and Expo 2011, Barcelona, Spain,
July.

[52] Wang, J., Li, J., and Wiederhold, G. (2001)
SIMPLIcity: Semantics-Sensitive Integrated Matching
for Picture LIbraries. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23, 947–963.

[53] Sakurai, Y. (2011). The A-tree: Source Code
Release. NTT Communication Science Laboratories,
Seika, Soraku, Kyoto, Japan.

[54] Vu, K., Hua, K. A., and Tavanapong, W. (2003)
Image Retrieval Based on Regions of Interest. IEEE
Transactions on Knowledge and Data Engineering, 15,
1045–1049.

	Introduction
	Related Work
	The VA-file and Skewed Data
	Earlier Work on DiVA

	The DiVA index
	Structure and Operation of DiVA
	Approximations and Data Packing
	A Rapid Binary ``Within Range'' Operation

	Application–Driven DiVA Reorganization
	Algorithms
	Restructuring Operations for DiVA

	DiVA Application-Provided Refinement Policies
	Policy 1: Minimize Turnaround Time (MTT)
	Policy 2: Favoring Groups of Users (FGU)

	Experimental evaluation
	Evaluating DiVA in Isolation
	Synthetic Dataset
	Image Feature Vectors
	Favoring Specific Users

	Conclusions and Future Work

