
Database Architectures�Alex Delis, Vinay Kanitkar and George KolliosDepartment of Computer and Information SciencePolytechnic University6 Metrotech CenterBrooklyn, NY 11201May 14, 1998AbstractThe deployment of e�cient information systems has become a necessity for the success of anycorporate or government operation. Critical system requirements that include maintenance of up-to-date information, achievement of short transaction response times, utilization of networked computingresources, and handling of massive data volumes have resulted in the evolution of several special-ized architectures for database management. Three families of such architectures that have beenspeci�cally developed to address the above requirements are: main-memory databases, client-serverdatabase and information systems, and parallel databases. By exploiting available system resourcesand workload characteristics, these architectures seek to optimize database processing for diverseapplication settings. In this chapter, we discuss the constraints as well as the implications that thevarious applications impose on system design, and describe key architectural features. We discussissues in data storage and placement, query processing and optimization, concurrency control andrecovery. Finally, we examine the di�erent approaches taken by the three database architectures inorder to provide e�cient application support.Keywords: Database Organization and Optimization,Main-MemoryDatabases, Client-Server Databases,Disk Caching, Query Processing, Parallel Databases, and Database Machines.
�This work was supported in part by the National Science Foundation under Grant NSF IIS-9733642 and the Centerfor Advanced Technology in Telecommunications (CATT), Brooklyn, NY.1

1 IntroductionThe ongoing tremendous market changes that have led to a global economy have forced designers ofmodern information systems to adopt innovative computing architectures. The service sector of theeconomy which includes companies in the �nancial services, telecommunications, air transportation,retail trade, health care, banking and insurance is a heavy user of such information systems [79]. Forbusinesses and organizations, the deployed computing systems as well as the used applications anddata constitute their life-line in today's global market. And, as corporations continuously adapt in anever-changing business world they become more dependent on their computing infrastructure.The increasingly complex information needs of modern organizations and corporations with manygeographically dispersed branches can only be met by the use of versatile database architectures. Thesearchitectures must harness high-performance computing resources and take advantage of much improvedand widely available networking options. Such specialized con�gurations are deployed in order to helpreduce system response times, increase productivity, and enhance throughput rates. In this regard,main-memory databases (MMDs) have been developed to service the areas of the economy that callfor exceedingly good transaction response times. Client-server systems and databases (CSSs/CSDs)have increased productivity through the use of the existing infrastructure in conjunction with inter-networking software. Finally, parallel databases (PDBs), built around the notion of tightly-coupledcomputing and storage components, have resulted in systems that demonstrate very-high throughputfeatures. Earlier implementations of PDBs were called database machines. In this chapter, we examinethe requirements, review the salient characteristics, and discuss a number of research issues for theabove three families of database systems and their underlying data architectures.Main-memory databases (MMDs) assume that most, if not all, of the operational data remains involatile memory at all times. Disk-resident database copies are mostly used to recover from either adisaster or an accident [26]. There exist a large number of applications in the service sector that call forMMD support in order to function according to prede�ned tight performance requirements. Environ-ments where such applications are commonplace include securities trading, money market transactionsystems, and telecommunication systems. In the �nancial area, transactions need to complete in real-time and this can be achieved only if the underlying database system avoids long delays caused byinteraction with mechanical parts. Furnishing ultra-fast data access and transaction processing in theabove environments is only possible if the deployed data architectures avoid interaction with externalstorage devices (i.e., disks). Accessing main-memory resident data is in the order of nanoseconds whileaccessing disk-based data requires possibly tens of milliseconds. Along the same lines, a customer ofa telephone company desires that an 800-call be completed within acceptable time constraints. Thesize of the customer base and the volume of companies, organizations and, even, individuals who carrysuch toll-free numbers has become excessively large. Therefore, the provision of e�ective MMDs for thesatisfaction of such user requirements is a major concern and a challenging technical task.There are a number of key di�erences between MMDs and conventional database systems. InMMDs, access structures can facilitate the retrieval of data items by traversing and checking memory2

locations while in disk-based databases, most of the retrieval process is centered around I/O operations.In a disk-based system, the costs of disk-access can be amortized by clustering data so that pages canbe accessed sequentially, while in MMDs, data are often fetched randomly. Finally, memory banks arevolatile and can not maintain their stored information if there is a disruption of power. Although it ispossible to use non-volatile memories, such an option is considered not cost-e�ective.In client-server computing environments, a number of client processes typically running on smallmachines (i.e., desktops, laptops) interact with one or more server processes using an underlying inter-process communication system. This interaction is inherently recursive in its nature as a server maybecome the client of another service site and has resulted in integrated systems that allow for distributedaccess of data, computing, and presentation of results. Windowing systems are often run on the clientsites allowing for easy interface with application packages as well as querying of data. The latter can bedone by using standard query languages such as SQL or specialized data-exchange protocols betweenclients and data sources. Interprocess communication abstractions are used to provide the transportlayer among the various sites involved. Once clients have obtained their desired data/results, they maychoose to either immediately use these data or/and cache them for further analysis and future reuse.Server processes typically o�er services that range from simple �le system request handling andprovision of CPU-intensive computation to complicated information retrieval and database management.Indeed, a client may independently request services frommore than one servers at the same time. Serverscontinuously monitor (\listen" to) the network for incoming requests and respond to those received fromclients by providing the required service. Servers attempt to satisfy incoming client requests by creatingand executing concurrent tasks. The application programmatic interface of servers hides their internalfunctionality and organization, as well as the idiosyncrasies of the operating systems and hardwareplatforms used. Hence, servers can not only be providers of services but also repositories of programs,managers of data, and sources for information and knowledge dissemination.The wide availability of multiple-processor computers o�ers opportunities for parallel databasesystems that demonstrate substantially improved throughput rates. As future databases will have tomanage diverse data types that include multimedia such as images, video clips and sounds, they shouldbe able to e�ciently access and manipulate high volumes of data. The projected volume increase oftoday's databases will be possible to handle only through the use of multiprocessor and parallel databasearchitectures. Such architectures could also be used in conjunction (undertaking the role of specializedservers) with Client-Server con�gurations in order to bring to the desktop unmatched CPU and storagecapabilities.Parallel database architectures can partially address the I/O bottleneck problem that ultimatelyappears in all centralized systems. Instead of having the actual data reside in a few large devices,parallel database architectures advocate an increase in parallel data transfers from many small(er)disks. Working in conjunction with di�erent parallel I/O buses, such disks can help diminish theaverage access time as long as data requests can be fragmented into smaller ones that can be servicedin a parallel fashion. Two possible mechanisms used to increase performance rates in such systems are:intra-operation and inter-query parallelism. The former allows for the decomposition of a large job into3

identi�able smaller pieces that can be carried out by a group of independent processors and/or I/Ounits; the latter enables the simultaneous execution of multiple queries. Parallel databases can alsobe classi�ed in terms of their degree of parallelism: coarse or �ne granularity. In coarse granularityparallelism, there is a small number of processors per system (often two or four) coupled with a few(less than �ve) disk units. A �ne granularity parallel system may contain tens or even hundreds ofprocessing elements and I/O devices.In this chapter, we discuss the speci�c requirements and examine the key features of the above threedatabase architectures. We discuss issues related to data organization and representation, query pro-cessing and optimization, caching and concurrency control, transaction handling and recovery. Section2 discusses Main-Memory Databases. Client-Server and Parallel Databases are presented in Sections 3and 4 respectively. A summary is found in Section 5.2 Main-Memory DatabasesMain-memory databases (MMD) feature all the conventional elements that one would expect in adatabase system, namely: data organization, access methods, concurrency and deadlock management,query processing and optimization, commit protocols and recovery. In standard database systems, mostof the above operations and functionalities are designed around the movement of data blocks/pages inthe memory hierarchy. In an MMD, the fundamental di�erence is that its components are designedto take advantage of the fact that data do not need to be transferred from disks. Schemes for dataorganizations in MMDs are of major importance. In this direction, data swizzling is an important step:as soon as a (complex) data item is retrieved from the disk to main-memory, applications can access itthrough a \direct" pointer. Along the same lines, while conventional query optimizers try to minimizethe number of accessed blocks, MMDs attempt to optimize their query processing tasks by reducing theCPU cycles spent on each task. Finally, commit and logging protocols in MMDs have to be designedcarefully so that they do not create unnecessary bottleneck points.The main point of concern for MMDs is that either a crash or an unexpected power outage maydisrupt mission critical operations. Unlike disks, memories become oblivious of their contents oncepower is lost. Therefore, it is absolutely critical that frequent back-ups are taken so that the integrityof data can be guaranteed at all times. Naturally, memory banks with uninterruptible power supply(UPS) can be used to keep the memory aoat for some time even after a disruption of power occurs.However, these types of services are not inexpensive and may also su�er from overheating. In light ofthe above, a MMD should be developed in a way that trades-o� the consistency between the in-coredata and the disk-data with the overhead required for continuous back-ups.If one considers the universality of the 80%-20% rule, then it is evident that the whole databasedoes not need to be in main-memory. Actually only the hot parts of the data can remain in-core whilethe less frequently accessed items can be disk-based. The distinction between hot and cold(er) parts ofdatabases is, in a way, natural. For instance, the values of traded securities have to be always maintainedin main-memory whereas background information about corporations and their operations need not.4

2.1 Organization of MMD Components2.1.1 Memory Data Representation and OrganizationIssues related to MMD data layout and management have been partially addressed in the developmentof conventional databases, speci�cally in the development of system catalogs. Objects in such catalogshave to be handled in a very di�erent way than their disk-based counterparts; these subsystems areorganized so that optimal times are achieved in terms of access and response times. To maintain thistype of fast interaction, their development is centered around variable length structures that use mostlypointers to the memory heap.Tuples, objects, and many other types of data items when they are disk-resident can be accessedthrough \object identi�ers" (OIDs). The task of a database system is essentially to translate an OIDto the address of a block/page. Once the item in discussion is brought into main-memory, accessingis typically facilitated by a hash table that maps the OID to an address in main memory. When anapplication references an object (in the \shared" database bu�er space), a copying operation has to becarried out. This copying operation brings the object into the address space of the application and iscarried out with the help of an interprocess communication mechanism. Thus, there is a non-negligiblepenalty involved in carrying out the above \conversion" in address space every time there is a referenceto an object. Instead of performing the above steps, what modern systems tend to do is to \swizzle"database objects [61].In swizzling, disk-based object layouts, such as tuples of certain constant length and representation,are transformed into strings of variable length. User applications are provided with access to thesevariable length strings through direct pointers. The key performance question in swizzling is to decidewhether it is pro�table to convert OID references to objects in main-memory, with direct pointers.Moreover, there is a certain cost to be considered when swizzled data have to be stored back on thelong-term memory device since the reverse process has to take place (i.e., objects have to be unswizzled).Unswizzling is done during the save phase of the object access operation.For operations that involve OIDs and are computationally intensive, there are numerous optionsthat a system designer could pursue. The success of these options depends on the types of operationsand the composition of the workloads that the MMD receives. In particular, objects brought into mainmemory could be simply copied, swizzled in place, or copy-swizzled. Copy-swizzling allows the image ofthe object in the MMD-bu�er to remain intact. In-place swizzling avoids making an extra copy of theobject in main-memory and therefore reduces the CPU costs involved. There is a trade-o� between theCPU-overhead savings and the overhead required to unswizzle objects before they are ushed into thedisk-manager. On the other hand, copy-swizzling may present some savings as only modi�ed objectsneed to be unswizzled before they are written out to the long-term memory. Also, depending on theway objects are brought into main-memory, swizzling can be of either eager or lazy. Although the costof swizzling may at �rst appear small, it is evident that if thousands of objects are accessed at the sametime, then there might be signi�cant cumulative penalties. On the other hand, if swizzled-pointers toobjects are dereferenced more than once, then the bene�ts of swizzling can be sizable [84].5

The organization of MMDs is an area of prime concern as data has to be always accessed in ane�cient manner. In Starburst, there is a dedicated main-memory database component termed MMM[53] which uses no swizzling and attempts to optimize access to the data using T-Trees [52]. The keymain-memory element of MMM is a partition which is a �xed size unit of memory allocation (Figure1). In spirit, MMM partitions are very similar to pages but they are only di�erent in terms of theirsizes which ranges from 64k to 256k. Partitions are dynamically allocated and constitute the main unitof recovery. Partitions are clustered together and make up segments. Segments are areas of memorywhose size (i.e., sum of partitions) is variable.
..

..
..

..
.

..
..
..
..
.

DBstart

Segment
Table

Partition
 Table

Heap
Space

Free
Space

Record
 Array
 Space

2nd field

4th field

....
....

Record Descriptor

Control Blocks
Table Lock

Figure 1: Starburst's Main-Memory ManagementRecords are identi�ed by record identi�ers (RID) which consist of three parts: segment number,partition number, and o�set within the partition. The �elds of a record are heap-resident and can beaddressed through an array of pointers (i.e., Record Descriptor). The record descriptor provides themeans for representing data tuples in the context of a Starburst partition. If the number of attributes of atuple changes, then a special tail structure is used. This tail structure extends the record representationin the heap.Accessing a speci�c record is facilitated by using the corresponding RID to identify both segmentand partition within the overall main-memory structure. Once inside the partition, then the o�set isused to reach the record's slot. The slot is essentially a descriptor/translation mechanism to get to thevarious �elds of the record in the heap area. Before values of the various �elds are used by applications,they have to be copied over into the applications' space. By keeping all the storage structures in mainmemory, the path-length of accessing a data item becomes much shorter as compared to a disk-baseddatabase organization.Continuous additions and modi�cations of tuple attributes will ultimately require space that is notcurrently available in the partition. In this case, the newly expanded tuple will have to be physicallymoved into another partition. Such a movement could be easily accommodated as long there are no6

references to the augmented record. Tombstones are used in this context in order to avoid undesirablelost references. As expected, tombstones augment the path length of the execution as references gothrough an additional cycle to detect possible encounter of tombstones and there is some space overheadas well. A possible way to overcome the disadvantages of tombstoning is to assume that �eld pointerscan span across partitions.The administration of the partition space is done by adopting a scheme where four partition classesare introduced in terms of available capacity, i.e., those with available capacity up to 500 bytes, thosewith 500 or more bytes available, partitions with 2,000 or more bytes free, and �nally partitions withmore than 10,000 bytes free space. A partition may belong to one or more such classes. Depending onthe degree of the expected growth of the record(s), a suitable data partition is selected to place a recordin. If there is no space available in the current partition, then a new partition is allocated.The Dal�� main-memory manager [44] exploits the idea of memory mapped I/O. Speci�cally, thesystem call mmap() that most Unix implementations o�er. Memory mapped I/O allows to map disk-resident �les in main-memory bu�ers. Once the mapping has been carried out, reading of bytes fromthe bu�er automatically corresponds to fetching the corresponding data from the disk �le. In the samefashion, whenever data are stored/set in this bu�er area, the corresponding modi�ed bytes are writtenback to the disk �le. A �le can be memory-mapped by many processes. If a �le is memory mapped to ashared virtual memory area, then Dal�� multiple-users are provided with access to a �le with sequentialconsistency guarantees. Consequently, Dal��'s advocates that MMDs be organized in distinct \database"�les with each �le containing related data.
Table of Partitions

Partition of Meta−Data

Data

Overflow Partition

Free Space

Data & Meta−Data

User−Read−Only
Areas

User−Write Area

Partition of Meta−Data

Type
Identifier

Size DataPtr LockPtr

ChPtr

.............................

Data

Database File Structure

Item
Header

Item Data

..........

Figure 2: Dal�� Database File OrganizationFigure 2 depicts the organization of a Dal�� database �le. The space of a �le is classi�ed into areas(or partitions) whose functionality is fundamentally di�erent from those of Starburst. The \Partition7

Table" indicates the borders of these areas and it is super-user writable only. The descriptors of thevarious individual database �le items are provided by the \meta-data partition." The structure of thispartition is shown in the right-hand side of Figure 2. Data-pointers are used to point to data itemsthat reside in the data partition. The latter is a user-writable area as individual processes can modifythe content of data objects. The free and overow areas of a �le are used when there is need for dataand meta-data space respectively. Naturally, the cost of mapping database-pointers {as the ones justmentioned{ to virtual memory addresses could be reduced by swizzling. However, Dal�� does not providethis feature as it would complicate the implementation of its concurrency schemes [44].The internal data representation is not the only core issue in MMDs that needs to be considered.Di�erent indexing schemes have to be used as well. Although the B+-Tree structure is one of themost acceptable indexing options for conventional disk-bound operations, it looses some of its appealwhen it comes to main-memory resident data. Instead, AVL trees can be used as they o�er elegantre-balancing operations in the light of updates, and logarithmic access times [77]. T-trees [52] have beendesigned for main-memory databases and the utilization of their node space is user-speci�ed. They alsoexploit pointers to traverse the tree structure fast. Other structures such as BB-Trees, Skip-Lists andDeterministic Skip Lists can be used e�ciently to access data in memory [17]. An additional advantageof all these structures is that the key values do not need to be part of the internal node. Instead anpointer or a record ID can be used to point to the required key value. Most of the above methods cano�er range-queries through minor extensions.2.1.2 Query ProcessingThe fact that data are resident in main-memory has rami�cations on the way query processing is carriedout. While in traditional query processing the dominant cost is the count of the involved disk I/Ooperations, the CPU computation cost becomes a major factor in MMDs. Therefore, approaches basedon CPU-cost optimization for query processing have been suggested [26, 83, 56]. However, modelingCPU costs is not an always easy task. Costs may vary substantially depending on the hardware platform,the style of programs that carry out the operations, and the overall software design [30]. In addition,there are interesting trade-o�s between the amount of CPU processing required and the memory bu�erspace reserved for indexing purposes.In conventional query optimization, there have been numerous e�orts to e�ciently process queries{and in particular joins{ by preprocessing one (or more) of the participating relations. For instance,ordering both relations by their joining attribute o�ers signi�cant savings. In MMDs, such approachesloose most of their appeal as the traversal of pointers provides very fast access. Sorting relations,before the eventual join is performed, may not be a reasonable option as it could impose additionaland unnecessary overheads in terms of CPU-processing and space used. Instead, the outer relation canbe traversed sequentially and the joining attribute value can be used to access the appropriate joiningtuples from the inner relation [30]. This access is facilitated by the traversal of navigational pointersprovided by the MMDs, as mentioned earlier in the context of Dal�� and Starburst. Hence, the sort-mergeapproach is not used for join processing in main-memory databases as it not only requires extra space8

to accommodate pointers that denote the sorted order of relations but also CPU time to carry out theactual sorting [83]. A number of elegant algorithms used to join relations and/or views by exploitingpointers are discussed in [68].A query optimizer that has been speci�cally developed for a main-memory database was presentedin [83]. The approach followed here is geared towards minimizing the number of predicate evaluations.Minimum CPU costs incurred in predicate evaluation determine viable access plans. In addition, abranch and bound methodology is used to prune the search space during the query processing phase.In trying to build a realistic model, [83] proposes to identify system bottlenecks that correspond to thepieces of database code that take up most of the CPU processing time in the context of a query. Theoptimization phase is based on these costs. The costs of such high overhead operations are determinedby using pro�ling techniques and program execution analyzers. In [83], �ve speci�c cost factors havebeen identi�ed:1. Cost for evaluating predicate expressions.2. Cost for comparison operations.3. Cost for retrieving a memory-resident tuple.4. Unit cost for creating an index (unit refers to the cost per indexed item).5. Unit cost for sorting (penalty per sorted item).Since queries are expressed here in canonical form, the above factors are su�cient to model the overallcosts required by various materialization plans. Among these �ve cost factors, [83] experimentallyveri�ed that the �rst one is the most expensive of all. In fact, the �rst cost is tenfold more expensivethan each of the other four factors listed above. This is because the entire predicate tree structure hasto be traversed in order to obtain a single evaluation. As such tree structures can accommodate generalforms of predicates, they can lead to expensive evaluation phases.The query optimizer uses a number of strategies to produce the lowest cost estimates, namely:1. Evaluation of predicates at the earliest possible opportunity.2. Avoidance of useless predicate or expression evaluation whenever possible.3. Binding of elements as early as possible.A branch-and-bound algorithm used is equivalent to an exhaustive search; however, it prunes subtreesfor which there is a strong indication that the optimal solution would not be found in, even if thesearch was continued inside these subtrees. This indication can be derived by comparing a continuouslymaintained global lower bound of the cost with the anticipated cost if a speci�c subtree is followed.2.1.3 Concurrency ControlSince data-items are easily accessible in MMDs, transactions may have an opportunity to complete muchfaster, since extreme contention conditions are not expected to develop often. Coarse granularity lockinghas been suggested as a su�cient option for concurrent MMD operations. However, some long-runningtransactions may su�er from starvation and/or lengthy delays. Therefore, a more exible techniquecan be useful here. For instance, a protocol that is capable of adapting from coarse to �ne granularity9

locking whenever necessary could be bene�cial.System designers of MMDs may also avoid overheads by circumventing operations to an indepen-dent lock manager. In traditional databases, lock managers are organized around a hashing-table. Thishash-table maintains information about the way that the various data objects are locked at any time.In MMDs, this locking mechanism can be adapted and possibly optimized so that the overhead requiredto access the hashing-table is eliminated. This optimization can be achieved by attaching the lockinginformation to the data itself.Both of the above ideas have been implemented in the Starburst main-memory manager (MMM)[32]. Figure 3 shows the key data structures used augmented with the supporting locking mechanisms.Each segment maintains a control block that includes the pertinent lock information about the segmentin question. Every transaction that attempts to get a lock on the table receives a table lock control blockwhich provides the type of lock as well as list of tuple-locks encountered so far. If tuple-locks are notcompatible with the aggregate lock type of the table, then they are kept pending and the requestingprocesses are blocked. For instance, Figure 3 indicates that Transaction 1023 has successfully lockedthe table and is working with three speci�c tuples. However, Transaction 1009 which initially lockedthe table in a manner compatible to 1023 (and 1025), subsequently requested a non-compatible tuplelock and is currently blocked.When such contention for data items appears, data tuples can be locked individually. This actionwill almost certainly increase concurrent sharing. Thus, Starburst's MMM is capable of featuring a listof tuple lock control blocks per tuple. Tuple lock control blocks indicate which processes have accessedspeci�c tuples, and how. In Figure 3, such a list of control blocks is attached to the descriptor of therecord.A granularity ag is always maintained at the table level (i.e., segment control block) and indicateswhether table or tuple locking granularity is in use. Starburst's MMM has the ability to escalateand de-escalate locks so that the level of concurrency can be adjusted. As table locking is generallyinexpensive (carries low overhead), it is the preferred method for low sharing situations. However, asmore transactions accessing the same table become active, the MMM de-escalates the table lock toindividual tuple-level ones and the degree of data sharing increases. De-escalation is possible only ifthe transaction holding the table lock is capable of \remembering" the individual tuple lock requestsup to this point. This is the reason why, besides the locks on segments, the segment control blockkeeps a record of all the requested (and whether granted or blocked) locks on tuples so far. The tuplelock control blocks (as shown in Figure 3) indicate the transactions that have acquired shared accesson speci�c tuples (for instance transactions with IDs 123 and 312) as well as transactions that arecurrently blocked (i.e., transaction 231). As soon as de-escalation occurs, the lock-related structure atthe segment level is de-activated. Escalation back to table locking occurs when the need for increaseddata sharing ceases to exist.In [30], an alternative way to process exclusive-only concurrent requests is outlined. In this, twobits per object are used to realize concurrency control. If the �rst bit is set then an object is lockedand is unavailable. If an object is locked and the second bit is set as well, it means that one or more10

..
..

..
..

.

..
..
..
..
.

DBstart

Segment
Table

Partition
 Table

Heap
Space

Free
Space

Record
 Array
 Space

2nd field

4th field

....
....

R: 1023 B: 1025 B: 1009

Status (Running/Blocked)

Tuple Lock Control Blocks

(A Block Per Transaction)

& Transaction ID

Record Descriptor

R:123 R:312 B:321

Granted
 Tuple
 Locks

Pending Tuple Locks

Table Lock
Control Blocks

Figure 3: Starburst's Main-Memory Management and Concurrency Structurestransactions are waiting for the object to become available. The set of transaction identi�ers waiting fora lock on an object are stored in a hash table. When a �nishing transaction resets the �rst bit, it alsocheck the status of the second. If the latter is set, then the terminating transaction has to wake-up oneof the waiting transactions. The last transaction to be woken up needs to clean up the second bit. Thebene�ts of such a scheme rest with the fact that, often in MMDs, records are locked for a short periodof time and are released soon after the update. If there is no need to access the hash table frequently,this technique presents an acceptable locking alternative. System M [70] features an exclusive/sharedlocking scheme with conversion capability from shared to exclusive mode at the segment level (set ofrecords).2.1.4 Logging and Commit ProtocolsLogging is mandatory as the MMD should be able to avoid lost data and/or transactions due to mediafailure. As logging is the only operation that has to deal with an external device in MDDs, it canbecome a bottleneck that may adversely a�ect system throughput. A number of solutions have beensuggested to solve this problem and are based around the concept of a stable main-memory space[26, 70, 56, 54, 45]. Whenever a transaction is ready to commit, the transaction writes its changesinto stable memory (non-volatile RAM). Stable memory is often used to \carry" the transaction logand can greatly assist in decoupling persistence from atomicity. Writing to such a stable-log is a fast11

operation as it is equivalent to a memory-to-memory copy. Once many log entries accumulate, a specialprocess (or processor as in System M [70]) can be used to ush log data to the disk unit. What stablememory really achieves is that it helps keep response times short because transactions do not have towait long for the log operations to complete. In [26], it has been suggested that a small amount ofstable memory can be as e�ective as a large one. The rationale is that a small stable bu�er space cane�ectively maintain the tail of the database log at all times.When stable memory is unavailable, group committing can be used to help relieve the potentiallog bottleneck [25, 26, 70]. Group commit does not send entries to the disk-based log indiscriminatelyand on demand as a traditional write-ahead log would normally do. Instead, log records are allowedto accumulate in main-memory bu�ers. When a page of such log entries is full, then the page is moveto the log-disk in a single operation. The rationale behind group commit is to diminish the numberof disk I/Os required to log committed transactions as it amortizes the cost for disk I/O over multipletransactions. Precommitting also works in the direction of improving response times as it releases locksas soon as a log entry is made in the main-memory log [25, 26]. This scheme allows newer transactionsto compete for locks and data objects while others are committing.In [45], a protocol for commitment is provided that reduces the size of the logging operationsby ushing into the disk only redo entries. Undo records are kept in main-memory and are discardedas soon as a transaction has committed successfully to either the disk or a stable area. This actioneconomizes on the log volume and so furnishes a short(er) recovery phase as the MMD requires only asingle log pass. In this scheme, the MMD maintains a redo-log on the disk where only the redo entriesof committed transactions reside. To achieve this, every active transaction maintains two distinct log
UndoLog T2

RedoLog T2

UndoLog T3

RedoLog T3

RedoLog Tail

Persistent RedoLog

RedoLog T1

UndoLog T1

MMD

Volatile Memory Persistent
 Area

Figure 4: Logs for Individual Transactions and the Global Redo Logareas (for redo and undo entries) in main-memory (Figure 4). When the commit entry of a transactionultimately reaches the persistent log (located either on disk or stable RAM), the transaction commits.12

The novel feature of the commit protocol discussed in [45] mostly rests with the way that the terminationof transactions is handled. There are three distinct phases in the commitment protocol:1. Precommit Phase: a completed transaction Ti is assigned a commit sequence number (csn),releases all its locks and writes a entry � csn; Ti � to the private redo log of Ti. This privateredo log is appended to the global redo log kept by the MMD.2. Actual Commitment: the commit entry of the transaction reaches persistent storage.3. Postcommit Phase: the user-process that instigated the transaction is noti�ed of the completion,the transaction is removed from the list of the active transactions and its volatile undo log isdiscarded.The usage of individual redo logs diminishes the contention for the global log as well as the size of theglobal log's tail. Transactions that have not completed their commit protocol and need to abort can doso by traversing the undo entries of their own logs in reverse.2.1.5 Recovery and E�cient Reloading of DataCheck-pointing is often used as the means to reduce the length of recovery once a MMD fails and datahas to be restored from the disk-image of the database and the system log. Actually in MMDs, check-pointing and recovery are the only points at which the disk-resident database is accessed. One way tominimize the e�ects of check-pointing is to use large-sized blocks so that writing to the external deviceis more e�cient [30].When a crash takes place, reloading of the database has to be performed. The MMD may ex-perience undesirably long delays if the system is brought up by reloading a large collection of data.Therefore, e�ective reloading techniques are important. In particular, on-demand schemes o�er an ob-vious advantage as transaction processing may restart with the availability of only a small amount ofimportant data in memory. In [34, 35], a number of such techniques are introduced and their behavioris compared (through experimentation) with ordered-reload. Ordered-reload refers to the process ofreading data from the archived database sequentially. Its advantage is that the actual reload processlasts for the shortest possible time and presents no additional space and/or CPU overhead later.More elaborate reloading algorithms attempt to place in main-memory a selected set of pages thatwill enable the MMD to become operational immediately [34]. Such algorithms include: reload withprioritization, smart, and frequency reloading. In reload with prioritization, pages are brought intomain-memory on-demand according to a predetermined priority scheme and the MMD resumes normaltransaction processing once a pre-speci�ed percentage of the database is in place. The smart algorithmis essentially reload with prioritization but uses page prefetching (instead of on-demand paging). Inthe frequency-reload algorithm, pages are stored in the archival memory according to their frequencyof access observed so far. This is facilitated by a specialized disk-based structure which helps classifythe various data elements according to their frequency indicators. Using this structure, the frequency-reload algorithm brings pages with higher access frequency counts into memory �rst. Assuming thatfrequencies of data page accesses do not change very often, frequency-reload produces good response13

times and satisfactory reloading times.3 Client-Server DatabasesThe client-server paradigm has been in use for several years in areas other than database managementsystems. It is widely used in multitasking operating systems for the provision of various system ser-vices such as print spooling. The advent of internetworking has allowed this model to be extended todistributed services such as electronic mail, �le transfer, remote login and even networked �le systems[74, 15].In most multiuser computing systems, the data reside at one or more central nodes. With thehelp of their terminals and/or personal workstations, individual users (clients) access the data fromcentralized systems (servers) using telephone or other communication lines. When such aggregatesinvolve databases, they are often termed Client-Server Databases (CSDs). In CSDs, the interactionamong users and data-providing sites occurs mainly in two ways: query and data shipping. In purequery-shipping settings, clients dispatch user-queries and updates to the database server(s) and receivethe results of their operations. In data-shipping, the client machines request the required set of dataobjects/pages from the server(s) and perform the necessary processing of the data locally.In both the above ways of interaction, there is a straight-forward optimization to be found. Bystoring either data or results received from servers locally, clients may possibly eliminate or reduce theneed for future interaction with the server database. The maintenance of such \remote" data is knownas data caching. Data caching has been used as vehicle to achieve scalable performance in CSDs in thepresence of large number of clients attached per server. The greatest bene�ts of data caching are:� It can eliminate redundant requests for the same data originating at the same client. This makessuch communication between the user machine and the database server unnecessary and signi�-cantly improves response times for requests on the cached data.� Once server-data are locally available, clients can use their own computing resources to processthem and furnish the query results to the users. In this manner, clients can o�-load work from thedatabase server(s). This feature has gained importance as client workstations become increasinglymore powerful.However, with these bene�ts come several cost/consistency trade-o� issues. Whenever cached data isupdated at the owner site, the new value must be propagated to the copies. This propagation costcan be signi�cant. For frequently changing data, the cost of propagating the updated data values tothe cache sites can outweigh the gains of caching the data. Another consideration is in the contextof client-server databases where the data cached at the clients is updated by transactions. Here, theconcern is not only with data consistency but with data recovery in case of client or database servercrashes. 14

3.1 Basic Client-Server Database ArchitectureDirectly applied to databases, the basic CS architecture di�ers very slightly from that found in operatingsystems. The principal components of the system are a server, which runs the full database managementsystem, and the client, which acts as an interface between applications on a remote processor and theDBMS. Interaction between the client and server is purely on the basis of queries and results. Theclient application sends a query to the server as a result of user interaction. This query is transportedon a local or wide-area network by some form of message-passing or remote procedure call mechanismto the server. The server receives the query, executes it, and sends the result back to the client usingthe same communication mechanism. The client application processes the results of the query in anaive fashion, such that should the same data be required again, it must be re-fetched from the server.Figure 5 depicts the con�guration of this architecture.There is little di�erence between this mode of operation and that used in a time-sharing system,save for the ability of the client application to format the results in a fashion that may be more suitablefor the end-user's consumption. This is the approach taken by the \SQL server" applications commonlyavailable in the market today. Apart from improved presentation capabilities, another more importantreason for the adoption of this strategy is that the server is no longer burdened with tasks related toapplication processing. As a result, it is possible to achieve improved performance rates (throughputand response time) than in the basic time-sharing system. The usefulness of a database lies in itsability to store and manage data for future retrieval, functions which inherently make its operationsdisk-intensive.
Shared Database

Server

DBMS

Comm.

Soft.
Comm.

Soft.

Application

Software

LAN

CS Server ClientFigure 5: Basic CSD ArchitectureUnfortunately, data access times of secondary storage devices lag at least two orders of magnitudebehind those of CPU and primary memory, and hence, I/O operations on the server disk remain a majorstumbling block in the improvement of overall system performance of a client-server architecture. Thiswas con�rmed in [18]. It was also pointed out that although database retrieval operations are not asCPU-intensive as application processing, the basic client-server architecture su�ers serious degradationof performance when a large number of \active" clients are attached per server.A natural extension to the basic architecture, which attempts to overcome the I/O bottleneck, is15

the use of several disks, accessible in parallel, at the server. A query received by the server is �eldedby the disk which holds the relevant data. By this method, the response time is improved. Data isdistributed among the disks in a manner that ensures that similar loads are imposed on each of them.This can be achieved by using some load-balancing algorithm, disk striping or any other scheme similarto those used in distributed database systems [49]. Experiments performed on the fully replicated case[18], show this variation to be an improvement on the basic architecture, especially under circumstanceswhere the number of clients is limited. Now, the disk that is currently under the least load can �eld therequest for data. However, this architecture still su�ers from scalability problems. Other disadvantagesin the use of this con�guration include the cost of propagation of updates to all the disks. This couldbe alleviated by the use of a variant of a primary-copy commit mechanism at the cost of reducedconcurrency (i.e., all transactions that are interested in a recently-updated data item must block untilthe new data value has been safely forced to secondary storage). The monetary cost of multiple disksis a major concern as well.3.2 RAD-UNIFY Client-Server Database ArchitectureRather than attempting to improve server performance by introducing parallelism, the RAD-UNIFYclient-server architecture [69] further reduces demands on the server. This is achieved by moving asigni�cant portion of the database server functionality to the client site. The rationale here is to exploitboth the client CPU and primary memory. The client maintains the query-processing and optimizationcomponents of the database, while the server retains the data as well as the concurrency control andbu�er managers. Interaction between clients and servers takes place at a low-level as only messages anddata pages are transported between them. The client \stages" these data pages in its own memory space.Subsequently, the query processor running on the local CPU refers to these staged pages to generatethe result(s) for the client application/query. The usage of client bu�er space to hold a portion of theserver database has proved to be a basic yet e�ective form of caching [69, 24, 9, 19]. This caching playsa central role in the improvement of performance rates of the architecture [19] as compared to thoseachieved by the basic CS con�guration. Figure 6 shows the functional components of the architecturein discussion.
Shared Database

Application

Software

LAN

Client

Server DBMS
Locking and

Data Managers

Comm.

Soft.

Client

DBMS

Comm.

Soft.

RAD−UNIFY Server Figure 6: RAD-UNIFY CSD Architecture16

By allowing the contents of the client memory to remain valid across transactions (inter-transactioncaching), it is possible to reduce the load on the server on the assumption that data may be heldlocally. The immediate bene�t of this method is that the server may be accessed less frequently if thequery patterns are such that locally cached data is relevant to most of a particular client's applicationrequirements. Locality of data access improves response time and the reduction of both I/O andCPU processing demands on the server translates directly into improved system scalability. The RAD-UNIFY model of client-server databases is a popular architecture in the development of object-orienteddatabases as it simpli�es the development of the server.3.3 Enhanced Client-Server Database ArchitectureThe next step in improving CSD performance is to attempt to increase the locality of data accessesby using the client workstations' disk resources. The obvious approach would be to extend the RAD-UNIFY architecture to use the client disk as an extension of primary memory. While this could beperformed automatically as part of the operating system's virtual memory functionality, the DBMS'sspecialized bu�er-management techniques are better suited to the task of maintaining this disk cache.This is the approach taken in the Enhanced Client-Server (ECS) architectures proposed by [18, 28].Figure 7 shows the main components of the ECS architecture.
Shared Database

Application

Software

LAN

Client

Server DBMS Comm.

Soft.

Client

DBMS

Comm.

Soft.
Cached Data

ECS Server

&

ECS CatalogsFigure 7: Enhanced Client-Server ArchitectureThe client site now runs a simpli�ed implementation of the DBMS which features query processing,disk storage and bu�er managers on its own. The use of the disk resource allows a larger amount of datato be staged at the client disk-cache, further increasing the locality of data access and consequently,reducing response times. If the disk-caches are large enough and update frequency is low, or conictingtransactions are uncommon, this architecture is shown to improve overall system performance almostlinearly with the number of clients attached per server. Once client disk-caches contain the data relevantto the client's work, the server only needs to deal with update requests and their propagation to pertinentsites. Client caches can be built using incremental techniques and maintained by methods of eitherreplacement or merging of data. As the number of updates increases, the degree of conict increases aswell. Therefore, the performance of the aggregate system becomes tied to the server's ability to copewith the tasks of maintaining data consistency, update propagation and concurrency control.17

Deppisch and Obermeit [21] propose a check-out system that uses local disks for data storagesuitable for environments where most transactions are of a long duration. The proposed architectureinvolves \multi-level" cooperation between clients and server(s). Large objects are frequently extractedin their entirety from the server database for manipulation on a client workstation. Client queries areexchanged at the query level to ensure easy constraint checking, but the actual data pages relating to therequested object are shipped back to the server at a low(er) level. By allowing this \dual" interaction,the system o�ers the consistency maintenance of the query-level interface as well as the performancebene�ts of low-level transfers. When a modi�ed object is being returned to the server, the data pagesare transmitted at page level but the modi�ed access paths and meta-data are submitted at query level.If any consistency constraints are not satis�ed by the new data, the injected pages are simply discarded.This avoids the processing of large amounts of data through the higher layers of the database (queryprocessor and complex object manager).3.4 Data Exchange Granularity in CSDsThis section examines CSDs in the light of the interactions of their functional components and thegranularity of the data items they exchange. In this regard, two such broad categories exist, namely:query-shipping and data-shipping architectures.In query-shipping systems, interaction between the client and server takes place as the exchange ofqueries, submitted in a high-level language such as SQL, and results being returned as matching tuplesfrom a set of data resident on the server. Query-shipping systems are in common use in relationaldatabase client-server implementations, particularly those where the level of client interaction is mainlylimited to the execution of casual or ad hoc queries. Examples of such systems include \SQL servers,"applications which allow PC productivity packages to access enterprise data, and on-line informationretrieval systems such as those described by Alonso et al. [3]. In [18, 20], it was shown that that theperformance of a properly designed query-server system can be enhanced to the extent where it becomesa viable implementation even for environments that demonstrate high update rates.Data-shipping systems di�er from query-shipping ones in that the unit of data transfer is normallyequivalent to the unit of low-level storage. The use of data page transfers allows some of the databasefunctionality to be located at the client site. This allows reduction of the server burden and permitstighter integration between client and server in issues such as concurrency control [9]. The scenario usedby the Enhanced CSDs in [18] could be viewed as a data-shipping system in which the unit of transferand client storage is that of data tuple. Such CSDs can therefore be referred to be as tuple-serversystems. While the concept of a tuple remains valid in object-oriented databases, their ability to storemore complex nested data types and their a�liated methods requires a tighter degree of integrationbetween client and server which can only be o�ered by low-level data transfers.Data shipping in client-server architectures has been used for some time in distributed �le systemswhose principle aims are to increase locality of access and reduce server load. The Andrew File Service(AFS) [40] uses a �le-server approach in which �les are retrieved from the server when opened, cached18

at the client while in local use, and �nally written back. Caching in AFS is disk-based, which is suitablegiven that entire �les are being transferred at a time and these may exceed the size of primary memory.Sprite [62] and Sun's Network File Server (NFS) use page-shipping approaches to remote �le services.Files are opened on the remote server and pages are fetched as requested by the client. Experiments onthe Sprite �le system revealed that while client disk caching is de�nitely bene�cial due to the increasedlocality of access, a large server cache can provide bene�ts of similar magnitude without the expense ofa local disk cache.The three main data shipping classes of CS architectures useful for object-oriented databases arethe page-server, object-server and �le-server [24]. These di�er principally in the granularity of datatransfer and caching. The �le-server and page-server have their origins in distributed �le systems. Thefollowing subsections examine each of the above classes in some detail.3.4.1 File-Server CSDsWhile this method is not really a major player in the area of database management, it has someinteresting properties that allow rapid system development. It is indeed possible to implement a databasesystem on top of a distributed �le system but there are certain ine�ciencies involved. These ine�cienciesarise due to the mismatch between �le systems and databases, and make this con�guration an ine�cientsolution for CSDs.The �le-server CSD does not use the notion of a �le as the unit of transfer. This would beprohibitively ine�cient as it is common for an entire database to be contained in a single operatingsystem �le organized into objects [7]. Instead, the �le-server approach often makes use of a remote-open�le service such as Sun NFS or Sprite to perform page-level requests for data. Therefore, the architecturewould simply consist of simpli�ed client systems sharing a database using a remote �le service [24]. Theclients interact with a single server process which co-ordinates client I/O requests with the remote �lesystem, as well as concurrency and the allocation of new pages in the database.The key bene�t of this architecture is that because the network �le system software is normallyintegrated in the kernel of the operating system (at least with Sun NFS), page read operations are quitefast as compared to the performance that would be achieved by using a remote procedure call [24].Caching of data may be performed explicitly by the client application or by the �le system's page cache.The former is probably more bene�cial, as the bu�er replacement used by the �le service is probablyoptimized to take into account access patterns that di�er from those encountered in databases. Asnetwork �le systems have been in use for a long time they are fairly stable and reliable products.The use of remote �le services has its costs as well. Because the I/O function is separate from theserver process, it is often necessary to make separate requests for tasks that are closely related. Forexample, reading a page from the database requires one call to the server process to get the lock andanother to the network �le system to retrieve the actual page. NFS, in particular, is also known for thelow speed of executing write operations, which can impact transaction throughput adversely.19

3.4.2 Page-Server CSDsThe basic page-server architecture is an instantiation of the RAD-UNIFY architecture that uses pagesas the main unit of data transfer [24, 14]. In this case, the server is essentially a large bu�er pool withbu�er management, I/O access, concurrency, and recovery modules. When the server receives a pagerequest, it locks the page in the appropriate mode, retrieves and transmits it to the requesting client.The client database comprises of an object manager, an access method manager, a page bu�er and, ofcourse, a communication module. The client database system acts as an agent for applications runningon the same processor, ful�lling their data requirements using either locally cached data, or throughinteraction with the server. The client DBMS may cache only pages (page-to-page system) or bothpages and objects (page-to-object system). The bene�t of an object cache is that space is not wastedstoring objects that have not been referenced. Naturally, this is dependent on the relative size of theobjects and pages.Caching of objects is not without costs; it requires that objects be copied from the incoming pagebu�er before they can be referenced. If an object is modi�ed when its corresponding page in the pagebu�er has already been replaced by a more recent page request, the client will have to retrieve the pagefrom the server again so that the object can be included on it for transmission back to the server. Byusing a good clustering scheme, it is possible to ensure that most of the objects contained on a pagewill be related in some fashion (e.g. clustering all components of a complex objects). By such means,the number of requests to the server can be reduced, which in turn has implications on the scalability ofthe system. Additionally, because retrieval operations on the server only involve locating a particularpage and transmitting in its entirety, the overhead on the server is reduced to a minimum. Experimentsdiscussed in [24] show that the page-server architecture, in the form described above, yields performancesuperior to both �le-server and object-server architectures, provided a good data clustering scheme isin use.In the RAD-UNIFY CSD, there is no interaction between the clients. In [27], retrieval of infor-mation from other clients' caches is presented as a way to \augment" the local cache. By adding clientcaches, CSDs follow the trend in building global-memory hierarchy systems [51]. This makes the vol-ume of data available in memory bu�ers (other than in the server's cache) larger, further alleviating theperformance bottleneck introduced by the server disk's slower access time. When an client applicationmakes a request to the client DBMS, the presence of the relevant data pages in the client cache ischecked. A page miss at the client results in the request being forwarded to the server. The serverchecks if it has the requested page in its memory. If so, the page is sent to the client as normal. If not,before attempting to retrieve the page from its disk, the server checks if any other client has the pagecached and is prepared to ship it to the requester. If so, the server puts the two clients in touch with oneanother and the page is transferred between them. Only when a page is not cached at any client is theserver's disk accessed. A number of algorithms have been developed that allow this method to be usedto reduce the server load without a�ecting data consistency in the database, as well as maximizing theamount of data that is available for retrieval from global memory. [27] indicates that this con�gurationis best suitable for environments where there is low to medium data sharing.20

The notion of the Enhanced CSD and the use of client's disks described earlier can be extendedin the page-server environment. A proposal along these lines appears in [28]. There are essentiallytwo choices in designing such an architecture: the �rst would be to have each client act as a serverfor a portion of the database. This approach gives rise to standard distributed database issues such asfragmentation, replication and data availability problems. The second alternative is to involve the diskthat the operating system's virtual memory uses, thus allowing a large in-memory cache to be held.This technique has the disadvantage that the operating system bu�er management and replacementpolicies may not in agreement with the database access patterns. An additional problem is that thenature of the virtual memory cache is transient, and thus, it does not persist across separate executionsof the client DBMS software. These problems are overcome in [28] by modifying the bu�er managementsystem of the client DBMS so that it handles disk storage as a direct extension of main memory.Applied to object-oriented databases, page-server architectures face a few problems. As the unit oftransfer and locking is the page, it is di�cult to implement object-level locking. This negatively impactsthe concurrency of the system. Since object methods can only be executed on the client, operations oncollections or parts thereof may require the transfer of the entire collection to the client, which can beexpensive in terms of both server load and communication cost.3.4.3 Object-Server CSDsAs implied by its name, the unit of exchange between client and server in the object-server architectureis the object [24, 14]. In this architecture, almost all database functionality is replicated between clientand server. One glaring disadvantage of the page-server approach is that the server has no understandingof the semantics or contents of the object. In cases where objects are small, the page granularity maynot be speci�c enough to minimize network transmissions. Under situations of poor object clusteringpage-server performance is a�ected by multiple page requests for each object required by the client. Thesame problem arises under circumstances where the cache hit rate is low. As a result, the object-serveris very sensitive to the client cache size [24]. By performing requests for data at the object level, ahigher level of speci�city is achievable and the clustering problem can be overcome. Conversely, undersituations of high clustering the object-server o�ers little bene�t. It duplicates the e�ort in clusteringdata because it determines relationships between objects navigationally (based on relationships such ascontainment and association).Retaining DBMS functionality at the server has the bene�t of allowing the server to performconsistency and constraint checking before performing potentially expensive data transfers. Querypredicates and object methods can be evaluated on the server, reducing the size of results to onlyrelevant data. [24] shows that the object-server has better performance when the client cache size issmall. The use of objects as the unit of transfer and bu�ering lends itself to high concurrency and theobject-server is best used under situations of high contention. Several techniques have been proposedin order to increase the page-server's concurrency to similar levels [10].In [14], some subtle factors that arise in the choice between an object-server and a page-server21

are suggested. Since the page-server has no knowledge of the object semantics and methods, it ispossible to update data in violation of these conditions. As authorization can only be tied to the datatransfer granularity, page-servers are unable to permit �ne-granularity authorization constraints. Otherconsiderations relating to application development e�ort, ability to handle dynamic schema changes,programming language support, etc. are also di�cult to address in the page-server environment.3.5 Consistency Maintenance of Networked DataWhen volatile memory or disk caching is in use, consistency and control over updates has to be main-tained at all times. There are numerous issues that have been studied in this area and one could broadlyclassify them into two categories: concurrency control policies and caching algorithms. These two areasare not completely orthogonal as concurrency control techniques a�ect the way caching may work. Inthe following two subsections, we examine the questions addressed by research in these two areas.3.5.1 Concurrency Control PoliciesIn [39], an early form of CSD called ObServer used mostly for the handling of software-engineeringartifacts is presented. The sole purpose of ObServer is to read from and write to disk chunks of memory(software engineering applications). The server disk unit is organized in segments which stores clustered(related) objects. The rationale is that once a segment is retrieved all associated data items are selectedas well. Both segments and objects maintain unique identi�ers. Client sites run the ENCORE databasethat is able to cache objects and re-arrange them so that they can best serve the user-applications.Segments represent the unit of transfer from the server to the clients while modi�ed objects travel inthe other direction. It is up to the server to coordinate, through locking, multiple copies of objects andultimately streamline update operations on segments. The ObServer lock manager can work in twogranularities: segments and objects.The novel point of the locking scheme used here is that clients issue lock requests in the form oftriplets: the �rst element in a triplet is the type of lock required, the second determines the way thelock is to be communicated to other clients that already have a lock on the object in discussion, andthe last designates whether the server is to establish a lock. Read and write modes are di�erentiatedas restrictive (R) and non-restrictive (NR). NR-READ works as a traditional read lock. R-READdisallows processes other than the current to read an object. R-WRITE provides a user with exclusiveaccess to an object. NR-WRITE disallows other processes from obtaining either R-WRITE or R-READbut allows reading of an object through the NR-READ mode.The locking scheme uses an additional dimension namely that of communication-mode. Thislocking-mode refers to the communication among clients as the result of an action of another client.More speci�cally, any changes in the lock status of a server object should be send to the clients thatmaintain a lock on the same object. Five communication modes (and their interaction) are proposed:� U{Notify: noti�es lock holders upon object update.� R{Notify: noti�es lock holders if another client requests the object for reading.22

� W{Notify: noti�es lock holders if another client requests the object for writing.� RW-Notify: noti�es lock holders if another client requests the object for either reading or writing.� N-Notify: no noti�cation at all.Deadlock detection is performed in the server using a exible wait-for graph. This hierarchical lockingscheme is capable of operating in a more highly-concurrent fashion than its strict two-phase counterpart[39]. Wilkinson and Niemat [85] proposed an extension to the two-phase locking protocol for consistencymaintenance of workstation cached data. Their protocol introduces cache-locks (CLs). Such locksindicate that clients have successfully obtained server objects. Shared locks have been demoted to CLswhich are non-blocking. When a client requests a exclusive lock on an item already cached at anotherclient, the CL at that client becomes a pending-update-lock (PL). If an update takes place, the PL isconverted to an out-of-date lock (OL); otherwise, it is converted back to a CL lock. CL, PL, and OLtrack the status of objects that are being modi�ed by a client site and at the same time have alreadybeen downloaded to others. The introduced concurrency scheme is compared with the protocol thatuses notify-locks [39]. Simulation results indicate that:� Cache-locks always give a better performance than two-phase locking.� Notify-locks perform better than cache-locks whenever jobs are not CPU bound.� Notify-locks are sensitive to CPU utilization and multiprogramming level.Thus, if the processing in the CSD tends to be CPU-bound cache-locks should be used; otherwise,notify-locks o�er better performance.In a CSD environment where client use portions of their main-memory to cache data pages, Careyet al. [9] examine the performance of a number of concurrency control policies. These techniques areused as the means to achieve consistency between server and client-cached data pages. The proposedalgorithms are variations of the two-phase locking (two techniques) and optimistic protocols (threetechniques).The Basic Two-Phase Locking scheme (B2PL) disallows inter-transaction data caching and pagescan be cached as long as a read-lock has been obtained at the server. A client may request an upgrade toa write-lock and receive it provided that there is no conict at the server. The server is also responsiblefor monotoring and resolving deadlocks. The Caching-Two-Phase-Locking (C2PL) allows for inter-transaction data caching. All items requested for the �rst time need to be fetched from the server.Clients read valid data as the server exploits reply-messages to piggyback modi�ed pages. To achievethis, the server compares the log sequence numbers (LSN) of its pages with those maintained locally byclients. The server maintains the pertinent LSN numbers of all client-cached pages.In the Optimistic-Two-Phase Locking (O2PL) family of protocols, clients update data pages locally.A committing client will have to ultimately \ship" to the server all modi�ed data pages. This is achievedby sending all the dirty pages to the server (in a pre-commit logical message). The server will then haveto coordinate a prepare-phase for the commitment of updates. This phase entails obtaining update-copylocks at the server and on other client-sites that may have cached images of the pages being updated.23

Update-locks are similar to exclusive locks but they are used to assist in early deadlock detectionas transactions that conict at commit time indicate a deadlock. Clients that have already acquiredupdate-locks, may have to obtain new copies of the modi�ed server pages. This can be done in a varietyof ways, namely by: invalidation (leading to the O2PL-I protocol), update propagation (O2PL-P), and�nally, by a combination of the above two called dynamic algorithm (O2PL-D).As B2PL disallows inter-transaction data caching, it demonstrates the poorest performance. Theperformances of the other four protocols present small variations for a small number of clients andtheir throughput rates level out for more than ten clients. The O2PL-I works well in situations whereinvalidated pages will not be used soon while O2PL-D performs satisfactorily when the workload is notknown a priori. Finally, the O2PL-P is good for \feed" (producer/consumer) settings but does not workwell when clients have hot-server pages in their cold sets. For workloads with low or no locality, allalgorithms perform similarly.In a parallel study, Wang and Rowe [82] examine the performance of �ve cache-consistency and/orconcurrency control algorithms in a CSD con�guration, namely: two-phase-locking, certi�cation, call-back locking, no-wait locking and no-wait with noti�cation. Callback locking is based on the idea thatlocks are released at the client sites only when the server requires them to do so for update reasons.Once a write occurs, the server requests that all pertinent clients release their locks on a particularobject before it proceeds with the processing of the modi�cation. No-wait locking is based on the ideathat a client starts working on a transaction based on the cached data and waits for certi�cation bythe server at commit time. In this way, both client and server work independently and in a mannerthat can help increase the system throughput. Noti�cation is added to the no-wait protocol in orderto avoid delays in aborting transactions whose cached data have been invalidated by modi�cations inother sites (server or clients). Simulation experiments indicate that either a two phase locking or acerti�cation consistency algorithm o�er the best performance in almost all cases. This result is basedon the assumption that inter-transaction caching is in place and is in accordance to what [9] reports.Two additional results are:� When the network shows no delays and the server is very fast then no-wait locking with noti�cationor callback locking perform better.� Callback locking is better when inter-transaction locality is high and there are few writes. Other-wise, no-wait locking with noti�cation performs better.In a later study, Carey et al. [10] show how object-level locking can be supported in a page-serverobject-oriented DBMS. They compare the two basic granularities for data transfer and concurrencycontrol, viz, object-level and page-level with three hybrid approaches. In the �rst hybrid approach,locking and callbacks are considered at the object level only. The second hybrid scheme performslocking at the object level but allows page level callbacks whenever possible, and the third approach usesadaptive locking as well as callbacks. Client-server data transfers are performed at the page level only.Simulation results showed that the third hybrid scheme outperformed all the other approaches for therange of workloads considered. In [1], an optimistic concurrency control algorithm is proposed whichpromises better performance than the schemes presented in [10] in the presence of low to moderate24

contention. This algorithm has been described in the context of the Thor object-oriented database[55]. Transaction processing in Thor is performed at the clients by allowing data-shipping and inter-transaction caching. Instead of using callback locks, Adya et al. propose the use of backward validation[36] to preserve database consistency. Once a client transaction reaches the commit stage, it has tobe validated with possibly conicting transactions at other clients. In order to do this, the validationinformation for the transaction (identity of each object used along with the type of access) is sent to theserver. If there are more than one servers, this information is sent to one of the servers that owns someof the objects used by that transaction. The server commits the transaction unilaterally if it owns allthe objects in question. Otherwise, it co-ordinates a two-phase protocol with the other servers. Oncea read-write transaction commits, the server sends invalidation messages to clients that are cachingobjects updated by that transaction. These clients purge all invalid objects from their caches and alsoabort any transactions that may be using this outdated data. The algorithm takes advantage of thepresence of closely, but not exactly, synchronized client clocks in order to globally serialize the order ofexecution of client transactions.3.5.2 Caching SchemesSo far, caching techniques have been used in numerous instances and in diverse settings. More notableis their applications in the areas of �le systems/servers, retrieval systems and CSDs.We �rst present a brief introduction to the issue of caching in OSs. Sprite [62] features a mechanismfor caching �les among a collection of networked workstations. Sprite guarantees a consistent view ofthe data when these data are available in more than one sites and through a negotiation mechanism(between the main and virtual memory components of the client OS) determines the e�ective physicalclient memory for �le-caching. Sprite permits sequential as well as concurrent write-sharing. Sequentialwrite-sharing occurs when a �le is modi�ed by a client, closed, then open by another client. If the latterclient has an older version of the �le in its cache (determined by a version number), then it ushesthat �le from its cache and obtains a fresh version. Since Sprite uses delayed write-backs, the currentdata for a �le may be with the client that last wrote to it. In this case, the server noti�es the lastwriter and waits for it to ush its changes to the server, and then allows the requesting client to accessthe �le. Concurrent write-sharing occurs when a �le is open at multiple client sites and at least oneof them is writing it. In this situation, client caching for that �le is disabled and all reads and writesare undertaken by the server. The �le in question becomes cacheable again when it has been closed onall clients. Experiments with �le operations indicate that under certain conditions, client caches allowdiskless Sprite workstations to perform almost as well as clients with disks. In addition, client cachingreduces server load by 50% and network tra�c by 75%.In [48], Korner suggested the use of intelligent methods to improve the e�ectiveness of caching.Caching algorithms using higher-level knowledge can generate expectations of user process behavior toprovide hints to the �le system. Using Unix-based generalizations of �le usage by programs, dependingon the �lename, extension and directory of residence, an expert system was used to generate likely accesspatterns. Three algorithms were examined, namely: LRU, optimal and \intelligent." The data block25

that the optimal algorithm selects for replacement is that with the next time of reference farthest awayfrom the present time. The intelligent algorithm makes use of three separate performance enhancements:1. Intelligent caching: blocks are cached according to anticipated access patterns. Di�erent cachemanagement policies are used based on these anticipated access patterns.2. Cache preloading/reloading: information of general utility to all processes (i.e., i-node tables etc.)is determined and preloaded or reloaded during idle server periods.3. Intelligent background read{ahead: where sequential access was anticipated, the next block of thesequence is passed with each read request to allow discretionary prefetching.Of the three performance enhancements used in the intelligent algorithm, cache preloading appears tobe always useful, and intelligent caching, too, provides performance increases over the LRU strategy.The cost of the extra processing required by the intelligent cache management algorithm is surprisinglysmall and is readily amortized by the performance gains it provides.In [78], an approach to cache management is proposed for distributed systems (databases, �leservers, name servers, etc.). Updates at the server are not automatically propagated to the clientsthat cache a�ected data. By looking at the cached data as \hints," rather than consistent replicas ofthe server data, the problems associated with maintaining strict data consistency can be approacheddi�erently. The objective is to maintain a minimum level of cache accuracy. By estimating the lifetimeof a cached object and its age, the application could determine the degree of accuracy of the object indiscussion. Hints that are highly accurate ensure good performance bene�ts.In [11], the issue of write-caching in distributed systems is examined. Write policies used intraditional �le system caches use either write-through or periodic write-back that may result in littlebene�t in general distributed settings. Here, systems with client and server non-volatile caches areconsidered. Both a single-level caching system (using the server's memory) and a two-level caching(using client caches as well) settings were examined. The replacement policies used were LRU, WBT(write-back with thresholds which is purging-based) and LRUPT (LRU purge with thresholds). InWBT, a block purge is scheduled whenever the cache occupancy exceeds a given high-limit threshold.LRUPT combines, LRU and WBT; cached blocks are maintained in LRU order and purged accordingto this order. Experimental results suggest that LRU as well as LRUPT perform well in a single-levelwrite-caching environment. In a two-level caching environment, the combination of LRU at the clientand WBT at the server results in better performance.In [3], Alonso et al. proposed the utilization of individual user's local storage capacity to cachedata locally in an Information Retrieval System. This signi�cantly improves the response time ofuser queries that can be satis�ed by the cached data. The overhead incurred by the system is inmaintaining valid copies of the cached data at multiple user sites. In order to reduce this overhead,they introduce the notion of quasi-copies. The idea is to allow the copies of the data to diverge fromeach other in a controlled fashion. Propagation of updates to the users' computers is scheduled at moreconvenient times, for example, when the system is lightly loaded. The paper discusses several ways inwhich the decision to add or drop data from the users' cache can be speci�ed by the user. Coherencyconditions specify the allowable deviations of the cached image from the data at the server. Several types26

of coherency conditions are discussed and analysis shows that quasi-caching can potentially improveperformance and availability in most circumstances. Response time problems can arise in systemswhere a very large fraction of the updates received at the server have to be propagated to the users'computers. Similarly, problems arise if the selection and coherency conditions are very complex. In thiscase, the overhead of the book-keeping may outweigh the savings. The ideas discussed in this paperwere further extended and analyzed in [43].In [27], a framework that allows client page requests to be serviced by other clients is proposed. Thispaper treats the memory available to all the clients as another level in the global memory hierarchy.This available memory is classi�ed into four levels based on the speed of access: The local-client-memory (as it is the fastest to access), server-memory, remote-client-memory, and the server-disk (itis the slowest to access). To optimize the page accesses in this context, a number of page replacementtechniques have been suggested. In the Forwarding algorithm, a page request can be ful�lled not bythe server but by another client which happens to have a copy of the requested page in its own cache.In Forwarding with Hate-Hints, a server page dispatched to a client is marked it as \hated" one. Evenif the server page is subsequently removed in the server's bu�er, it can be still retrieved from the clientthat has cached it. In this manner, a server disk-access is avoided. If there is only one copy of a pageavailable in the global memory in a non-server location and the holding client wants to drop the pagein question, the server undertakes the task to be its \next" host. This technique is termed Forwarding-Sending-Dropped-Pages. The two last schemes can be combined in a more e�ective technique calledForwarding-Hate-Hints & Sending-Dropped-Pages. As the introduced techniques strive to keep pagesavailable in the main-memory areas, they display throughput gains if compared with the conventionalCallback Locking policy.The idea of distributed-caching as described in [67] is to o�-load data access requests from over-burdened data servers to idle nodes. These nodes are called mutual-servers and they answer query withthe help of their own data. This study focuses on the following caching policies: Passive Sender/PassiveReceiver (PS/PR), Active Sender/Active Receiver (AS/AR), and similarly AS/PR and PS/AR.1. PS/PR: The sender does not actively hand over any object. When it needs to throw somethingaway, it simply broadcasts it to the network. If some mutual-server is listening, the object mightbe picked up if it seems valuable, otherwise it is dropped. The mutual-servers do not make anyactive e�orts to �ll up their bu�ers either.2. AS/PR: A data server or mutual-server trying to get rid of an object takes the initiative to handit over to another mutual-server. When an Active-Sender node perceives itself to be a bottleneck,it broadcasts a message to the network seeking hosts for its most globally valuable objects. Fromthose mutual-servers that respond, the server selects one and hands over the object.3. PS/AR: Idle mutual-servers take the initiative to obtain globally valuable data from data serversand overowing mutual-servers. As busy servers discover the existence of willing receivers, theyhand over their most valuable objects to them.4. AS/AR: In this scenario, all nodes are Active Senders or Receivers. When a data server or mutual-server is idle, it volunteers to store other nodes' most valuable objects and when it becomes a27

bottleneck it looks for other nodes to o�-load its most valuable objects to.In most simulation settings, distributed caching policies show superior performance to the pure client-server system. Active-Sender policies perform the best under skewed loads.In [20], the problem of managing server imposed updates that a�ect client cached data is examinedin the context of the Enhanced CSD architecture. Five update propagation techniques are introducedand their behavior is examined through experimentation. The strategies di�er mainly in their ap-proaches to server complexity and network bandwidth utilization. The simplest update propagationstrategy is the On{Demand strategy (ODM) where updates are sent to clients only on demand. Thenext two strategies are built around the idea of broadcasting server data modi�cations to clients assoon as they commit. In the �rst one, updates are sent to all clients indiscriminately as soon as a writeoperation commits. This strategy requires no extra functional server overhead, and is called Broadcast-ing with No Catalog bindings (BNC). In the other strategy, the server maintains a catalog of bindinginformation which designates the speci�c areas of the database that each client has cached. Every timean update job commits, the server sends the updated data only to those clients that require it. Thisstrategy tries to limit the amount of broadcasted data and requires additional server functionality. Itis called Broadcasting With Catalog bindings (BWC). The two �nal strategies combine the previousstrategies with the idea of periodic update broadcasts. Here, client originated requests are handled in amanner similar to ODM, but at regular intervals the server dispatches the updates that have not beenseen by clients yet. This can be done in two di�erent ways, indiscriminately (Periodic broadcasting withNo Catalog bindings (PNC)), or by using a discriminatory strategy based on catalog bindings (Periodicbroadcasting With Catalog bindings (PWC)). Simulations indicate that the performance of these up-date propagation techniques depends greatly on the operating conditions of the ECS. For example, theODM strategy o�ers the best performance if none of the server resources reaches full utilization, whileBNC o�ers the best performance under high utilization of server resources when the updates have smallpage selectivities, the number of clients is large, and the number of updates increases linearly with thenumber of clients in the system.In [64], O'Toole and Shrira present a scheme that allows clients to cache objects and pages. Pre-vious studies have shown that when hot data is densely packed on pages, page{based caching performswell, and when hot data is sparsely packed, object{based caching performs better [10]. By proposinga hybrid caching scheme, this work tries to reduce the number of I/Os when the server installs client{committed updates into the master database. Such update operations are termed installation reads.The server receives commit requests from the clients for whole pages or individual objects. When thecommit request provides a page, the server validates the transaction according to the individual objectthat was modi�ed and then uses the containing page to avoid the read phase of an installation. Commitrequests that provide individual objects require the server to perform installation reads. By using anopportunistic log [63] installation-reads are deferred and scheduled along with other object updates onthe same pages if possible. Simulation results show that when disk I/O is the system performancebottleneck, the hybrid system can outperform both pure object caching and pure page caching.Predicate indexing [73] and predicate merging techniques are used to e�ciently support exami-28

nation of cached query results. When a new query partially intersects cached predicates, this query'spredicate can be trimmed before submission to the server. This can reduce the time required to ma-terialize a query result at the client. Queries are also augmented at times to make the query resultmore suitable for caching. Query augmentation can result in simpler cache descriptions resulting inmore e�cient determination of cache completeness and currency with the potential disadvantages ofincreasing query results and response times, and wastage of server and client resources in maintaininginformation that may never be referenced again. By exploiting the above ideas, Keller and Basu [47]introduced predicate-based client-side caching in CSDs. It is assumed that the database is relationaland stored entirely at a central server. The key idea is the reuse of locally cached data for associativequery execution at the clients. Client queries are executed at the server and the results are used toload the client cache. The contents of client caches are described by means of predicates. If a clientdetermines from its local cache description that a new query is not computable locally then the query(or a part of it) is sent to the server for execution. Otherwise, the query is executed on the cachedlocal data. Transactions executing at the clients assume that all cached data is concurrent. Predicatedescriptions of client caches are also stored by the server. This allows the server to notify clients whentheir cached data is updated at the server. There are several methods for maintaining the currency ofthe data cached at a client: automatic refresh by the server, invalidation of cached data and predicates,or refresh upon demand.3.6 RecoveryAs CSDs often stage data in nodes other than the database server(s), the issue of recovery after a failureis of vital importance. Recovery in CSDs has been addressed by introducing variants of the basic ARIESdatabase recovery protocol.Recovery in the C/S EXODUS Storage Manager (ESM-CS) [29] involves two main components.The logging subsystem maintains an append-only log on stable storage and the recovery subsystem usesthe log to provide transaction rollback and crash recovery. Crash recovery is performed by the serverin communication with the clients using a modi�cation of the ARIES algorithm [59]. ESM-CS usesstrict two-phase locking for data pages and non two-phase locking for index pages. Before each clienttransaction commits, all the pages modi�ed by it are sent to the server (no inter-transaction caching).Before the pages are sent, however, the log records for the transaction are sent to the server and writtento stable storage (write-ahead logging). Checkpoints are taken at the server regularly. Each page hasa Log Record Counter (pageLRC) which is stored with the page itself. When a page is modi�ed, thepageLRC is updated and copied into the corresponding log record. During crash recovery, the pagesthat could have possibly been dirty at the time of the crash are identi�ed. This is not as simple asin ARIES since there may be pages that are dirty at a client but not at the server. The pageLRC iscompared with the LRC of the log record to determine whether a particular update has been reectedin the page. Care has to be taken to ensure that the combination of page ID and pageLRC refers to aunique log record.ARIES/CSA [60] is another modi�cation of the ARIES redo-undo algorithm [59]. Adapting ARIES29

to a CSD environment requires that the Log Sequence Numbers generated throughout the system beunique and monotonically increasing. The log records produced at a client for local updates are sent tothe server when dirty pages are sent back or when a transaction commits, whichever happens earlier.Write-ahead logging is used to ensure that log records are sent to the server and written to stablestorage before any pages are sent back. The Commit LSN [58] technique is used to determine whetherall the updates on a page were committed. This method uses the LSN of the �rst log record of theoldest update transaction still executing to infer that all the updates in pages with page LSN less thanCommit LSN have been committed. Clients as well as the server take checkpoints at regular intervals.This allows for inter-transaction caching of data at the clients.In [65], Panagos et al. propose the use of local disks for logging and recovery in data-shipping CSDarchitectures. All updates on cached data items, performed at clients, are logged locally. Concurrencycontrol is based on strict, global two{phase locking. The local logs of the clients need never be mergedand local transaction rollback and crash recovery is handled exclusively by each client. Recovery isbased on the write-ahead log protocol and the ARIES redo-undo algorithm [59] is used. The stepstaken in the proposed recovery algorithm for recovery from a single node crash are: (i) Determining thepages that may need recovery, (ii) Identifying the nodes involved in the recovery, (iii) Reconstructinglock information, and (iv) Coordinating the recovery among the involved nodes.4 Parallel Database SystemsHigh-performance computing systems are available today in many avors and con�gurations. Suchparallel systems already play a vital role in the service sector and are expected to be in the forefrontof scienti�c and engineering computing in the future [66]. Parallel Database Systems (PDSs) o�erhigh-performance and high-availability by using tightly or loosely connected multiprocessor systems formanaging ever increasing volumes of corporate data. New and data-intensive application areas callfor the further development and re�nement of PDSs featuring ultra-high CPU processing capacity andaggregate I/O bandwidth.In today's business world, novel application areas that enjoy tremendous growth include DataWarehousing, Decision Support Systems (DSS) and Data Mining. The main characteristics of theseapplications are the huge volumes of data that they need to handle and the high complexity of thequeries involved. Queries in data warehouses and DSSs make heavy use of aggregations and they arecertainly much more complex than their OLTP counterparts [46]. In data mining, useful associationpatterns need to be discovered by scanning large volumes of mostly historical and temporal data [2, 80].With the introduction of multimedia and digital libraries, diverse data types have been introduced(i.e., images, video clips and sounds) which require an order of magnitude higher disk capacity andmore complex query processing. Uniprocessor database systems simply cannot handle the capacity orprovide the e�ciency required by such applications. The goal of a PDS is to provide high-performanceand availability at a much lower price than an equivalent aggregate of uniprocessor systems [81].It has been successfully argued and shown that the relational model and its accompanying oper-30

ators are amenable to parallelization. Hence, the relational model has become the natural choice fordeployment in PDSs. The power of the model lies in its simplicity and uniformity. Relations consistof sets of tuples, and operators applied on relations produce new relations. In this regard, relationalqueries can be decomposed into distinct and possibly independent relational operators.A PDS can achieve high performance through parallel implementation of operations such as loadingdata, building indexes, optimizing and processing of queries, and load balancing [23]. A PDS can exploitparallelism by using one of the following approaches:1. Pipelined parallelism: the PDS can execute a relational query in parallel by streaming the outputof one operator into the input of another operator.2. Partitioned parallelism: the PDS partitions the input data and each processor is assigned to oneof these data sets. All processors apply the same operator simultaneously.3. Independent parallelism: distinct PDS processors execute di�erent operators on possibly disjointdata sets at the same time. In this type of parallelism, the key assumption is that the input andthe output of the parallel operations are not related.Throughput and average transaction response time are the two performance indicators mostly usedin the evaluation of PDSs. A PDS that processes a large number of small transactions can improvethroughput, by executing as many transactions in parallel as possible. On the other hand, a systemthat processes large transactions can reduce the response time by performing many di�erent tasks ofeach transaction in parallel.There are two possible ways to parallelize a query evaluation process [71]: inter-query and intra-query parallelism. In inter-query parallelism, several di�erent queries are executed simultaneously. Thegoal of this form of parallelism is to increase transaction throughput by utilizing as many processorsas possible at any time. Intra-query parallelism refers to the execution of a single query in parallel onmultiple processors and disks. Hence, the response time of individual queries is reduced. Inter-queryparallelism cannot achieve signi�cant response time reduction as individual tasks assigned per processorare scheduled according to a strict sequential discipline.Intra-query parallelism can be manifested in two forms: intra and inter-operation parallelism.Intra-operation parallelism executes the same operator on a number of processors with each processorworking on a di�erent data set. Inter-operation allows the assignment of processors on the various nodesof the query-tree on demand. The above two types of intra-query parallelism are complementary and canbe used simultaneously on a query. Large-scale parallelism of a complex query may introduce signi�cantcommunication costs. Therefore, the PDS must not only consider conventional query optimization andload balancing issues but also take into account the communication overhead involved.As critical applications are run on PDSs, high-availability is a much desired property for thesystem in the presence of a failure. The probability of a single processor or disk device failure in a PDSconsisting of a large number of processors and disks in signi�cantly higher than in a uniprocessor system.A PDS designed without taking this fact into account, will demonstrate very frequent break-downs ofservice. For instance, if a component (either CPU or disk unit) has a failure rate of once every �ve31

years, then in an aggregate architecture with one hundred such components and assuming statisticalindependence, the mean failure rate is once every eighteen days.For database applications, the availability of disk-resident data objects is perhaps the most criticalconcern [41]. One approach to obtain higher availability is to simply replicate data items on separatedisks. Thus in the event of a disk failure, the copy of the data may still be available on the backup disk.Unless both disks (the original disk and the backup disk) fail at the same time, the failure of a single diskwill be transparent to the users and the PDS will continue to operate properly. However, replicationcan potentially lead to data inconsistency, if a data item gets modi�ed but its copy remains unchanged.To avoid this undesirable e�ect, a protocol that avoids inconsistencies has to be enforced at all times.A popular such protocol is ROWA (read one, write all) where a logical read operation is converted to aphysical read operation of any one of the copies, but a logical write operation is translated into physicalwrites to all copies.If disk A {that has a (partial) replica of its data on disk B{ fails, then disk B will have to carrynot only its own requests but the queries received by the failed disk as well. This \double" work thatdisk B has to accommodate may result in poor response time which could become twice as long. Inaddition, the throughput of the overall system will be e�ectively reduced. In order to avoid the abovephenomena, a scheme that replicates the data on the disks, in a manner more resilient to disk failures, isrequired. Chained declustering is a technique that allocates data throughout the available disk devicesand provides acceptable performance rates in the case of a failure [41] . We briey describe chaineddeclustering in a subsequent section.4.1 Metrics and Design ObjectivesThe two most important metrics in studying parallelism are speedup and scaleup [23]. Speedup indicateshow much faster a task can be run by increasing the degree of parallelism. Scaleup refers to the handlinga larger task by increasing the degree of parallelism proportional to the size of the task. More speci�cally,consider a PDS running a database application, and suppose that we enhance the system adding newprocessors and disks. Let the execution time of the application in the initial system be TS and that inthe enhanced con�guration be TL. Then, the speedup given by the larger system is :Speedup = TSTLThe speedup is linear if an N -times larger or more expensive system yields a speedup of N . If thespeedup is less than N , the PDS demonstrates sub-linear speedup. The notion of speedup holds theproblem size constant while the PDS grows in terms of available computing resources. However, it isvery often the case that we need to increase the \capacity" of the PDS so that it can handle a largerdatabase (problem domain). In this case, the e�ectiveness of the new system is expressed by using thenotion of scaleup.Let us assume that a database task A runs on a parallel database system M and with executiontime TA. Now suppose that we enhance the old system and build a new system L which is N times32

larger or more expensive than M . In L, we run a new database task B that is N times larger than Aand the execution time is TB. Then, the scaleup is de�ned as the ratio:Scaleup = TATBThe PDS demonstrates linear scaleup on task B if the above fraction is equal to one. If TB > TA (i.e.,Scaleup < 1), then the PDS is said to demonstrate sub-linear scaleup behavior.There are two distinct types of scaleup relevant to database systems, depending on the compositionof the workload: transactional and batch scaleup. In transactional systems, a database task consists ofmany small independent requests (containing updates as well). For instance, consider an OLTP systemthat manages deposits, withdrawals, and queries on account balance. In such systems, we would like toideally obtain the same response time in spite of the increase in the number of user requests and the sizeof the database. Therefore, transactional-scaleup designates not only N -times many requests but alsodemands that these requests be executed on a shared database which is N -times larger than the originalone. Transactional-scaleup is an well-suited indicator for the assessment of a PDS as transactions runconcurrently and independently on separate processors and their execution time is independent of thedatabase size. In batch-scaleup, the size of the database increases along with the size (or range) of thesubmitted query. If a N -times larger (and possibly more complex) transaction runs on a N -times largerdatabase (using a N -times larger PDS) and we still maintain the same levels of response times, thenwe can say that the PDS presents linear batch-scaleup.In optimal settings, PDSs should demonstrate both linear speedup and scaleup [23]. However, anumber of restraining factors prevent such systems from achieving this. They are:1. Startup costs: there exist costs every time a process is initiated in a parallel con�guration. Iftens or even hundreds of processes must be started, then the startup time can easily dominate theactual computation time, resulting in execution time degradation.2. Interference: a task executed in a PDS may consist of a number of processes executing concurrentlywhich may access shared resources. Whenever there is contention for a shared resource (such ascommunication media/buses, disks, locks, etc) by two or more parallel transactions, a slowdownwill inevitably take place. Both speedup and scaleup can be a�ected by such contention.3. Service Time Skew: a well designed PDS attempts to break down a single task into a numberof equal-sized parallel subtasks. The higher number of subtasks we create, the less the averagesize of each subtask will be. It is worthwhile to note that the service time of the overall task isthe service time of the slowest subtask. When the variance in the service times of the subtasksexceed the average service time, then the partitioning of the task is skewed. In the presence of askewed partitioning, increasing parallelism improves the execution time only slightly since thereis a subtask with very long service requirements.4.2 Parallel Database ArchitecturesIn [75, 81], a taxonomy for such parallel systems and frameworks for their implementation were pre-sented. Depending on the employed hardware con�gurations and the used software paradigms, various33

parallel database architectures are feasible. In the following subsections, we discuss four such architec-tures:� Shared-memory: all processors share direct access to a common global memory and to all disks.� Shared-disk: each processor has a private memory and direct access to all disks through aninterconnection network.� Shared-nothing: each processor has local main memory and disk space; in addition, each site actsas a server for the data resident on the disk or disks in it.� Hierarchical or Hybrid: this model is organized around an interconnection network that allowsinteroperation of functionally independent sites. Each site is, in its own right, organized accordingto one of the preceding three models.4.2.1 Shared Memory ArchitectureIn a shared-memory system, any processor and disk has direct access to a common global memory.Figure 8 depicts the salient characteristics of this architecture. The advantages of a shared-memoryarchitecture are: simplicity in developing database software, e�cient communication among processors,and possibility for e�ective load balancing.Since every processor shares the database's meta-data and catalog information, migration of adatabase from a multitasking uni-processor system to a shared-memory environment is a relativelystraightforward task. Simply, every process (transaction) that used to run concurrently can be nowexecuted on an individual processor, in parallel with other processes. This represents inter-query par-allelism which may result in a higher throughput for the overall system. Thus, database applicationsdesigned for uniprocessors can be run in a shared-memory system with few or no changes. Intra-queryparallelism for shared-memory architectures requires more e�ort to be implemented but remains sim-ple. Unfortunately, intra-query parallelism may impose high interference, hurting the response time andthe throughput. Most of the contemporary shared-memory commercial PDSs exploit only inter-queryparallelism.
Disk

Interconnection Network

DiskDisk

CPU

Shared Memory

........
.........

CPU CPU

.................

Figure 8: Shared Memory ArchitectureThe communication between processors can be implemented with shared memory segments usingonly read and write system calls, which are much faster than message sends and receives. The load34

balancing is excellent since every time a processor �nishes a task, it can be assigned a new one resultingin an almost perfectly balanced system. On the other hand, shared-memory architectures su�er in cost,scalability and availability. The interconnection network must be extremely complex to accommodateaccess of each processor and disk to every memory module. This increases the cost of shared-memorysystems when large numbers of participating resources are involved. The interconnection networkneeds to have a bandwidth equal to the sum of the transfer bandwidths of all the processor and diskcomponents. This makes it impossible to scale such systems beyond some tens of components as thenetwork becomes a bottleneck. Therefore, the scalability of a shared-memory system is rather low.Also, a memory fault may a�ect most of the processors when the faulted module is a shared memoryspace, so reducing the data availability.Examples of shared-memory PDSs are the XPRS system [76], DBS3 [6], Volcano [33] and SybaseASE 11.5. In summary, the shared-memory architecture is a satisfactory solution when the PDS main-tains coarse granularity parallelism.4.2.2 Shared Disk ArchitectureIn a shared-disk architecture, each processor has a private memory and can access all the availabledisks directly via an interconnection network. Each processor can access database pages on the shareddisks and copy them into its own memory space. Subsequently, the processor in discussion can workon the data independently, without interfering with anyone else . Thus, the memory bus is no longer abottleneck. To avoid conicting operations on the same data, the system should incorporate a protocolsimilar to cache-coherence protocols of the shared-memory systems. Figure 9 depicts this architecturalframework.If the interconnection network can successfully scale up to hundreds of processors and disks, thenthe shared-disk architecture is ideal for mostly-read databases and for applications which do not createresource contention. The cost of the interconnection network is signi�cantly less than that in theshared-memory model and the quality of the load balancing can be equally good.
Interconnection Network

DiskDisk Disk

.........

.................CPU CPU CPU

Memory Memory Memory

Figure 9: Shared Disk ArchitectureAn additional advantage of the shared-disk over the shared-memory organization is that it canprovide a higher degree of availability. In case of a processor failure, the other processors can take over35

its tasks. The disk subsystem can also provide better availability by using a RAID architecture [13].Migrating a system from a uniprocessor system to a shared-disk multiprocessor is straightforward sincethe data resident on the disk units need not be reorganized. The shared-disk con�guration is capableof exploiting inter-query parallelism.On the other hand, the main drawback of the shared-disk architecture remains its scalability,especially in cases of database applications requiring concurrent read and write operations on shareddata. When the database application makes a large number of disk accesses the interconnection to thedisks becomes a bottleneck. Interference among processors is also possible and control messages amongprocessors due to coherency protocols may further worsen matters.4.2.3 Shared-Nothing ArchitectureIn a shared-nothing (SN) system architecture, each node of the PDS is an full-edged computing systemconsisting of a processor, main memory bu�ers and one or more disks. The sites communicate with eachother through a high speed interconnection network. Such a system can be a parallel multicomputersystem or even a number of workstations attached to a high speed local area network (termed Networkof Workstations or NOW). Figure 10 depicts the architecture in question.The major bene�t of a shared-nothing system is its scalability. A shared-nothing architecture caneasily scale up to thousands of sites that do not interfere with one another. The interference is reducedby minimizing resource sharing and carefully partitioning data on multiple nodes. It has been shownthat shared-nothing architectures can achieve near-linear speedups as well as good scaleups on complexrelational queries and on-line transaction processing workloads [19].
CPU

Memory
Disk

CPU

Memory
Disk

CPU

Memory
Disk

Interconnection Network

..........................Figure 10: Shared Nothing ArchitectureAs one can easily observe, the previous architectures (Figures 8 and 9) tend to move large amountsof data through the interconnection network. The shared-nothing on the other hand, if designed prop-erly, can minimize such data movement. Essentially, it can move only requests and answers providinga sound foundation for achieving high scalability. Another advantage of the shared-nothing architec-ture is that it can makes exclusive use of commodity computing systems. At the same time, the needfor a very expensive interconnection network can be avoided. Today's high-performance processors,large memory modules, sizable disk devices, and fast LANs are available at very low costs. Thus, theshared-nothing framework can be realized by utilizing \o�-the-self" components, reducing the cost of36

the overall architecture tremendously.The availability of such systems can be increased by replicating data on multiple nodes. Finally,since disk references are serviced by local disks at each node, without going through the network, theI/O bandwidth is high. Under pure-query settings, this I/O bandwidth is equal to the sum of the diskbandwidths of all the nodes involved.The main drawbacks of the shared-nothing systems lie with the high complexity in the systemsoftware layer and the load balancing used. Shared-nothing PDSs require complex software componentsto e�ciently partition the data across nodes and sophisticated query optimizers to avoid sending largevolumes of data through the network. Load balancing depends on the e�ectiveness of the adopteddatabase partitioning schemes and often calls for re-partitioning of the data so that query executionis evenly distributed among system nodes. Finally, the addition of new nodes will very likely requirereorganization of the data to re-balance the load of the system.The shared-nothing architecture has been adopted by many commercial database systems suchas Tandem, Teradata (one of the earliest and most successful commercial database machine), InformixXPS, and BD2 Parallel Edition [5] as well by numerous research prototypes including Gamma [22] andBubba[8].4.2.4 Hierarchical-Hybrid ArchitectureThe hierarchical or hybrid architecture represents a combination of the shared-memory, shared-disk andshared-nothing architectures [81]. The main vehicle of this architecture is an interconnection networkthat aggregates nodes. These nodes can be organized using the shared-memory model where a fewprocessors are present. This is shown in Figure 11. Alternatively, every node can be con�gured as ashared-disk architecture. In this case, every processing element could be further organized using theshared-memory model. Thus, one may achieve three levels of hierarchy with each one representinga di�erent architecture. Hua et al. [42] proposed a hybrid system where clusters of shared-memorysystems are interconnected to form a shared-nothing system.
Interconnection Network

Shared Memory

........

CPU

CPU

CPU

............

............. In
te

rc
o

n
n

e
ct

io
n

 N
e

tw
o

rk

Shared Memory

........

CPU

CPU

CPU

............

............. In
te

rc
o

n
n

e
ct

io
n

 N
e

tw
o

rk

...............

Disks

DisksFigure 11: Hierarchical ArchitectureThe case for a hybrid system termed \shared-something" is discussed in [81]. This is a compromise37

between the shared-memory and shared-disk architectures as CPUs in a shared-disk model work o� aglobal memory space. It is expected that such hybrid architectures will combine the advantages of theprevious three models and compensate for their disadvantages [42]. Thus, hybrid architectures providehigh scalability as the outer level employs a shared-nothing design and, at the same time, furnish goodload-balancing features by using shared-memory con�gurations in each node.Many contemporary commercial PDSs have converged towards some variant of the hierarchi-cal/hybrid model. NCR/Teradata's new version of database machine as well as Tandem's ServerNet-based systems are samples of the hierarchical architecture.4.3 Data PlacementData placement is one of the most critical issues in PDSs. In the context of the Shared-Nothing(SN) architecture, it has been studied extensively and a number of placements algorithms have beenproposed. In such systems, the e�ectiveness of the load balancing is largely dependent on proper dataplacement. In SN architectures, data placement determines not only the data distribution but also thedistribution of operators that access the data. Thus, if data is not carefully assigned to the nodes, theload might be distributed non-uniformly leading to the creation of bottlenecks. The I/O parallelismin a PDS can be fully exploited only if the data is placed on multiple disks. Thus, the data shouldbe horizontally partitioned or \declustered." It has been shown that declustering is useful for sharedmemory con�gurations as well, since memory conicts can be reduced [6].In data placement, there are three major factors to be determined: the degree of declustering,the selection of particular nodes (disks) on which the partitioned data will be stored, and �nally, themapping of data tuples to system nodes (partitioning method). The degree of declustering is the numberof nodes (disks) on which a relation is distributed and its choice is a very important decision as far as thedata placement algorithms are concerned. It should be chosen so that the bene�t of parallelism is higherthan the cost of the overheads incurred. A higher degree of declustering indicates higher parallelismfor the relational operators. The factors that a�ect the degree of declustering chosen are: startupand termination costs of the operators, communication costs, and data skew. In [16], an experimentalmethodology that computes the degree of declustering is discussed. This degree selection is based onthe maximization of the system throughput achieved by the PDS. Simulation experiments indicate that,for the system parameters used, full declustering is not the best option possible.As soon as the degree of declustering has been determined, partitioning techniques are used toplace tuples into nodes (disks). Some commonly-used methods are:1. Round-Robin (RR): The relation is declustered in a round-robin fashion. Thus, if the degree ofdeclustering is M , the i-th tuple is placed on the i mod M -th node (disk). The main advantageof this method is its excellent load-balancing, since every node (disk) has approximately the samenumber of tuples. RR is ideal for queries that scan entire relations. On the other hand, all Mnodes (disks) must be used for point and range queries, even if the result resides on only one node(disk). 38

2. Hash Partitioning (HP): Here, the relation is declustered using a hashing function with range0::M � 1. This function takes as input the partitioning attribute of a tuple and returns thenumber of the node (disk) where this tuple is to be placed. If the hash function is chosen carefully,and the data is not skewed on the partitioning attribute, the data is declustered almost uniformly.Subsequently, queries that scan the entire relation are very e�cient as it takes approximately 1=Mof the time required to scan the relation on a single disk system. Point queries on the partitioningattribute are executed very e�ciently since the hash function can directly identify the node (disk)that may contain the target tuples. Range queries have to be materialized by scanning all Mnodes.3. Range Partitioning (RP): This method requires from the user to specify a range of attribute valuesfor each node (disk). Such a declustering is described by a \range vector" that consists of thepartitioning attribute and the various adopted ranges. The database catalog maintains such rangevectors. RP is obviously well-suited for point and range queries. As compared to HP, a pointquery may display some overhead as the range-vector has to be looked-up before the query isdirected to the appropriate node (disk). For range queries, requests are directed only to speci�cnodes that may have the answer. Depending on the selectivity of the range query, RP can producethe results in either short or long turnaround times. If the selectivity is large, RP will furnishunsatisfactory query turnaround times. In this case, the HP or RR are preferable.4. Hybrid-Range Partitioning (HPR) [31]: This technique attempts to combine the sequential paradigmof the RP and the load balancing of RR partitioning. To achieve this, the HPR uses the char-acteristics of the submitted queries. In particular, HPR takes as input the average query CPUexecution time, the average query I/O time needed, the average communication time, and the ad-ditional costs to initiate and terminate the execution of the query. Then, it computes the optimalnumber of processors (ONP) required to minimize the average response time. Assuming that theaverage result size of a query is Nresult tuples, then the fraction of Nresult=ONP is computed.This fraction represents the maximum number of tuples to be returned by a single node in thecase of a range query. This set of tuples is termed \fragment" [31].Subsequently, the relation is sorted on the partitioning attribute and is chopped into sequentialfragments of size Nresult=ONP . Finally, these fragments are distributed among the PDS nodes(disks) through a Round-Robin technique. The assignment of fragments to nodes is kept in arange table.In [57] a simulation study of data placement algorithms is presented for a shared-nothing archi-tecture. Due to the high processing power of contemporary processors and high bandwidth of moderninterconnection networks, full declustering is shown to be a viable method for data placement. Fulldeclustering provides the highest degree of parallelism and avoids the penalties of computing either thedegree of declustering or the placement of data partitions on the available disks.Another critical issue in data placement algorithms is the availability of data in the presenceof failures. Chained Declustering is a technique that redistributes the load in the event of a failure[41]. In this technique, system nodes are divided into disjoint groups called clusters. The tuples of a39

relation are horizontally declustered among the disks of one cluster. Two copies of each relation aremaintained, the primary and the backup copy. The tuples in the primary copy are declustered using apartitioning method (from those mentioned earlier) and the i-th primary copy partition (Fi) is storedon the i mod C-th disk in the cluster, where C is the cluster size. The backup copy consists of the samepartitions as the primary copy and the i-th backup partition (fi) is stored on the (i+1)mod C-th disk.The term Chained Declustering indicates the fact that any two adjacent disks are \linked" together likea chain. An example with C = 5 is shown in Figure 12.
Disk

Primary Copy

BackUp Copy

F0

0 1 2 3 4

F1 F2 F3 F4

f4 f0 f1 f2 f3Figure 12: Disk Lay Out for Chained DeclusteringDuring normal operation, read operations are directed to primary copies and write operationsto both primary and backup copies (i.e., ROWA protocol). If a single disk failure occurs, ChainedDeclustering tries to uniformly distribute the load among the remaining nodes. In this case, all primaryand backup partitions on the working disks are used. The increase of the load on each disk is 1=(C� 1)assuming that the load was distributed uniformly to all disk before the failure occurred. For exampleif the disk number 2 fails, the backup copy that resides on disk 3 must be used instead. Now, disk 3redirects the 3/4th of its own requests to disk 4. Disk 4 will use the backup partition number 3 (f3) toaccommodate these requests. In the same manner, disk 4 will send the 2/4th of its own requests to disk0 and so on (Figure 13). This dynamic rebalancing has, as a direct result, an increase in load of all
Disk

Primary Copy

BackUp Copy

F0

0 1 2 3 4

F1 F3 F4

f4 f0 f2 f3

X

X

Load
1/4 F3

+
f2

2/4 F4
+

3/4 f3

3/4 F0
+

2/4 f4

F1
+

1/4 f0Figure 13: Disk Failure Handing in Chained Declusteringstill functioning disks by 1/4th. The reassignment of the active partitions does not require disk I/O nordata movements across disks. It can be implemented by only changing some bounds in main-memorymanaged control tables.4.4 Parallel Query OptimizationA vital component for the success of a PDS is the parallel query optimizer (PQO). Given a SQLstatement, the objective of the PQO is to identify a parallel query materialization plan which gives the40

minimum execution time. Since, one of the objectives of PDSs is to diminish the query response timesin decision-support and warehousing applications, the role of PQO is of paramount importance to thesuccess of such systems [37].Techniques employed by conventional query optimizers are not adequate for PDSs. More specif-ically, in the case of multi-way joins, a conventional query optimizer considers plans only for the left-linear join tree. In doing so, the optimizer limits the search space and exploits possible auxiliary accessstructures on the joining operands. This strategy works reasonably well for uniprocessor systems [72].However, the introduction of parallelism in PDS makes the number of possible join trees very high. Thismeans that optimal and even near-optimal solutions may not be included in the search space when itis restricted to linear join trees [50]. Additionally, the cost function used by the PQO has to take intoaccount the partitioning and communication costs, the placement of the data, and the execution skew.Therefore, several algorithms have been introduced for parallel query optimization.In [71], opportunities in the parallelism of left-deep (left-linear) and right-deep (right-linear) querytrees (Figure 14) in light of multi-way joins are discussed. For binary join operations the hash join
left−linear

right−linear

left−oriented bushy wide−bushy

right−oriented bushyFigure 14: Types of Query Treesmethod is used which is the best possible choice for parallel execution. This technique consists of twophases: build and probe. In the build phase, the inner-join operand is used to create a hash tablein main memory. If the hash table exceeds the memory capacity, the overow tuples are stored to atemporary �le on disk. During the probe phase, the outer-join operand is used to probe the hash tableor the portion of the hash table on the disk. The inner-join operand is called \left operand" and in thesame fashion the outer-join operand is termed \right operand." In the right-deep query tree, the buildphase can be executed in parallel for all join operations and the probe phases can be executed usingextensive pipelining. On the other hand, left-deep trees allow the execution of the probe phase of onlyone join and the build phase of the next join in the tree at the same time. Hence, right-deep queryrepresentations are better suited to exploit the parallelism o�ered by PDSs.The above result is extended for bushy query trees in [12]. Right-deep trees may su�er from low41

exibility of structure, thus implying a limitation on performance. A major problem for pure right-deep trees is that the amount of main-memory available may not enough to accommodate all the innerrelations during the build phase. Hence, the right-deep tree has to be decomposed into disjoint segmentsso that the inner relations of each segment can �t into memory. Bushy trees o�er greater exibility inthe generation of query plans at the cost of a larger search space. It has been shown that for sort-merge,the evaluation of a bushy tree can outperform that of the linear trees. However, in the case of hash jointhe scheduling of a bushy query tree is much more complex than the corresponding right-deep structure.The problem here is that the execution of join operation should be synchronized in order to fully exploitpipelining. Therefore, the use of segmented right-deep trees for the execution of pipelined hash joinsis suggested in [12]. A segmented right-deep tree is a bushy tree that consists of right-deep segments.These segments can be evaluated using the approach described in [71]. Each segment is assigned to aset of processors where the size of the set is proportional to the estimated amount of work in the joinoperations. Thus, independent segments can be executed in parallel using sets of disjoint processors.In [86], a performance study is provided for four di�erent execution strategies for multi-join queries,using the main-memory PDS PRISMA/DB [4]. The four examined strategies are:� Sequential execution strategy (SP): This is the simplest way to evaluate a multi-join query usingintra-operator, but not inter-operator, parallelism. Here, join-operators are evaluated one afterthe other using all available processors. Since there is no pipelining used the intermediate resultshave to be stored. In PRISMA, these results are kept in main memory and this is the main reasonfor the competitiveness of this strategy.� Synchronous execution(SE): The rationale here is to execute independent subtrees of the query-tree using independent parallelism.� Segmented right-deep execution (RD): This is the query processing method discussed earlier andwas proposed in [12].� Full parallel execution (FP): Both pipelining and independent parallelism are added to partitionedparallelism in the individual join-operators. Here, each join operator is assigned to a private groupof processors, so that all join operators are executed in parallel. Depending on the shape of thequery tree, pipelining and independent parallelism are used.All strategies but the �rst o�er imperfect load balancing. The query tree shapes used in the experimentswere left-linear, left-oriented bushy, wide-bushy, right-oriented bushy and right-linear (Figure 14). Theexperimental results indicate that for a small number of processors the SP strategy is the cheapest oneas intermediate results are bu�ered. For larger number of processors, the FP strategy outperforms theothers. The performance of the SE and RD depends on the shape of the query tree. In particular,RD does not work well for trees with left-deep segments. However, it is possible to transform, withoutlittle cost, a query tree to a more right-oriented one. In this case, the RD strategy can work verye�ectively. In terms of memory consumption, the RD appears to be better than the FP. Among thedi�erent query-tree shapes, the most competitive seems to be the bushy tree since it allows for moree�ective parallelization.A di�erent approach in PDS query processing is discussed in [38] where the problem is decomposed42

into two phases: Join Ordering and Query Rewrite (JOQR), and Parallelization. The rationale of thisapproach resembles that followed in the compilation of programming languages where the problem isfragmented into several distinct phases in order to deal e�ectively with the problem's complexity andprovide easy implementation.The �rst phase, JOQR, produces an annotated query tree that �xes the order of operators andthe join computing methods. This phase is similar to traditional (centralized) query optimization anda conventional query optimizer can be used. In accordance with the design of traditional optimizers,this phase can be further broken into two steps:� The �rst rewrites the submitted query using heuristics (algebraic transformation rules).� The second arranges the ordering operations and selects the method to compute each operation(for example, the method to compute the joins).In JOQR, an important issue is the choice of the partitioning attributes in the query tree sothat the total sum of communication and computation costs is minimized. In [38], this problem isreduced to a query tree coloring problem. Here, the partitioning attributes are regarded as colors andthe repartitioning cost is saved when adjacent operators have the same color. Subsequently, the costsfunction considers communication and computation costs, access methods expenses, if any, and �nallycosts for strategies that compute each operator. These algorithms also deal with queries that includegrouping, aggregation and other operations usually contained in DSS and Warehousing queries.The second phase of the approach takes as input the annotated query tree produced and returnsa query execution plan.� The �rst step translates the annotated query tree to an operator tree by \macro-expansion." Thenodes of an operator tree represent operators and the edges represent the ow as well as timingconstraints between operators. These operators are considered as atomic pieces of code by thescheduler.� The second step schedules the operation tree on the parallel machine's nodes, while respecting theprecedence constraints and the data placement.5 SummaryIn this chapter, we have examined three families of database architectures used to satisfy the uniquerequirements of diverse real-world environments. The architectures optimize database processing bytaking advantage of available computing resources and exploiting application characteristics.To deliver real-time responses and high throughput rates, main-memory databases have beendeveloped with the assumption that most of their operational data is available in volatile memory atall times. This is not an unrealistic assumption as only a small fraction of any application's dataspace is utilized at any given moment. The absence of frequent disk accesses has led to the designof concurrency and transaction processing techniques speci�cally tuned to perform well in the main-memory environment. 43

The widespread availability of workstations and high-end PCs coupled with the presence of high-speed networking options have led to the evolution of client-server systems. Empirical observations haveindicated that most database users access small and likely disjoint portions of the data. In addition,these data portions are accessed with a much greater frequency than the rest of the database. The desireto o�-load such localized processing from database servers to the clients' own workstations has led tothe development of client-server database architectures. Initial implementations utilized client machinesas user-interface points only. However, the increasing processing capabilities of PCs and workstationshave allowed clients to not only be able to cache data but also perform database processing. Cachingcould either be of an ephemeral or long-term nature. In the former, the clients' bu�er space is usedas a temporary storage area for data. In the latter, the clients' full memory hierarchy is used to storeserver-originating data not only in main memory but in the disk units as well (i.e., disk-caching).In the absence of localized database accesses or when the volume of data to be processed is massive,parallel databases o�er an appropriate architecture for e�cient database processing. Parallel databasesystems o�er high-performance and high-availability by using tightly or loosely connected multiprocessorsystems and I/O devices. The aggregate ultra-high CPU processing capabilities and the I/O bandwidthof such systems o�er numerous opportunities for parallelism in database processing. This parallelism isachieved by, �rst, declustering data among the I/O units and, then, by optimizing processing throughpipelined, partitioned, and independent parallelism.Each of the above architectures is radically di�erent from those used in conventional centralizeddatabase systems. The advantages o�ered by each con�guration are often traded-o� with more complexconcurrency control and recovery mechanisms. Research e�orts in the past few years have aimed atreducing such overheads, and at the same time, concentrated on devising specialized solutions (bothsoftware and hardware) to improve their performance characteristics. In this chapter, we have presenteda number of key issues involved in the implementation of such database architectures and outlined recentadvances.References[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. E�cient Optimistic Concurrency Control Using LooselySynchronized Clocks. In Proceedings of the ACM International Conference on Management of Data, SanJose, CA, May 1995.[2] R. Agrawal, C. Faloutsos, and A. Swami. E�cient Similarity Search In Sequence Databases. In Proceedingsof the International Conference on Foundations of Data Organization and Algorithms (FODO), pages 69{84,Chicago, Illinois, 1993.[3] R. Alonso, D. Barbara, and H. Garcia-Molina. Data Caching Issues in an Information Retrieval System.ACM{Transactions on Database Systems, 15(3):359{384, September 1990.[4] P. M. G. Apers, C. A. van den Berg, J. Flokstra, P. W. P. J. Grefen, M. L. Kersten, and A. N. Wilschut.PRISMA/DB: A Parallel Main Memory Relational DBMS. IEEE Transactions on Knowledge and DataEngineering, 4(6):541{554, December 1992.[5] C. Baru, G. Fecteau, A. Goyal, H. Hsiao, A. Jhingran, S. Padmannabhan, G. Copeland, and W. Wilson.DB2 Parallel Edition. IBM Systems Journal, 34(2):292{322, 1995.[6] B. Bergsten, M. Couprie, and P. Valduriez. Prototyping DBS3, a Shared-Memory Parallel Database System.In Proc. Int. Conf. on Parallel and Distributed Information Systems, pages 226{234, Miami Beach, FL, 1991.44

[7] A. Biliris and J. Orenstein. Object Storage Management Architectures. In A. Dogac, M.T. Ozsu, A. Biliris,and T. Sellis, editors, Advances in Object-Oriented Database Systems, volume 130 of Computer and SystemsSciences{ASI Series F, pages 185{200. NATO, 1994.[8] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith, and P. Val-duriez. Prototyping Bubba, A Highly Parallel Database System. IEEE Transactions on Data and KnowledgeEngineering, 2(1):4{24, March 1990.[9] M. Carey, M. Franklin, M. Livny, and E. Shekita. Data Caching Tradeo�s in Client{Server DBMS Architec-ture. In ACM{SIGMOD{Conference on the Management of Data, Denver, CO, May 1991.[10] M. Carey, M. Franklin, and M. Zaharioudakis. Fine{Grained Sharing in a Page Server OODBMS. InProceedings of the ACM SIGMOD Conference, Minneapolis, Minnesota, 1994.[11] K. Chen, R. Bunt, and D. Eager. Write Caching in Distributed File Systems. In Proccedings of the 15thIEEE International Conference on Distributed Computing Systems, pages 457{466, May-June 1995.[12] M.S. Chen, M.L. Lo, P.S. Yu, and H.C. Young. Using Segmented Right-Deep Trees for the Execution ofPipelined Hash Joins. In Li-Yan Yuan, editor, Proceedings of the 18th International Conference on VeryLarge Data Bases, Vancouver, Canada, August 23{27 1992. Morgan Kaufmann Publishers.[13] P. Chen, E. Lee, G. Gibson, R. Katz, and D. Patterson. RAID: High{Performance, Reliable SecondaryStorage. ACM{Computing Surveys, 26(2):145{186, June 1994.[14] I.S. Chu and M.S. Winslett. Choices in Database Workstation-Server Architecture. In Proceedings of the17th Annual International Computer Software and Applications Conference, Phoenix, AZ, November 1993.[15] D. Comer and D. Stevens, editors. Internetworking with TCP/IP, Volume 3. Prentice Hall, EnglewoodCli�s, NJ, 1993.[16] G. Copeland, W. Alexander, E. Boughter, and T. Keller. Data Placement in Bubba. In Proceedings of theACM Sigmod Conference, Chicago, Illinois, 1988.[17] A. Delis and Q. LeViet. Contemporary Access Structures Under Mixed-Workloads. The Computer Journal,40(4):183{193, November 1997. Oxford University Press.[18] A. Delis and N. Roussopoulos. Performance and Scalability of Client{Server Database Architectures. InProceedings of the 18th International Conference on Very Large Data Bases, Vancouver, BC, Canada, August1992.[19] A. Delis and N. Roussopoulos. Performance Comparison of Three Modern DBMS Architectures. IEEE{Transactions on Software Engineering, 19(2):120{138, February 1993.[20] A. Delis and N. Roussopoulos. Management of Updates in the Enhanced Client{Server DBMS. In Proccedingsof the 14th IEEE International Conference on Distributed Computing Systems, June 1994.[21] U. Deppisch and V. Obermeit. Tight Database Coperation in a Server{Workstation Environment. InProceedings of the 7th IEEE International Conference on Distributed Computing Systems, pages 416{423,June 1987.[22] D. DeWitt, S. Ghadeharizadeh, D. Schneider, A. Bricker, H. Hsiao, and R. Rasmussen. The GammaDatabaseMachine Project. IEEE Transactions on Data and Knowledge Engineering, 2(1), March 1990.[23] D. DeWitt and J. Gray. Parallel Database Systems: The Future of High Performance Database Systems.Communications of the ACM, 35(6), June 1992.[24] D. DeWitt, D. Maier, P. Futtersack, and F. Velez. A Study of Three Alternative Workstation{ServerArchitectures for Object{Oriented Database Systems. In Proceedings of the 16th International Conferenceon Very Large Data Bases, pages 107{121, 1990.[25] D.J. DeWitt, R.H. Katz, F. Olken, L.D. Shapiro, M. Stonebraker, and D. Wood. Implementation Techniquesfor Main Memory Database Systems. In Proceedings of the ACM Conference, 1984.[26] M. Eich. A Classi�cation and Comparison of Main{Memory Database Recovery Techniques. In Proceedingsof the IEEE International Conference on Data Engineering, pages 332{339, 1987.[27] M. Franklin, M. Carey, and M. Livny. Global Memory Management in Client-Server DBMS Architectures.In Proceedings of the 18th International Conference on Very Large Data Bases, Vancouver, Canada, August1992. 45

[28] M. Franklin, M. Carey, and M. Livny. Local Disk Caching for Client-Server Database Systems. In Proceedingsof the 19th International Conference on Very Large Data Bases, Dublin, Ireland, August 1993.[29] M. Franklin, M. Zwilling, C. Tan, M. Carey, and D. DeWitt. Crash Recovery in Client-Server EXODUS. InProceedings of the ACM-SIGMOD Conference, San Diego, CA, June 1992.[30] H. Garcia-Molina and K. Salem. Main Memory Database Systems: An Overview. IEEE Transactions onKnowledge and Data Engineering, 4(6):509{516, December 1992.[31] S. Ghandeharizadeh and D.J. DeWitt. Hubrid-Range Partitioning Strategy: A New Declustering Strategyfor Multiprocessor Database Machines. In Proceedings of the 16th International Conference on Very LargeData Bases, pages 481{492, Brisbane, Australia, 1990.[32] V. Gottemukkala and T. Lehman. Locking and Latching in a Memory-Resident Database System. InProceedings of the 18th VLDB Conference, Vancouver, British Columbia, Canada, August 1992.[33] G. Graefe. Encapsulation of Parallelism in the Volcano Query Processing Systems. In Proceedings of theACM SIGMOD International Conference, pages 102{111, Atlantic City, NJ, 1990.[34] L. Gruwenwald and M.H. Eich. MMDB Reload Algorithms. In Proceedings of the ACM SIGMOD Conference,Denver, Colorado, May 1991.[35] L. Gruwenwald and M.H. Eich. MMDB Reload Concerns. Information Sciences, 76:151{176, 1994.[36] T. Haerder. Observations on Optimistic Concurrency Control Schemes. Information Systems, 9(2):111{120,1984.[37] W. Hasan, D. Florescu, and P. Valduriez. Open Issues in Parallel Query Optimization. ACM{SIGMODRecord, 25(3):28{33, September 1996.[38] W. Hasan and R. Motwani. Coloring Away Communication in Parallel Query Optimization. In U. Dayal,P.M.D. Gray, and S. Nishio, editors, Proceedings of the 21st International Conference on Very Large DataBases, pages 239{250, Zurich, Switzerland, 1995. Morgan Kaufmann Publishers.[39] M. Hornick and S. Zdonik. A Shared, Segmented Memory System for an Object{Oriented Database. ACMTransactions on O�ce Information Systems, 5(1):70{95, January 1987.[40] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and M. West. Scale andPerformance in a Distributed File Scale. ACM Transactions on Computer Systems, 6(1):51{81, February1988.[41] H. Hsiao and D. DeWitt. Chained Declustering: A New Availability Strategy for Multiprocessor DatabaseMachines. In Proceedings of the 6th Conference on Data Engineering, pages 456{465, Los Angeles, CA, 1990.[42] K. A. Hua, C. Lee, and J.-K. Peir. Interconnecting Shared-Everything Systems for E�cient Parallel QueryProcessing. In Parallel and Distributed Information Systems (PDIS, pages 262{270, Los Alamitos, CA,December 1991. IEEE Computer Society Press.[43] Y. Huang, R. Sloan, and O. Wolfson. Divergence Caching in Client-Server Architectures. In Proceedings ofthe 3rd International Conference on Parallel and Distributed Systems, pages 131{139, 1994.[44] H.V. Jagadish, D. Lieuwen, R. Rastogi, A. Silberschatz, and S. Sudarshan. Dal��: A High Performance MainMemory Storage Manager. In Proceedings of the 20th International Conference on Very Large Data Bases,Santiago, Chile, September 1994.[45] H.V. Jagadish, A. Silberschatz, and S. Sudarshan. Recovering from Main-Memory Lapses. In Proceedings ofthe 19th International Conference on Very Large Data Bases, pages 391{404, Dublin, Ireland, 1993.[46] Theodore Johnson and Dennis Shasha. Some Approaches to Index Design for Cube Forest. IEEE DataEngineering Bulletin, 20(1):27{35, March 1997.[47] A. Keller and J. Basu. A Predicate{based Caching Scheme for Client-Server Database Architectures. TheVLDB Journal, 5(1):35{47, 1996.[48] K. Korner. Intelligent Caching for Remote File Service. In Proceedings of the 10th IEEE InternationalConference on Distributed Computing Systems, Paris, France, June 1990.[49] H. Korth and A. Silberschatz. Database System Concepts, 2nd Edition. McGraw Hill, 1991.46

[50] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of Nonrecursive Queries. In Y. Kambayashi,editor, Proceedings of the Very Large Databases Conference, pages 128{137, Kyoto, Japan, August 1986.[51] A. Le�, P. Yu, and J. Wolf. Policies for E�cient Memory Utilization in a Remote Caching Architecture.In Proceedings of the First Conference on Parallel and Distributed Information Systems, Los Alamitos, CA,1991.[52] T. Lehman and M. Carey. Query Processing in Main-Memory Database Systems. In Proceedings of the ACMSIGMOD Conference, Washington, DC, May 1986.[53] T. Lehman, E. Shekita, and L.F. Cabrera. An Evaluation of Starburst's Memory Resident Storage Compo-nent. IEEE Transactions on Knowledge and Data Engineering, 4(6):555{566, 1992.[54] X. Li and M.H. Eich. Post-Crash Log Processing for Fuzzy Checkpointing Main-Memory Databases. InProceedings of the 9th IEEE Conference on Data Engineering, pages 117{124, Vienna, Austria, April 1993.[55] B. Liskov, R. Gruber, P. Johnson, and L. Shrira. A Highly Available Object Repository for use in aHeterogenous Distributed System. In Proceedings of the 4th International Workshop on Persistent ObjectSystems, pages 255{266, September 1990.[56] W. Litwin and T. Rische. Main-Memory Oriented Optimization of OO Queries Using Typed Datalog withForeign Predicates. IEEE Transactions on Knowledge and Data Engineering, 4(6):517{528, December 1992.[57] M. Mehta and D.J. DeWitt. Data Placement in Shared-Nothing Parallel Database System. The VLDBJournal, 6(1):53{72, 1997.[58] C. Mohan. Commit LSN: A Novel and Simple Method for Reducing Locking and Latching in TransactionProcessing Systems. In Proceedings of 16th International Conference on Very Large Data Bases, Brisbane,Australia, August 1990.[59] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: A Transaction Recovery MethodSupporting Fine-Granularity Locking and Partial Rollbacks using Write-Ahead Logging. ACM{Transactionson Database Systems, 17(1):94{162, March 1992.[60] C. Mohan and I. Narang. ARIES/CSA: A Method for Database Recovery in Client{Server Architectures.In Proceedings of ACM-SIGMOD International Conference on the Management of Data, pages 55{66, Min-neapolis, Minnesota, May 1994.[61] J.E.B. Moss. WorkingWith Persistent Objects: To Swizzle or Not to Swizzle. IEEE Transactions on SoftwareEngineering, 18(3):103{139, 1992.[62] M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite Network File System. ACM Transactionson Computer Systems, 6(1):134{154, 1988.[63] J. O'Toole and L. Shrira. Opportunistic Log: E�cient Reads in a Reliable Object Server. In Proceedings ofthe First Conference on Operating Systems Design and Implementation, pages 99{114, Tarascon, Provence,France, 1994.[64] J. O'Toole and L. Shrira. Shared Data Management Needs Adaptive Methods. In Proceedings of the 5thWorkshop on Hot Topics in Operating Systems, pages 129{135, May 1995.[65] E. Panagos, A. Biliris, H. V. Jagadish, and R. Rastogi. Client-Based Logging for High Performance Dis-tributed Architectures. In Proceedings of the Twelfth Internation Conference on Data Engineering, pages344{351, New Orleans, LA, USA, February 1996.[66] D. Patterson and J. Hennessy. Computer Architecture: A Quantitative Approach, 2nd Edition. Morgan{Kaufman, 1996.[67] C. Pu, D. Florissi, P. Soares, K. Wu, and P. Yu. Performance Comparison of Active-Sender and Active-Receiver Policies for Distributed Caching. In Proccedings of the 1st International Symposium on High-Performance Distributed Computing, pages 218{227, September 1992.[68] N. Roussopoulos. The Incremental Access Method of View Cache: Concept, Algorithms, and Cost Analysis.ACM{Transactions on Database Systems, 16(3):535{563, September 1991.[69] W. Rubenstein, M. Kubicar, and R. Cattell. Benchmarking simple database operations. In ACM{SIGMOD{Conference on the Management of Data, pages 387{394, Chicago, IL, 1987.47

[70] K. Salem and H. Garcia-Molina. System M: A Transaction Processing Testbed for Memory Resident Data.IEEE Transactions on Knowledge and Data Engineering, 2(1):161{172, March 1990.[71] D. Schneider and D. DeWitt. Tradeo�s in Processing Complex Join Queries via Hashing in MultiprocessorDatabase Machines. In Proceedings of the Very Large Data Bases Conference, Brisbane, Australia, 1990.[72] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access Path Selection in a Relational DataBase System. In SIGMOD{Conference on the Management of Data, Boston, MA, June 1980. ACM.[73] T. Sellis and C. Lin. A Study of Predicate Indexing for DBMS Implementations of Production Systems.Technical report, University of Maryland, College Park, MD, February 1991.[74] R. Stevens. Unix Network Programming. Prentice Hall, Englewood Cli�s, NJ, 1991.[75] M. Stonebraker. The Case for Shared Nothing. IEEE Database Engineering Bulletin, 9(1):4{9, 1986.[76] M. Stonebraker, editor. Readings in Database Systems. Morgan{Kau�man, San Mateo, CA, 1988.[77] M. Stonebraker. Managing Persistent Objects in a Multi-Level Store. In Proceedings of the ACM SIGMODConference, Denver, Colorado, May 1991.[78] D. Terry. Caching Hints in Distributed Systems. IEEE{Transactions on Software Engineering, SE{13(1):48{54, January 1987.[79] Committee to Study the Impact of Information Technology on the Performance of Service Activities. Infor-mation Technology in the Service Society, A Twenty-First Century Lever. National Academy Press, 1994.[80] V.J. Tsotras, B. Gopinath, and G.W. Hart. E�cient Management of Time-Evolving Databases. IEEETransactions on Knowledge and Data Engineering, 7(4):591{608, August 1995.[81] P. Valduriez. Parallel Database Systems: The Case for Shared-Something. In Proceedings of the 9th IEEEInternational Conference on Data Engineering, pages 460{465, Vienna, Austria, 1993.[82] Y. Wang and L. Rowe. Cache Consistency and Concurrency Control in a Client/Server DBMS Architecture.In Proccedings of the 1991 ACM SIGMOD International Conference, Denver, CO, May 1991.[83] K.Y. Whang and E. Krishnamurthy. Query Optimization in a Memory-Resident Domain Relational CalculusDatabase System. ACM Transactions on Database Systems, 15(1):67{95, March 1990.[84] S.J. White and D.J. DeWitt. A Performance Study of Alternative Object Faulting and Pointer SwizzlingStrategies. In Proceedings of the 18th VLDB Conference, Vancouver, British Columbia, Canada, August1992.[85] K. Wilkinson and M.A. Neimat. Maintaining Consistency of Client{Cached Data. In Proceedings of the 16thInternational Conference on Very Large Data Bases, pages 122{133, Brisbane, Australia, August 1990.[86] Annita N. Wilschut, Jan Flokstra, and Peter M. G. Apers. Parallel Evaluation of Multi-Join Queries. InMichael J. Carey and Donovan A. Schneider, editors, Proceedings of the 1995 ACM SIGMOD InternationalConference on Management of Data, pages 115{126, San Jose, California, 22{25 May 1995.
48

