
Another Outlier Bites the Dust: Computing
Meaningful Aggregates in Sensor Networks

Antonios Deligiannakis #1, Yannis Kotidis, Vasilis Vassalos ∗2, Vassilis Stoumpos, Alex Delis #3

#Dept of Electronic and Computer Engineering, Dept of Informatics, Dept of Informatics & Telecommunications
Technical University of Crete, Athens U. of Econ and Business, University of Athens

1adeli@softnet.tuc.gr
2{kotidis, vassalos}@aueb.gr

3{stoumpos, ad}@di.uoa.gr

Abstract— Recent work has demonstrated that readings pro-
vided by commodity sensor nodes are often of poor quality. In
order to provide a valuable sensory infrastructure for monitoring
applications, we first need to devise techniques that can withstand
“dirty” and unreliable data during query processing. In this
paper we present a novel aggregation framework that detects
suspicious measurements by outlier nodes and refrains from
incorporating such measurements in the computed aggregate
values. We consider different definitions of an outlier node,
based on the notion of a user-specified minimum support, and
discuss techniques for properly routing messages in the network
in order to reduce the bandwidth consumption and the energy
drain during the query evaluation. In our experiments using
real and synthetic traces we demonstrate that: (i) a straightfor-
ward evaluation of a user aggregate query leads to practically
meaningless results due to the existence of outliers; (ii) our
techniques can detect and eliminate spurious readings without
any application specific knowledge of what constitutes normal
behavior; (iii) the identification of outliers, when performed
inside the network, significantly reduces bandwidth and energy
drain compared to alternative methods that centrally collect and
analyze all sensory data; and (iv) we can significantly reduce the
cost of the aggregation process by utilizing simple statistics on
outlier nodes and reorganizing accordingly the collection tree.

I. INTRODUCTION

Recent advances in remote sensing equipment, computing
hardware and communication technology have made the cre-
ation and deployment of large scale sensor networks easier
and cheaper. Their uses in monitoring natural or artificial
conditions and processes in diverse physical environments
– such as wildlife monitoring, health-care, traffic monitor-
ing, agriculture, production monitoring, battlefield surveillance
– have subsequently multiplied. Sensor networks typically
consist of small devices equipped with a power source, a
processing unit with limited processing power and memory,
one or more sensing devices that obtain readings, and a
communication module for relaying these readings or the
result of their processing to other sensor nodes nearby.

A lot of recent research has focused on the problem of
efficiently answering declarative queries in such networks.
These efforts primarily focus on evaluating aggregate queries,
which are of great importance to surveillance applications [16],
[24], and on enabling in-network processing by combining in-
dividual sensor readings as they are transmitted towards a base
station. Such an in-network paradigm dramatically reduces the

communication cost, often by orders of magnitude, and thus
leads to prolonged network lifetime. An equally important
line of research addresses the issue of data cleaning of sensor
readings [10], [11], [19]. A measurement obtained by a node
is only an approximation of the physical quantity observed and
is constrained in accuracy and precision by the characteristics
of the sensing device. Sensors are also often exposed to
conditions that adversely affect their sensing devices, yielding
readings of low quality. For example the humidity sensor
on a MICA mote is very sensitive to rain drops. Moreover,
sensor nodes often provide imprecise individual readings after
a failure, i.e., they tend to fail dirty [10]. Thus, data processing
applications using sensor networks must deal with information
that is at times unreliable and unpredictable.

In this paper, we present a novel query processing frame-
work for aggregate queries over a network consisting of
inexpensive, wireless sensor nodes that are prone to generating
dirty data. Our approach computes robust, or “meaningful”,
aggregates by identifying and excluding potentially “abnor-
mal” readings. In our query processing model, introduced
in our recent preliminary work [15], the sensor network
propagates, in multiple hops towards the base station, the
aggregate values, and also recognizes and reports a concise
set of readings that are believed to be outliers, along with
a set of characteristic values, i.e., witnesses, that have been
used to derive the requested aggregates. In the current paper
we build a comprehensive framework for identifying outliers
and simultaneously computing in a resilient manner aggregate
values in-network. In our framework, users are able to control
the minimum amount of support that the readings of each
node are required to achieve in order for the node to not
be classified as an outlier. This ability is provided through
a query-defined parameter, termed as minimum support, that
regulates the number of tests that measurements have to pass
in order to be included in aggregates. This way, our techniques
are resilient to environments where spurious readings originate
from multiple nodes at the same epoch, due to a multitude of
different, and hence unpredictable, reasons. The framework
presented in this paper supports a rich query model that
permits grouping, and also allows for semantic constraints
on the definition (and detection) of outliers. Respecting the
minimum support for a query and the enriched query model

creates significant challenges for efficient and effective outlier
detection, which we successfully address.

A key characteristic of our framework is that we do not use
the same, originally constructed, collection tree to gather val-
ues throughout the life of an aggregate query, but periodically
seek to readjust it based on easy to compute statistics. Using
a single, monolithic collection tree constructed in advance,
as in [15], [16], [23], does not take into account the existing
readings and can lead to suboptimal decisions when computing
and communicating outliers in the network. We overhaul the
aggregation and outlier detection processes and periodically
determine proper routing paths, based on simple statistics
collected during query processing.
Our contributions can be summarized as follows:
1. We propose a framework (Section III) and algorithms
(Section IV) for in-network aggregate query processing in the
presence of multiple unreliable sensor nodes. Our computation
model is based on simultaneous aggregate processing and
outlier detection, and results in reporting both outlier and
witness nodes in addition to the aggregates, to create increased
user confidence in the produced results and to enable further
investigation of suspicious readings in an efficient manner.
Our framework allows the incorporation of different metrics
(Section IV) for similarity testing between measurements of
sensor nodes.
2. We show that the generation of outliers by sensor nodes ren-
ders raw aggregation techniques meaningless and inefficient.
We thus develop a novel outlier-aware process for constructing
the collection tree that takes into account the nature of our
evaluation process (Section V). Our algorithms are based on
a periodic reorganization of the collection tree using simple
statistics of how often the measurements of two sensor nodes
are similar. We show (Section VI) that the collection trees
constructed by our algorithms result in substantial savings in
the number of transmitted bits (up to 43%) and in energy
consumption compared to existing methods that are outlier-
oblivious when constructing the collection tree. The overhead
of communicating the necessary statistics and running our
reconstruction algorithm is comparable to the bandwidth con-
sumption of one epoch, and less than 0.4% overall.
3. We perform an extensive experimental evaluation of our
framework using real traces of sensory data (Section VI). It
demonstrates significant benefits compared to alternative ap-
proaches a) in the quality of the reported aggregate computed
through our aggregation framework, and b) in energy and
bandwidth consumption (up to 6.5 times). We also report com-
parable performance, in the number of detected and reported
outliers, to an out-of-network computation of outliers that uses
the full set of node readings per epoch.

II. RELATED WORK

The feasibility of using an embedded, lightweight database
management system for sensor network data processing has
been demonstrated by recent research [16], [24]. In particular,
the focus has been on aggregate query processing [3], [6], [7],
[17]. To enable efficient and effective in-network processing

of aggregate queries, many techniques for computing energy-
efficient data routing paths such as the aggregation tree have
been proposed [9], [18]. Alternative techniques do not utilize
an aggregation tree, but rather compute aggregation queries
using decentralized algorithms [1], [12].

Many recent publications have also pointed out that current
sensor nodes are prone to failures and often tend to transmit
unreliable readings due to environmental interference and
other local disturbances, and hence there is need for data
cleaning of sensor readings. In [22] the authors propose a
fuzzy approach to define the correlation among sensor read-
ings, assign a confidence value to each of them, and perform
a fused weighted average. In [10] the authors present ESP, a
data cleaning framework in support of pervasive applications.
ESP allows programmers to specify five pipelined cleaning
stages using high-level declarative queries over data streams
produced by the sensors. In [11] a probabilistic technique
for cleaning RFID data streams is presented. Khoussainova et
al. [13] propose a framework for correcting input data errors
using integrity constraints. Our approach differs from these
techniques in that we do not try to “mask” abnormal readings,
but instead we promote them into first class citizens, on par
with the requested aggregates, and make them available to the
monitoring application, to enable further investigation.

A few recent works propose voting protocols for outlier
detection. In particular, Chen et al. [2] seek to identify faulty
sensors using a localized voting protocol. In Section III-A
we describe how local voting schemes are prone to erroneous
decisions when nodes that observe interesting events are not
in direct communication. Furthermore, the proposed technique
requires a periodic process: nodes marked as faulty are ignored
until the process runs again. As discussed earlier, sensors can
give occasional spurious readings due to, for example, environ-
mental conditions, without being faulty, and by ignoring them
we may miss important observations. Furthermore, while [2]
requires a separate costly process that runs periodically to
find faulty nodes, our framework allows us to capture outlier
readings, produced for a variety of reasons including sensor
faults, in real time during query evaluation and piggyback this
information on messages used in query processing.

Another localized voting scheme is proposed in [23] that
ranks sensor readings according to their validity. Ranking
explores a correlation network that requires several epochs
to be finalized and is based on readings from a starting epoch.
This approach differs from ours in that it does not allow for
the definition of a minimum support and does not provide
techniques for building and reorganizing the collection tree.
Moreover, the correlation network is built based on statistics
collected at a single epoch, while our approach reorganizes
the collection tree based on statistics collected throughout
the entire period between consecutive reorganizations. Finally,
the technique proposed in [19] computes outliers by first
examining their recent history of measurements in order to
verify whether the last reading could be an outlier. This means
that it cannot identify the common case of nodes that fail dirty
and reach a maximum value, since this maximum value will

S6

S5

S8

S4

S12

Nodes Sensing The Fire

Area: B

Area: A

Temperature

Temperature

S11

S1

S10

S7

S3

S2

S9

Fig. 1. Sample Collection Tree

appear multiple times in the sensor’s reading.

III. A FRAMEWORK FOR MEANINGFUL
AGGREGATE COMPUTATION

A. Aggregate Computation in the Real World

Consider a query that computes the average temperature in
the two areas covered by the sensornet depicted in Fig. 1.
The query is a simple GROUP BY query, where the grouping
attribute takes the values A, B (for the two areas). Let’s assume
a sensor reading is termed an outlier if it isn’t supported by
the readings of at least two other nodes, in other words the
desired minimum support is 2. For simplicity we assume that
the aggregate is collected at node S1, which acts as the base
station in our example. We use xi to denote the temperature
readings provided by node Si. The collection tree [16] is
also depicted in the figure. A typical way of computing the
average value from the temperature readings is for each node
to compute the SUM and COUNT functions in its subtree
for each area (i.e., each value of the grouping attribute) and
propagate these values to its own parent [16], [24].

In our example, nodes S6, S7 and S8 observe an open fire
and therefore their readings are expected to be a lot higher
(and fluctuate more) than, for example, those of S2. When
S3 receives the values of its children nodes, the readings
of node S6 appear to be suspicious, since no other node
in that subtree is aware of the fire. If we decide to reject
the reading of S6 (for instance using a voting protocol [2]),
the monitoring application will lose a crucial observation.
Techniques based on smoothing [10], [11] will also obscure
the outcome, especially if many more nodes are rooted at S3.

In our framework, we tentatively put the reading of node
S6 in a list of outliers O3 communicated by node S3 to its
parent node in the tree S2. Assuming that the measurements
of nodes S4, S5 and S12 over the last few epochs are similar
enough, their measurements can be combined to calculate a
running aggregate value for the group-by identifier A as A :
(x4 + x5 + x12, 3), where 3 denotes the number (COUNT) of
measurements included in the aggregate of Area A. Moreover,
one of the nodes S4, S5, or S12 will also be inserted into the
witness set, along with its corresponding measurement, and be
communicated up the collection tree, to provide evidence to
the base station for the computed aggregate value. Note that
in our example we assumed a minimum support value of 2

and that S4, S5 and S12 gain the required amount of support
from each other when their values reach S3. Also note that
S3 is located in a different area (i.e., group) from its children
nodes. Our framework allows us to restrict the nodes whose
measurements can “witness” the measurements of S3 to nodes
belonging in the same group. If we use this feature, S3’s value
cannot be witnessed by any node and will be transmitted in
the list of outliers communicated to its parent node S2.

Now let us concentrate on node S2. This node will receive
from the left subtree a pair of aggregate values for Area A
by node S3, namely A : (x4 + x5 + x12, 3), an outlier list
containing the values x3, x6 and a witness list containing one
of the values x4, x5 or x12 (depending on which node was
selected as the witness). Its middle subtree contains nodes S7

and S8. Their readings are similar, but these nodes reach only
a support of 1, which is less than the desired minimum support
of 2. Thus S7 includes the readings of S7 and S8 in the outlier
list transmitted to S2. At this point, at node S2, the nodes
S6, S7 and S8 can reach the required support in order to be
included in the partial aggregate of Area A. Moreover, one
of these nodes will be selected to become a witness in S2.
We also need to note that if the latest measurements by nodes
S2, S3 and S11 are similar, then these nodes may also reach
the required amount of support at node S2 (since they are
also characterized by the same group-by value) and provide a
running aggregate for Area B.

Sensor nodes S9 and S10 are two nodes that fail dirty. These
nodes start reporting abnormally high readings that cannot
be justified by any of their neighbors or the values that are
provided in the witness list, and, as explained in the previous
section, would be missed by the outlier detection technique
of [19]. If the query had specified a minimum support of 1,
these two nodes might, at some epochs, witness each other
and, thus, their readings would end up being included in the
reported aggregate. However, this cannot occur in our example
with the minimum support value of 2.

Finally, we can also see from Fig. 1 that an alternative
organization of the collection tree where both S6 and S8

select S7 as their parent node could lead to bandwidth savings
at nodes S3 and S7. In particular, node S3 would have to
transmit one fewer outlier to node S2. Moreover, we note that
in node S7 these three sensors could gain enough support to
be included in the computed aggregate and have all three of
them be replaced by a single witness. One can also observe
that if S12 selects S10 as its parent node, then the values
of S4, S5 and S12 will have to be transmitted all the way
to S1 in order to gain enough support. Thus, an algorithm
that properly forms and reorganizes the aggregation tree may
lead to substantial bandwidth savings, when compared to a
monolithic approach that forms the aggregation tree with a
technique such as TAG [16]. We describe such an algorithm
in Section V and show its benefits in Section VI-A.

B. Extended Query Model

We consider aggregate queries of the form:
SELECT groupingAttrs, AggrFun(s.value)

FROM Sensors s
WHERE cond
SAMPLE PERIOD e FOR t
GROUP BY groupingAttrs
MINIMUM SUPPORT MinSupp
[CONSTRAIN TEST GROUP]

where AggrFun() is a distributive or algebraic function such
as MAX,MIN,COUNT,SUM,AVG. Our work also captures
GROUP BY queries, based on the user-defined grouping
attributes groupingAttrs. The period (e) in the above
query is the epoch duration and determines the frequency at
which data is acquired from the sensors. Parameter (t) specifies
the life span of the query. The minimum support required for
each node to be incorporated into the aggregate is provided by
the MinSupp value. Finally, an optional CONSTRAIN TEST
argument may limit the cases when a node may witness the
measurements of another node. For ease of presentation, in this
paper we describe how to restrict such witness tests amongst
nodes that are characterized by the same groupingAttrs
values. However, it is simple to extend our techniques to cases
where a user-defined function specifies the nodes that can
participate in the witness test.

More formally, during query evaluation, the measurements
of a node Si can witness (or support) the measurements of
node Sj if: (i) The latest set of measurements of Si and
Sj , when compared with a user-defined similarity function,
exhibit a similarity above a user-defined threshold; and (ii)
Si and Sj are characterized by the same grouping attributes
groupingAttrs, if both a group-by clause and the CON-
STRAINT TEST GROUP clause have been specified. Many
similarity functions are symmetric; that is, when Si witnesses
Sj , then Sj also witnesses Si. In the presentation of our
algorithm we assume the use of such symmetric similarity
functions. However, as we describe in Section IV-D, the
extension to asymmetric similarity functions is simple. Our
framework can thus handle a variety of functions used for per-
forming the similarity test. Some examples of such functions
are presented in Section IV-B. Finally, an outlier is defined
as a node that is witnessed by fewer than MinSupp other
nodes. The measurements of such nodes do not contribute to
the query result, but are still communicated to the application
for further analysis.

Example 1: A sample supported query is the following:
SELECT building, floor, AVG(s.temperature)
FROM Sensors s
SAMPLE PERIOD 30 sec FOR 1 day
GROUP BY building, floor
MINIMUM SUPPORT 2
CONSTRAIN TEST GROUP

The above query computes the average temperature readings
of sensor nodes for each floor in each building. The aggregate
value is computed for thirty seconds, and the query will be
executed for one day. The measurements of each sensor node
will need to be similar to those of at least two other nodes
within the same building and floor, in order to be included
into the aggregate.

Symbol Description
Root The node that initiates a query and which collects the

relevant data of the sensor nodes
Si The i-th sensor node
CacheSize The maximum number of epochs a measurement remains in

the cache. Also determines the maximum number of
measurements stored per node in the cache

TestInterval The minimum number of data value pairs required to
perform the witness test

F [j][k] The number of successful witness tests between the
measurements of Sj and Sk

MinSupp The required minimum support specified by the posed query

TABLE I
SYMBOLS USED IN OUR ALGORITHMS

C. Transmitted Data

As discussed in the example of Fig. 1, during query execu-
tion, an intermediate node in the tree receives (using a protocol
like TAG [16]) a list of aggregate values, one per each different
set of groupingAttrs values, a list of witnesses and a list
of outliers calculated at each of its children nodes. When we
refer in this paper to the transmission of an aggregate value
or the reading of a sensor node, each such value needs to
be accompanied by its corresponding grouping attributes. An
optimization can be performed whenever the group-by clause
refers to a static predicate such as the node’s identifier, or
the node’s location in the case of immobile sensor nodes.
In such cases, at the first epoch of each query, each node
may transmit its grouping attributes along with its identifier
towards the Root node. In this way, the node’s identifier can
be used in the execution of the query so that other sensors in its
path to the Root node can determine its groupingAttrs
values, without having to transmit them at each epoch. Such an
optimization is even possible in the case of dynamic predicates
that are based on the sensor’s current reading, since the
latest reading of each sensor can also be used to determine
its groupingAttrs values. However, in the case of other
dynamic predicates such an optimization may not be possible.

Note that each transmitted witness and outlier value does not
necessarily reach the Root node that poses the query. These
values may be witnessed at some intermediate nodes and
removed from the transmitted data. This observation provides
the intuition for our algorithm for periodically reorganizing
the collection tree. If we monitor how often the witness test
between pairs of sensor nodes succeeds, then each node can
select a parent in the collection tree through which it expects
to find the most witnesses and at relatively short distances, in
number of hops.

IV. MEANINGFUL AGGREGATE COMPUTATION

We now present SensibleAggr-supp, our algorithm
for the computation of aggregate functions and the si-
multaneous management of outliers in sensor networks.
SensibleAggr-supp works by propagating upwards in the
aggregation tree partial aggregates along with sets of witnesses
and outliers computed by the nodes for their subtrees. Through
this process, at each epoch, we compute at the Root of the tree
(i.e., the node that initiated the query) the aggregate for each
different value of groupingAttrs, excluding nodes that are
determined to be outliers, based on the specified minimum

support MinSupp. The Root also computes the final set
of outliers and witnesses. The monitoring application may
decide to use this information to further investigate suspicious
behavior by the nodes. Table I summarizes the notation used
in this paper.
A. Preliminaries

The level of a node in a sensor network denotes, given the
transmission range of the sensor nodes, the minimum possible
distance, in number of hops, of the node from the Root.
If while traversing a path, we continuously reach nodes at
a higher level (i.e., with a higher minimum distance from
the Root) than the ones at the origin of each edge, then the
traversed path is termed as a descending path. A node Si is
an ancestor of Sj in a given collection tree if there exists
a descending path from Si to Sj . Similarly, a node Sj is a
descendant of Si if Si is an ancestor of Sj . A node Si is a
potential ancestor of Sj if, given the transmission range of the
nodes, there exists a collection tree where Si is an ancestor of
Sj . Similarly, a node Sj is a potential descendant of Si if Si

is a potential ancestor of Sj .
B. Examples of Similarity Tests between Nodes

SensibleAggr-supp frequently tests whether the recent
measurements of two sensor nodes are similar. If this is the
case, then each sensor can witness the measurements of the
other. We will call this similarity test in this paper a witness
test. We consider the following alternatives:
• Correlation Coefficient: If we consider the readings xk,
xl of sensor nodes Sk, Sl respectively as random variables,
the correlation coefficient rk,l is defined as:

rk,l =
cov(xk, xl)

σxk
σxl

=
E(xkxl)− E(xk)E(xl)√

E(x2
k)− E2(xk)

√
E(x2

l)− E2(xl)

where cov(), σ and E() stand for the covariance, standard
deviation and expected value respectively. The correlation
coefficient takes values in the interval [-1,1]. Given a threshold
θ provided by the application and communicated to the nodes
during the query initialization, the witness test succeeds when
rk,l ≥ θ.
• Extended Jaccard Coefficient: If we consider the readings
xk, xl of sensor nodes Sk, Sl respectively as vectors and
denote their dot product as xk · xl, the extended Jaccard
coefficient jk,l is defined as:

jk,l =
xk · xl

‖xk‖2 + ‖xl‖2 − xk · xl

Again, given a threshold θ provided by the application and
communicated to the nodes during the query initialization, the
witness test succeeds when jk,l ≥ θ.
• Regression-Based Approximation: If we consider the
readings xk, xl of sensor nodes Sk, Sl respectively as random
variables, we may apply approximation techniques to identify
the error of approximating xl given xk. For example, the
work in [5], [14] proposed using a linear regression model
for this approximation. Using such a technique, we may
determine that the witness test will succeed if the recon-
struction maximum/absolute relative error for xl is below an

application-defined threshold (i.e., 2%). While we investigated
this technique, we omit it from our discussion due to its poor
performance in our experiments. Please note that, unlike the
cases of the correlation and extended Jaccard coefficients, the
regression-based approximation is an example of an asymmet-
ric similarity function.

C. Memory and Cache Management

Since the similarity tests cannot be performed simply based
on the last received measurement of the sensor nodes, but also
require the knowledge of measurements from the recent past,
our algorithm maintains in a small cache the latest CacheSize
measurements received by descendant sensor nodes. The cache
is organized as an array indexed by epoch, so accessing the
recent measurements in the cache is performed using the
modulo operator and the query epoch. For example, if #epoch
denotes the current query epoch, then the latest measurement
is stored in the position #epoch mod CacheSize. When
no value is received for a descendant node, we store a NULL
value in the cache for its measurement in the current epoch.
As we will see later in this section, this happens when the
node belongs to neither the set of received witnesses nor the
set of received outliers.

The witness test between the readings of two nodes is per-
formed over the latest TestInterval ≤ CacheSize readings
of the two sensors in the cache that were simultaneously
not NULL at the same epoch. Moreover, we only perform
witness tests amongst pairs of sensor nodes for which we
have received a measurement in the current epoch. In cases
of sudden changes in the readings, this requirement does not
allow the witness test between pairs of nodes to succeed based
solely on the similarity of the readings of these nodes in prior,
but not the current, epochs.

Notice that using a CacheSize larger than TestInterval
enables us to have TestInterval recent available readings
for a node, and hence to be able to use it in witness tests,
even if a few recent readings are unavailable. If CacheSize =
TestInterval, as in [15], missing one measurement for
a node means disqualifying it for witness comparisons for
TestInterval− 1 epochs (i.e., until the cache for it is full).

Our framework also suggests that we do not need to store
in the cache information for sensor nodes for which we
have not received any measurement in the last CacheSize−
TestInterval + 1 epochs. For such nodes, it is certain that
the witness test with other nodes cannot succeed unless at
least TestInterval measurements are received in subsequent
epochs. Thus, it suffices for these nodes to remove their
history and start, when necessary, with an empty buffer of
measurements.

Finally, we note that many sensor nodes have very limited
memory capabilities. Even though our experience with our
techniques revealed that the required size for the cache is
typically small, we still need a replacement strategy for sensor
nodes with severe memory constraints: we evict from the cache
measurements originating from those sensor nodes for which
we have received the fewest (non-NULL) measurements in the

last TestInterval epochs.
Example 2: Consider that the sensor node S1 maintains in

its cache measurements for itself and for nodes S2, S3 and
S4, as depicted in the following table at the left.

Cache Position
ID 0 1 2 3 4 5
S1 20.05 20.51 20.69 21.17 21.22 21.36
S2 NULL 21.15 21.21 21.77 NULL 21.93
S3 NULL 25.79 25.82 26.57 26.51 26.91
S4 22.09 22.40 NULL 22.97 22.97 23.14

NODE ID
ID S1 S2 S3 S4
S1 1.000 0.992 0.975 -
S2 0.992 1.000 0.996 -
S3 0.975 0.996 1.000 -
S4 - - - -

Cache Measurements Correlation Coefficients
Let the current epoch be epoch 8 and TestInterval = 4 (in
this example CacheSize = 6). Thus, the measurements of the
current epoch can be found at position 2 of the cache (current
measurements marked in bold). Based on our discussion, the
witness test cannot be performed between S4 and any other
node, since we do not have a measurement for S4 at the
current epoch. The witness test between nodes S2 and S3

can be performed since on 4 (=TestInterval) positions
of the cache they both have non-NULL values. The witness
test between nodes S1 and S3 will be performed over the
measurements at positions 2,1,5,4. The computed correlation
coefficient amongst all pairs of nodes is presented in the
preceding table at the right. Since these numbers were derived
from a real data set measuring the temperature in a room, one
can see that the measurements of these nodes are strongly
correlated. The extended Jaccard coefficient is computed in
the same way.

D. Algorithm Description
Algorithm 1 presents an outline of our

SensibleAggr-supp algorithm. The main steps and
operations of the algorithm will be explained and analyzed
throughout this section.

The SensibleAggr-supp algorithm is invoked at each
node after it has received messages from its children nodes
in the collection tree, in a manner similar to TAG [16]. Thus,
the execution of the algorithm starts at the leaf nodes of the
collection tree. Each received message starts with a bitmap
containing 3 bits. Each bit that is set in this bitmap reveals
the existence of a set of aggregate values, a set of witnesses,
or a set of outliers, correspondingly, in the message. At least
one of the bits must be set. For example, since a leaf node
of the collection tree cannot witness its own measurements
by itself, it characterizes itself as an outlier and transmits
this information to its parent node, without including in the
message an aggregate value or witnesses. As explained in
Section III-C, each witness and outlier is described as an
id-value pair, where the value of each node may also be
accompanied or not (based on the query and whether the
grouping attributes refer to static or dynamic predicates) by
its corresponding grouping attributes. At a parent node, these
values, along with the node’s current measurement, are stored
in the cache of measurements that the node maintains. We note
that leaf nodes in the aggregation tree do not need to maintain
this cache, as they do not perform any witness-tests.

Each node Si first initializes its WitnessSet and Outlier-
Set lists to the union of the corresponding lists received
by its children nodes. Since the measurements of current
node Si have not yet been compared to those of any other

Algorithm 1 SensibleAggr-supp(MinSupp) Subroutine
1: {Si is the node being examined}
2: Set WitnessSet to the union of the received sets of witnesses from children nodes.
3: Set OutlierSet to the union of the received sets of outliers from children nodes. Also

add Si to OutlierSet.
4: Update the cache of Si with the latest measurements received from nodes in the

WitnessSet or the OutlierSet.
5: Set the support of each id in OutlierSet to 0
6: for Sj ∈ OutlierSet do
7: for Sk ∈ OutlierSet AND Sk lies after Sj in OutlierSet do
8: if canWitness(Sj , Sk) then
9: Increase support of Sj and Sk by 1.

10: Increase F [j][k] and F [k][j] by 1 only if the latest readings of Sj and Sk

were received by different children nodes of Si.
11: end if
12: end for
13: for Sk ∈ WitnessSet do
14: if canWitness(Sj , Sk) then
15: Increase support of Sj by 1.
16: Increase F [j][k] and F [k][j] by 1 only if the latest readings of Sj and Sk

were received by different children nodes of Si.
17: end if
18: end for
19: end for
20: for Sj ∈ OutlierSet do
21: if support of Sj is greater or equal to MinSupp then
22: Move Sj from OutlierSet to the WitnessSet
23: Incorporate measurement of Sj into the aggregate of its group
24: end if
25: end for
26: for Sj ∈ WitnessSet do
27: for Sk ∈ WitnessSet AND Sk lies after Sj in WitnessSet do
28: if canWitness(Sj , Sk) then
29: Keep as witness only the node for which Si has transmitted the most

consecutive readings.
30: Increase F [j][k] and F [k][j] by 1 only if the latest readings of Sj and Sk

were received by different children nodes of Si and neither Sj nor Sk was
an outlier at Line 3 of this algorithm.

31: end if
32: end for
33: end for
34: Transmit the remaining witnesses and outliers to the appropriate parent node(s) of

the collection tree. Transmit the computed aggregate values (one per group) only to
one of these parent nodes, if more than one are selected.

35: if Current epoch is last epoch prior to tree reorganization then
36: Add each F [k][l] value computed at Si to the value for the same pair (k, l)

received by children nodes. Transmit all F [][] values to the parent node that
received the computed aggregate values.

37: end if

node, Si needs to be inserted into the OutlierSet list. The
algorithm then processes each outlier and examines whether
its measurements can be witnessed by either those of other
outlier nodes (Lines 7-12) or by those of existing witnesses
(Lines 13-18). The witness test is performed by calling the
canWitness() function with the ids of the two nodes being
tested as arguments. This function operates on the available
cached measurements of the two nodes and also depends on
the groupingAttrs values of the two nodes, if the clause
CONSTRAIN TEST GROUP has been specified.

Please note that witness tests are performed only between
pairs of sensor nodes that have enough recent values stored
in the cache. One can implement different similarity checks,
such as those discussed in Section IV-B, by simply modifying
this function. Since the focus of this paper is on symmetric
functions for the witness test, the SensibleAggr-supp
algorithm tries to avoid performing symmetric executions of
this test (i.e., if the pair 〈Sj , Sk〉 has been tested, then the pair
〈Sk, Sj〉 is not examined). For the case of asymmetric witness
functions, this optimization is not possible. It is important to
emphasize that the processed lists WitnessSet and OutlierSet
are of small size (often containing less than 5 entries each
for small values of MinSupp). Their exact size depends on

the value of MinSupp and on the existence (or not) of a
CONSTRAINT TEST GROUP clause.

The witness list of a node Si is further trimmed in Lines 26-
33 of the SensibleAggr-supp algorithm, in order to
reduce the number of witnesses transmitted to the node’s par-
ent. Let us focus on Line 29 of the SensibleAggr-supp
algorithm: Whenever two witnesses are similar, our techniques
trim the witness list by keeping only one of them. The
node kept is the one for which Si has transmitted the most
consecutive values to its parent node (i.e., by including it into
the witness or outlier sets in the preceding epochs). Such an
optimization has the following characteristics and benefits: (1)
It requires a single counter per each descendant node with
measurements stored in the cache; (2) It increases the chances
that the parent node will have, either now or in the following
epochs, enough measurements (TestInterval) in its cache
for the witness node to be able to participate in witness tests;
and (3) It increases the chances that the memory replacement
policy described in Section IV-C will not evict the node’s
measurements in the near future, if memory constraints exist.

A number of statistics is updated at each successful witness
test between Sj and Sk. The support of each outlier is first
increased by one. This is needed to monitor if the recent
measurements of the outlier witness those of at least MinSupp
other sensor nodes. The second statistic that is updated in-
volves the number F [j][k] of successful tests between these
pairs of nodes at the sensor. We utilize these statistics in Sec-
tion V for the reorganization of the collection tree. Please note
that in Lines 10, 16 and 30 of the SensibleAggr-supp
algorithm, these frequencies are updated only under some
conditions. For example, for two outlier nodes for which we
have received their latest measurements through the same child
in the collection tree, the witness test between these two nodes
will surely have been performed at that child node as well.
Thus, we do not wish to increase the F values of these two
nodes, as this increase has already been recorded.

E. Discussion of Algorithm Internals

Outlier support. Our algorithm, as presented here, does not
take into account the support that a sensor may have achieved
in lower levels of the collection tree while still remaining
an outlier: each node in the OutlierSet has by default zero
support when received. The main reason for this is bandwidth
efficiency. While our algorithm requires only an 〈id, value〉
pair for each received outlier (with the possible inclusion of
the grouping attributes as well, as explained in Section III-C),
taking into account the support obtained at descendant nodes
would have required extra information per outlier (i.e., its
current support). At the same time, the benefit would be small:
somewhat fewer calls to function canWitness(). Recall that the
witnesses and outliers are propagated upwards in the collection
tree. A successful witness test between the measurements of
two sensor nodes will not be performed again at their parent
node only if: (1) one of the two sensors becomes a witness
at the child node and (2) that same sensor is later removed
from the witness list, due to a successful witness test with

another witness of the sensor (Lines 26-33 of the algorithm).
As bandwidth consumption is by far a larger component of
energy drain on sensors than CPU usage, our current approach
is preferable. Moreover, our current approach is also more
general, as it is applicable in both cases (selecting a single or
multiple parents per node) discussed in Section V (as opposed
to the alternative approach, where it is impossible to determine
if a witness test has already been performed in lower tree
levels, in the case of sensors with multiple parent nodes).
Support update. In our algorithm, every successful witness
test increases the support of an outlier o by 1. Given that each
witness is supported by at least MinSupp nodes, why can’t we
directly “translate” the support of the witness into MinSupp
for o? The reason is that many useful similarity functions (all
the ones presented in Section IV-B) are not transitive. The
following table provides an example of the non-transitivity of
the similarity function. Let us assume that three sensor nodes
obtained binary (0 or 1) readings shown in the table. The
table also presents their computed similarities, based on the
correlation coefficient, for the sample set of readings.

Epoch Evaluation
ID 0 1 2 3 4 rSA,SB

=0.67
SA 0 1 0 0 1 rSB,SC

=0.67
SB 0 1 0 1 1 rSA,SC

=0.17
SC 0 1 0 1 0

For θ=0.6, node SA is similar to SB and node SB is similar to
SC . Nevertheless the witness test between SA and SC fails.
Therefore, only the support of nodes with which successful
witness tests have been performed can be taken for granted.
In Section VI-B (Figure 10), we evaluate different variants of
our algorithm where support is updated by more than 1 and
find that our standard, conservative, approach is superior.

V. COLLECTION TREE REORGANIZATION

As mentioned in Section IV, the collection tree is period-
ically reorganized. A poor construction of the collection tree
could lead to many nodes finding similar measurements (i.e.,
support) by other sensors only at the Root node, or at nodes
near the Root. This would essentially result in a computation
with bandwidth requirements close to those of performing
a SELECT * query on the sensor network per epoch. It is
much preferable to route the witnesses and outliers towards the
direction of nodes where they are expected to be “matched”
(witnessed) by outliers or witnesses received through other
parts of the collection tree.

Before presenting the algorithm for the reorganization of
the collection tree we must answer the following questions:
(1) Will all the witnesses and outliers of a node be propagated
towards a single parent node, or towards multiple nodes? (2)
Given the answer to the above question, how do we decide
the appropriate parent node(s)? The collected statistics in table
F [][] will be considered at this stage.

Concerning the first question, our collection tree reorga-
nization algorithm can produce either of the two choices,
i.e., selecting a single or multiple parent nodes, depending
on the setting of a single parameter. As we will shortly
demonstrate, the basic concept of the algorithm is similar for

both approaches. While in this paper we present the algorithm
for both approaches, we suggest using a single parent for
propagating all the witnesses and outliers as this leads to fewer
transmitted messages per node.1

The important question that remains is the choice of the
appropriate parent node(s) of each sensor. The reorganiza-
tion algorithm proceeds bottom-up, based on the level (see
Section IV-A) of each node. Each node Si first waits for
notifications from children nodes in the collection tree. Each
notification by a child node Sj of Si is accompanied by a list of
node identifiers. This list of identifiers represents descendants
of Si in the new collection tree, reachable through Sj . Until
the next reorganization of the collection tree, each message
by Sj to Si may contain only witnesses and outliers within
the list transmitted at the aforementioned notification. Please
note that if Sj selects more than one parent node, then the list
transmitted to Si may contain only a subset of the descendants
of Sj , since some nodes may be “assigned” by Sj to another
(parent) node. Finally, Si creates a list managedIdsi by
combining the received lists along with Si’s identifier.

Intuitively, in order to reduce the bandwidth consumption,
we should seek to route the witnesses and outliers of Si

towards other nodes in the aggregation tree where witness
tests involving these witnesses and outliers may be satisfied.
The closer such nodes exist and the larger the probability
of successful witness tests at them, the more plausible it
seems to route the nodes in WitnessSet and OutlierSet towards
them. Thus, for each node identifier Sj ∈ managedIdsi,
Si examines: (1) the probability with which it can be wit-
nessed by each node Sk of the entire collection tree (or
by a part of the collection tree, if the CONSTRAIN TEST
GROUP clause has been specified). Please note that since
many examined nodes Sk will very likely not belong to
the subtree of Si, Si has no knowledge of the frequencies
F [j][k]; and (2) the corresponding distance (in terms of
hops) from Si to the closest potential ancestor Sp of Si

(again, in terms of hops) that is also a potential ancestor
of Sk. Let upwardDistancei[k] denote this distance. By
the way we defined this metric, upwardDistancei[k] =
upwardDistancei[p] obviously holds. Moreover, if Sk is a
potential descendant of Si, then upwardDistancei[k] is 0.

The first piece of information needed by Si is provided in
Lines 35-37 of the SensibleAggr-supp algorithm. At the
last epoch before the reorganization of the collection tree, each
node receives the witness test statistics computed at its children
nodes, combines (i.e., adds) them with its own statistics and
transmits them towards one parent node. Please note that this
process of combining statistics at a node does not increase the
size of the statistics, as this is bounded by the size of the F [][]
table. The entire information of the collection tree is gathered
at the Root node. The Root node then transmits the result to

1Because of the way that in our algorithm each node selects its parent(s)
in the collection tree amongst nodes with a strictly lower minimum distance
from the Root, schedules produced as in [16] can still be used. However,
when selecting multiple parents, each node will need to make more than one
transmissions.

Algorithm 2 Reorganize() Subroutine
1: {Si is the node being examined}
2: Wait for notifications from potential child nodes. Merge Si identifier with received

lists of identifiers in managedIdsi.
3: upwardDistancei[k] returns the distance of the closest potential ancestor of Si

that is also a potential ancestor of Sk .
4: Let fathers denote the set of potential parent nodes of Si

5: for Sj ∈ fathers do
6: weight[j] = 0 {Reset weights for each Sj}
7: end for
8: for Sj ∈ managedIdsi do
9: if Selecting different parents for nodes in managedIdsi then

10: for Sp ∈ fathers do
11: weight[p] = 0
12: end for
13: end if
14: for Sk for which Si has an entry in the upwardDistancei[k] array AND

upwardDistancei[k] > 0 do
15: weight[nextHop[k]]+ =

F [j][k]
upwardDistancei[k]

16: end for
17: if Selecting different parents for nodes in managedIdsi then
18: Set parent[j] to the parent node with the maximum weight
19: end if
20: end for
21: if Selecting a single parent for nodes in managedIdsi then
22: Set as the common parent the parent node with the maximum overall weight
23: end if
24: Notify each selected parent about the ids that will be forwarded to it

the sensor nodes with a single broadcast message. Please note
that base stations often have increased capabilities (in terms
of both their transmission range, and their computational and
memory capabilities) compared to regular sensor nodes. Thus,
this approach is viable in most sensor network settings. If the
Root node cannot contact all the sensor nodes directly, these
statistics can be propagated top-down in the existing collection
tree (i.e., before the reorganization).

The second piece of information that we need is to compute
the value of upwardDistancei[k] for any node Sk that is
not a potential descendant of Si. This information, computed
only during the initial construction of the collection tree,
and not during the reorganization phases, can be obtained as
follows:
• Moving bottom up, based on the level of each node, nodes
transmit their potential descendants. For an intermediate node,
this set of nodes is produced by the union of sets received
from descendant nodes and the identifier of the node itself.
Representing the list of identifiers in interval lists can help
reduce the amount of transmitted information for nodes closer
to the Root.
• After this phase, the Root node is aware of all identifiers.
The Root does not need to move upwards to reach a common
ancestor of any node, and thus sets the upwardDistance of each
identifier to 0 and transmits this result.
• Moving top-down, each node sets the upwardDistance of
an identifier as zero, if the identifier is a potential descendant
of the node, or to one plus the minimum upwardDistance
received by nodes at one level closer to the Root. In the
second case, it also records the parent node that provided
the upwardDistance as the nextHop of that identifier. For the
nextHop selection, ties are broken randomly.

A. Algorithm Presentation and Discussion

Our overall reorganization algorithm is presented in Algo-
rithm 2. The core of the algorithm lies in Lines 14-16. For
each node Sk of the collection tree that is not a descendant of

STATISTICS BITS
OUTLIER BITS
WITNESS BITS
AGGREGATION BITS

300 600 900 1200
Epoch

0

1e+07

2e+07

3e+07

4e+07
T

ot
al

 B
its

 T
ra

ns
m

itt
ed

 (
Pe

r
30

0
ep

oc
hs

)

1 1 1 12

1: SensibleAggr-supp1

4 2 2 23 3 3 34 4 4

AGGREGATION
cost = 6.34e+06

cost = 11.92e+07
SELECT *

2: SensibleAggr-supp2
3: SensibleAggr-supp3
4: Robust

Fig. 2. Bandwidth consumption in synthetic dataset (per 300 epochs)

0 300 600 900 1200

Epoch

0

1

2

3

4

T
ot

al
 E

ne
rg

y
C

on
su

m
pt

io
n

(J
ou

le
s)

SELECT *
Robust
SensibleAggr-supp3
SensibleAggr-supp2
SensibleAggr-supp1
AGGREGATION

Fig. 3. Energy Consumption in synthetic dataset (per 300 epochs)

the current sensor Si, we assign a weight only to the candidate
parent node that is the nextHop towards Sk. The candidate
parent nodes (included in the fathers list at Line 4 of the
Algorithm) are the nodes that are one level closer to the Root
node and which are within the transmission range of Si. Since
we would like to move towards nodes that are not distant and
where a lot of witness tests may succeed, the weight assigned
to nextHop[k] for each Sj ∈ managedIdsi is proportional
to F [j][k] and inversely proportional to upwardDistancei[k]
(Line 15). Finally, we note that the algorithm can select either
a common or multiple parent nodes by checking a single
parameter. However, as we stated earlier in this section, we
suggest selecting a single parent for each sensor node.

While the intuition of the reorganization algorithm is as
described above, and the algorithm can be executed in a
distributed fashion, in our implementation we utilize a more
bandwidth efficient centralized approach. Each node transmits
towards the Root node the list of nodes with which it can
communicate directly. Note that this information needs to
be communicated only during the initial construction of the
collection tree and not in subsequent reorganizations. Updates
are required only when the set of neighbors of some sensor
nodes is modified (i.e., due to link failures). In such cases,
only the affected nodes need to communicate their statistics
to the Root. After it has received the F [][] values from its
children nodes, the Root node then has all the necessary
information to compute all the parameters (weights, nextHop
and fathers) for each node, by simply processing the nodes
bottom-up (using the connectivity information). Given Root
nodes with increased capabilities, this approach is very practi-
cal, as the Root node can perform all the processing and then
use individual transmissions to notify each sensor of all the
computed values. In the case when a single parent per node
is selected, as suggested in this paper, this simply requires
transmitting to each sensor the identifier of its new parent
node. Thus, Algorithm 2 is performed in our implementation
exactly as described above, but at a central node, with appro-
priate recursive procedures, instead of top-down and bottom-
up operations involving message transmissions.

B. Space Considerations
An important issue for the reorganization algorithm is

the amount of information associated with the storage and

transmission of the F [][] statistics. Because the witness test
is typically symmetric (i.e., when Si can witness Sj , then
Sj can also witness Si), we only need F [i][j] values that
are above the diagonal (i < j). Thus, these statistics require
up to O(n×(n−1)

2) space, for a sensor network of n nodes.
Our experience with the SensibleAggr-supp algorithm
demonstrated that the F array is extremely sparse in all but a
few nodes close to the Root, even for large sensor networks
of 400 sensors. In most sensors the number of non-zero
entries was often no more than 20 entries. We thus decided
to not store the entire array, but only its non-zero entries at
each node. When transmitting these non-zero entries during
the tree reorganization (assuming that the reorganization is
performed every ReorgEpochs epochs), we first map the two
coordinates of each of these entries to a single value, using
a typical location function for arrays. Then, the information
about the non-zero F [][] entry can be transmitted with only
dlog n×(n−1)

2 e + dlog ReorgEpochse bits. Note that the sec-
ond summand is produced because the value of an entry in
the F array cannot exceed the number of epochs between two
reorganization periods, since these entries are reset to zero
(i.e., removed from memory) after each reorganization.

For the case of nodes close to the Root node and
with low memory capabilities, we propose using Count-Min
sketches [4] in order to bound the amount of collected data and
transmitted data. These sketches require only O(1

ε ln 1
δ) space

and O(ln 1
δ) update time, where ε is the L1 error-guarantee of

the sketch for point-wise estimation and δ is the probability
of failure. The use of a such a sketch in nodes close to the
Root gives several advantages such as: (1) reduced mem-
ory requirements; (2) reduced bandwidth requirements when
transmitting these statistics; (3) easily composable statistics,
as combining statistics by different sensors simply requires
adding the sketches of these nodes; and (4) strong probabilistic
guarantees on the quality of the reconstructed values.

VI. EXPERIMENTS

We developed a simulator for testing the algorithms pro-
posed in this paper under various conditions. In all experiments
the sensor nodes are dispersed at random locations over a
rectangular area. The maximum packet size of communication
is set to 32 bytes. The energy consumption while transmitting

and receiving data is modeled according to [20]. In particular,
transmitting b bits of data to a node that lies at a distance
dist from the current node results in an energy drain of:
(ETX + ERF × dist2) × b, where ETX denotes the per
bit power dissipation of the transmitter electronics and ERF

denotes the per bit and squared distance power delivered by the
power amplifier. Similarly, receiving b bits of data results in an
energy drain of: ERX × b. The values of these parameters are
set similarly to [20] as: ETX = ERX = 50nJ/bit and ERF =
100pJ/bit/m2. The default values for the CacheSize and
TestInterval parameters was set to 10 and 6, respectively.
In all runs, the maximum size of the memory cache is 4 KB.

We also model the channel loss. In our experiments, the
transmitted messages have a 10% probability of requiring a
retransmission due to message loss or collision. The header
of each packet and the space to represent a node identifier is
set to 2 bytes. The required space for the reading of a sensor
and for the aggregate value is set to 4 bytes. We compare the
quality of the reported aggregate and the required energy and
bandwidth consumption of our techniques against a SELECT *
query, which can be used to collect all measurements at
the Root and perform the outlier elimination and aggregate
computation there, and a standard aggregate query (termed as
AGGREGATION) like the ones performed by TAG, without
outlier detection. We also compare our techniques against
the Robust algorithm presented in [15]. Since the Robust
algorithm does not handle group-by queries, many of our
experiments involve aggregate queries without a group-by
clause. As mentioned earlier, contrary to our techniques, the
Robust algorithm uses a fixed minimum support value of 1 for
defining outliers. We ran all experiments 5 times and present
here the median values.

A. Evaluating the Reorganization Algorithm

In order to better assess the benefits of our algorithm for
reorganizing the collection tree, we explore the following
synthetic setup. We first generate a large sensor network of
400 nodes and define 10 classes of data to control the behavior
of the sensors. The readings of nodes that belong to the
same class make random walks with different steps, and at
the same direction. That is, whenever one node increases its
value, all the nodes in the same class also observe higher
measurements. The nodes are assigned to classes as follows.
Each node initially belongs to the default class 0. We then
generate 9 events at random locations and assign all nodes
within horizontal distance 15 from the centers of the events
to belong to the same class (classes 1 to 10). Thus the classes
define vertical partitions of the space. In Figs. 2 and 3 we
show the resulting bandwidth and energy consumption for a
minimum support of 1,2 and 3. The standard deviation of the
results in these two figures is about 8.3% of the presented
numbers. In Fig. 2 (please note that the X axis lies at the
top) the bandwidth consumption has been partitioned based
on the bandwidth required to transmit the aggregates, outliers,
witnesses and statistics in each algorithm. The collection tree
reorganization is performed every 300 epochs and its overhead

is included in the graphs (we account for this cost only in
our method). We zero all the counters (bandwidth and energy
consumption) immediately after each reorganization to better
demonstrate the differences before and after the collection tree
reorganization. From these figures we observe that:
1. During the first 300 epochs, the difference between the
Robust and the SensibleAggr-supp1 algorithm is due to:
(i) the flexibility of our techniques to handle missing (NULL)
values in the cache; and more importantly (ii) the proper
selection of witness nodes that is performed in Line 29 of
the SensibleAggr-supp algorithm. Because the Robust
algorithm performs the selection in a random way, many
witness tests fail due to an insufficient number of readings
in the cache of the nodes.
2. The collection tree gradually improves, as more statistics
are collected, but mainly in the first reorganization of the
collection tree. This is expected, since the classes are not
modified during the query execution and the statistics are suffi-
cient to make good decisions at the first reorganization. Fig. 2
shows that the improvement is due to the reduction in the
number of the transmitted outliers. For example, the bandwidth
consumption for the outlier sets in the SensibleAggr-supp1
algorithm during the initial 300 epochs is 61% higher than in
the last 300 epochs. This reduction of bandwidth consumption
increases (decreases) in absolute terms (in relative ratio) for
larger support values. The overhead for the transmitted outliers
cannot be completely eliminated due to the leaf nodes of the
collection tree (this is why the bandwidth consumption for the
aggregate is lower than in AGGREGATION).
3. It is important to note that Robust consumes, af-
ter the tree reorganization, more bandwidth than the
SensibleAggr-supp3 algorithm that reports more outliers
due to the higher number for MinSupp. The progressive
decrease in the bandwidth consumption for our algorithms
results in an equally important decrease in the consumed
energy by the sensor nodes (Fig. 3). For example, at the last
period of 300 epochs, Robust consumes 43% more bandwidth
than SensibleAggr-supp1.
4. The cost for the reorganization statistics was minimal in all
cases (less than 0.4% of the total bandwidth consumption).
5. The SELECT * technique results in up to 5 times more
transmitted bits and energy consumption than our techniques.

In Fig. 4 we plot the total bandwidth consumption during
the last reorganization period (last 300 epochs), for a similar
setting to the previous experiment, when we scale the number
of sensor nodes within the same area (thus increasing the
density of the network). The corresponding standard deviation
rates for this experiment are about 9.2%. It is important to note
that the bandwidth savings that our SensibleAggr-supp1
algorithm achieves, when compared to the Robust and SE-
LECT * algorithms, increase with the number of sensors. In
fact, the Robust and SELECT * algorithms require up to
37% and 6.5 times, correspondingly, more bandwidth than
SensibleAggr-supp1. The smaller absolute values of the
bandwidth consumption when compared to Fig. 2 are due

250 300 350 400 450 500
Number of Sensor Nodes

0

1e+07

2e+07

3e+07

T
ot

al
 B

its
 T

ra
ns

m
itt

ed
 (

L
as

t 3
00

 E
po

ch
s) AGGREGATION

SensibleAggr-supp1
SensibleAggr-supp2
SensibleAggr-supp3
Robust

Fig. 4. Total bandwidth consumption in final reorganization
period

0 300 600 900 1200
Epoch

0

1e+07

2e+07

3e+07

4e+07

T
ot

al
 B

its
 T

ra
ns

m
itt

ed

SELECT *
SensibleAggr-supp3
SensibleAggr-supp2
SensibleAggr-supp1
AGGREGATION

Fig. 5. Cumulative bandwidth consumption since last
reorganization in synthetic dataset, group-by query

0 100 200 300 400 500 600
Epoch

-60

-50

-40

-30

-20

-10

0

10

D
if

fe
re

nc
e

of
 o

ur
 A

gg
re

ga
te

 f
ro

m
A

gg
re

ga
te

 w
ith

 P
er

fe
ct

 K
no

w
le

dg
e

SensibleAggr-supp1
SensibleAggr-supp3

Fig. 6. Difference of Fig. 7 aggre-
gate from aggregate with perfect
knowledge

0 100 200 300 400 500 600
Epoch

0

50

100

150

M
A

X
 T

em
pe

ra
tu

re

AGGREGATION
SensibleAggr-supp3
SensibleAggr-supp2
Robust

AGGREGATIO
N

Robust, SensibleAggr
 behave well here

SensibleAggr-supp=2,3
 behave well here

SensibleAggr-supp=3
 behaves well here

Robust, AGGREGATION

Robust,
AGGREGATION
SensibleAggr-supp2

Robust loses track
of clean aggregate

SensibleAggr-supp2 loses
track of clean aggregate

Fig. 7. Computed MAX Temp, Noisy Intel data, Extended Jaccard Coefficient

to the increased connectivity of the sensor nodes in this
experiment (i.e., deployment within a smaller area).

In Fig. 5 we repeat the first experiment of this Section
and plot the cumulative bandwidth consumption since the last
tree reorganization (or the initial construction for the first 300
epochs). However, in this experiment we also: (i) specify a
group-by clause that partitions the network into 4 quadrants;
and (ii) specify the CONSTRAIN TEST GROUP clause.
Please note that the Robust algorithm cannot be used to
answer such queries. One can see that this case is qualitatively
similar to Fig. 2. We also note that reorganization of the
collection tree has a greater impact, especially for larger values
of MinSupp. The reduction in the overall bandwidth con-
sumption is up to 27%, while the reduction in the transmitted
outlier bits reaches 53%. This is because a random initial
selection of the parent nodes may disperse readings of nodes
that belong to the same group towards different directions.
Thus, reorganization is more important when group-by queries
are considered. This fact is also recognized in [17].

B. Experiments with Perturbed Real Traces

We now investigate how our techniques perform in challeng-
ing scenarios where sensor nodes frequently obtain spurious
measurements, or fail dirty due to the environment where they
are placed. We use temperature measurements that involve 48
motes from the Intel Labs data set [8]. In this data set, one
of the sensor nodes fails dirty at some point, increasing its
temperature until it reaches 122 degrees. In this experiment,
we increase the complexity of the data set by: (1) Specifying
for each sensor a 6% probability that it will fail-dirty at some
point. Each node that fails-dirty increases its measurement

at an average of about 1 degree per epoch, until it reaches
a maximum reading of about 100 degrees. To prevent its
measurements from lying on a straight line, we also impose
a noise of up to 15% at the values of a node that fails dirty;
(2) Each node with probability 0.4% at each epoch obtains a
spurious measurement, which we model as a random reading
between 0 and 100 degrees.

In Fig. 7 we show the resulting reported aggregate for
this very challenging data set. In this experiment we examine
an alternative technique for computing similarity, namely the
extended Jaccard coefficient [23]. We note that this change re-
quires only the modification of the canWitness() function
in our framework. The similarity threshold in this experiment
was set to 0.8. The reported maximum temperature of our
SensibleAggr-supp1 algorithm was similar to the one of
Robust, so we depict only the latter in the Figure, for clarity.
Fig. 7 shows that Robust, which uses a minimum support of 1,
quickly leads to disappointing results, after 220 epochs. Using
our techniques, with increased minimum support, improves the
situation. In this experiment, most of the abnormal readings
are eliminated using a minimum support of 3.

In Fig. 6 we compare the aggregate reported by our tech-
niques against a technique, termed oracle, that collects all the
data at the Root node (using a SELECT * query) and then
applies our SensibleAggr-supp algorithm there. Most of
the times the reported aggregate of our in-network technique
is exactly the same with the one reported by the oracle.
Please note however that even the oracle can perform very
poorly for low values of minimum support, as its results for
MinSupp=1 are similar to the ones of Robust in Fig. 7. In
Fig. 10 we show the F measure [21] which is calculated as:
2×recall×precision

recall+precision of our in-network algorithm when using a
minimum support value of 3, compared to the oracle based
on the list of outliers reported. We plot the results for the
standard version of our algorithm, where each successful
witness test of an outlier node with a node in the WitnessSet
conservatively increases the support of the outlier by 1. We
also plot two more aggressive alternatives that increase the
outlier’s support in such cases (parameter PropagateSupport
in the figure) by 2 and 3, correspondingly. We see that our
SensibleAggr-supp algorithm achieves very high values
of the F measure, meaning that it discovers most of the outliers
also discovered by the oracle with few misclassifications,

0 100 200 300 400 500 600
Epoch

0

50

100

150
M

A
X

 T
em

pe
ra

tu
re

AGGREGATION
SensibleAggr-supp3
Robust

A
G

G
R

EG
A

TI
O

N

Robust, SensibleAggr-supp3
behave well here

SensibleAggr-supp3 behaves well here.
Robust experiences many spikes

AGGREGATION
AGGREGATION

Fig. 8. Computed MAX Temp., Intel data with noise,
Correlation Coefficient

0 100 200 300 400 500 600
Epoch

0

20

40

60

80

A
ve

ra
ge

 H
um

id
ity

AGGREGATION
Robust
SensibleAggr-supp3

AGGREGATION

Robust, SensibleAggr-supp3
behave well in this area

Robust starts losing track
of clean aggregate here

SensibleAggr-supp3
behaves well in this area

Robust, AGGREGATION

Fig. 9. Computed AVG Humidity, Intel data with noise,
Correlation Coefficient

0 100 200 300 400 500
Epoch

0

0.2

0.4

0.6

0.8

1

F
=

 2
 *

 P
re

ci
si

on
 *

 R
ec

al
l /

 (
Pr

ec
is

io
n

+
 R

ec
al

l)

PropagateSupport = 1 (Standard Algorithm Version)
PropagateSupport = 2
PropagateSupport = 3

Fig. 10. F measure of
SensibleAggr-supp3 in Fig. 7

while using only a fraction of the bandwidth and energy
consumed by the latter (please refer to our discussion in the
previous subsection where we evaluate the cost of a SELECT *
query). Moreover, we observe that we are correct in utilizing
our standard, conservative approach, as the most aggressive
versions provide disappointing results near the end of the
experiment, where the data has become more noisy.

In Fig. 8 we show the resulting reported aggregate when
using the correlation coefficient. As we can see, the aggregate
computed by pure in-network aggregation quickly becomes
meaningless. The technique of [15] provides some improve-
ments, but is still characterized by too many spikes. The
aggregate obtained by our technique with a minimum support
of 3 is significantly more accurate and manages to eliminate
most spurious readings, along with the readings of nodes that
fail-dirty, in all but a few cases. In Fig. 9 we experiment with
perturbed humidity readings from the same real dataset. This
time we compute the average humidity value. We notice that
utilizing a minimum support of 3 provides very good results
and manages to eliminate from the aggregate computation the
measurements of the nodes that failed dirty in this experiment.

VII. CONCLUSIONS

In this paper we presented a novel aggregation framework
that can tolerate outlier readings that almost always arise
in sensor network applications. Our framework supports ag-
gregation queries with group by predicates. We considered
different definitions of an outlier node, based on a specified
minimum support by other nodes over a period of time, and
discussed techniques that optimize the routing of messages in
the network in order to minimize the bandwidth and energy
drain during the query evaluation while maintaining the quality
of the aggregate. Our experiments with real traces establish
that a straightforward evaluation of an aggregate query leads
to highly inaccurate and, thus, meaningless results due to the
existence of outliers. In contrast, our approach detects and
eliminates spurious readings without any application specific
knowledge of what constitutes normal behavior, and can
indeed report comparable performance to out-of-network com-
putation of outliers and aggregates with significant reduction
in energy and bandwidth consumption.

REFERENCES

[1] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani. Estimating
Aggregates on a Peer-to-Peer Network. Technical report, Stanford, 2003.

[2] J. Chen, S. Kher, and A. Somani. Distributed Fault Detection of Wireless
Sensor Networks. In DIWANS, 2006.

[3] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate Aggregation
Techniques for Sensor Databases. In ICDE, 2004.

[4] G. Cormode and S. Muthukrishnan. An Improved Data Stream Sum-
mary: the Count-Min Sketch and its Applications. J. Algorithms,
55(1):58–75, 2005.

[5] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing
Historical Information in Sensor Networks. In ACM SIGMOD, 2004.

[6] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Hierarchical In-
Network Data Aggregation with Quality Guarantees. In EDBT, 2004.

[7] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Bandwidth Con-
strained Queries in Sensor Networks. The VLDB Journal, 17(3):443–
467, 2008.

[8] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-Driven Data Acquisition in Sensor Networks. In VLDB, 2004.

[9] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidermann. Impact
of Network Density on Data Aggregation in Wireless Sensor Networks.
In ICDCS, 2002.

[10] S. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom. Declar-
ative Support for Sensor Data Cleaning. In Pervasive, 2006.

[11] S. Jeffery, M. Garofalakis, and M. Franklin. Adaptive Cleaning for RFID
Data Streams. In VLDB, 2006.

[12] D. Kempe, A. Dobra, and J. Gehrke. Gossip-Based Computation of
Aggregate Information. In FOCS, 2003.

[13] N. Khoussainova, M. Balazinska, and D. Suciu. Towards Correcting
Input Data Errors Probabilistically using Integrity Constraints. In
MobiDE, 2006.

[14] Y. Kotidis. Snapshot Queries: Towards Data-Centric Sensor Networks.
In ICDE, 2005.

[15] Y. Kotidis, A. Deligiannakis, V. Stoumpos, V. Vassalos, and A. Delis.
Robust Management of Outliers in Sensor Network Aggregate Queries.
In MobiDE, 2007.

[16] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A
Tiny Aggregation Service for ad hoc Sensor Networks. In OSDI Conf.,
2002.

[17] A. Sharaf, J. Beaver, A. Labrinidis, and P. Chrysanthis. Balancing
Energy Efficiency and Quality of Aggregate Data in Sensor Networks.
VLDB Journal, 2004.

[18] S. Singh, M. Woo, and C. S. Raghavendra. Power-aware Routing in
Mobile Ad Hoc Networks. In International Conference on Mobile
Computing and Networking, 1998.

[19] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and
D. Gunopulos. Online Outlier Detection in Sensor Data Using Non-
Parametric Models. In VLDB, 2006.

[20] H. Tan and I. Korpeoglu. Power Efficient Data Gathering and Aggre-
gation in Wireless Sensor Networks. SIGMOD Record, 32(4), 2003.

[21] C. J. Van Rijsbergen. Information Retrieval, 2nd edition. Dept. of
Computer Science, University of Glasgow, 1979.

[22] Y.-J. Wen, A. M. Agogino, and K.Goebel. Fuzzy Validation and Fusion
for Wireless Sensor Networks. In ASME, 2004.

[23] X. Xiao, W. Peng, C. Hung, and W. Lee. Using SensorRanks for In-
Network Detection of Faulty Readings in Wireless Sensor Networks. In
MobiDE, 2007.

[24] Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query
Processing in Sensor Networks. SIGMOD Record, 31(3):9–18, 2002.

