

Contemporary Access Structures
Under Mixed Workloads

ALEX DELIS1 AND QUANG LEVIET2

1Department of Computer and Information Science, Polytechnic University, Brooklyn, NY 11201, USA
2School of Information Systems, Queensland University of Technology, Brisbane, QLD 4001, Australia

Email: ad@naxos.poly.edu

Modern high-performance computing systems and databases are implemented under the
assumption that a very large proportion of the data used can now be maintained in volatile memory.
In this paper, we compare experimentally two recently proposed self-adjusting access structures
that can be used to organize data in such settings, namely, the Skip-List (SL) and the Binary B-Tree
(BB-Tree). We examine the scalability of these two methods against both mixed and pure-query
workloads. Our experiments reveal the behaviour of SLs and BB-Trees under diverse environments

and varying data requirements.

Received May 9, 1996; revised July 28, 1997

1. INTRODUCTION

A wide variety of applications require main-memory access
structures that demonstrate both fast response times and easy
maintenance [1�4]. The performance of the Binary Search
Tree (BT), a widely used structure, deteriorates signi"cantly
to almost O(n) when the structure is created by ordered,
partially ordered or skewed input data sets [1, 5, 6]. In
realistic settings, such data sets appear often [7�10]. To
prevent poor response time, various other classes of trees
have been proposed, based on height balance.
One such example is the AVL-tree which guarantees

logarithmic search time at the expense of node rotations
[11�13]. However, AVL maintenance routines are
complicated to implement and the cost of maintaining
balance may become rather high in an environment with
continuous updates of skewed data items [14, 15]. Hairy
trees [16] are built using an elegant insertion mechanism
and avoid costly global re-balancing operations. This is
achieved by performing local balancing in the vicinity of
newly inserted nodes. Deletions could be more dif"cult to
carry out as they may trigger global tree reorganizations.
Confronting similar problems but following a proba-

bilistic approach, Pugh introduced a self-adjusting access
method termed the Skip-List (SL) [17, 18]. Analysis
indicates that SLs may perform well under skewed data sets
and provide shorter response times than AVL, 2�3 and self-
adjusting trees [18, 19]. In the worst-case scenario, the SL
may produce O(n) access times. However, this is argued to
be highly improbable [18].
The BB-Tree access method, introduced in [20], follows

a more conventional structural approach to offer fast query-
response times. The proposed method is based on a simple
observation that limits the number of required restructuring
operations. This observation suggests that before breaking
up a node, we have to ensure that only right-hand edges are

in the same level. In this way, the re-balancing of the tree can
be achieved with only two simple operations. The BB-Tree
is maintained by a set of elegant and simple-to-implement
routines. The two main reported advantages of the BB-Tree
are easy coding and satisfactory performance [20].

Recently, a number of studies have analysed issues perti-
nent to the SL structure from a theoretical viewpoint. Such
analyses include the study of the path length, the behaviour
of an optimized search algorithm and the development of a
limit theory for SLs [19, 21, 22]. However, at this stage and
from the experimental point of view, we are not aware of
any large-scale study that attempts to evaluate empirically
not only the performance of the SL but also to compare it
with new promising self-adjusting access methods. Limited
experimentation in [20] suggests that the Deterministic
Skip-List [23]�a worst-case ef"cient variant of SL�gives
poorer performance than the BB-Tree. Relatively small-size
structures (up to 10 000 items) were used in a Pascal and
Unix environment. In [20], it is also argued that the SL offers
similar results if compared with the BB-Tree.

In this paper, we carry out a large-scale comprehensive
experimental study in the Unix environment in order to
obtain a clear understanding regarding the merits of both the
SL and BB-Tree, and see how these access structures behave
under the presence of both queries and updates (i.e. mixed
workloads). Large, skewed and mixed-data workloads of
varying compositions are used and the sensitivity of the
access structures to distributions of input data is examined.
Our experience indicates that the BB-Tree offers elegant
maintenance routines. If these routines are implemented
ef"ciently, they yield very competitive response times in a
number of cases. On the other hand, the SL demonstrates
consistently better creation times and improved response
times for all experiments that involve mixed workloads with
frequent updates. The SL also has minimal space overhead

THE COMPUTER JOURNAL, Vol. 40, No. 4, 1997

184 A. DELIS AND Q. LEVIET

325
410 631 731

917

NIL

681
309 398

403

510

504

99

185

301

Insertion Area (for key 303)
- Update Pointers

Search Path

FIGURE 1. The Skip-List structure.

325
410 631 731

917

NIL

681
309 398

403

99
185

301 510

504303

FIGURE 2. The Skip-List structure after the insertion of item `303'.

requirements. Measurements with regular BTs are used as
the baseline case whenever necessary.
This paper is organized as follows. Section 2 outlines the

main features of the two access methods. Section 3 describes
our goals and discusses the design of our experiments,
while Section 4 presents some of our experimental results.
Conclusions can be found in the "nal section.

2. KEY FEATURES OF THE ACCESS METHODS

The SL is a probabilistic variation of the linked-list in which
each node has a different number of forwarding pointers.
The number of pointers at each node is generated randomly
when the node is inserted and ranges between 1 and a
MaxLevel number. MaxLevel is often de"ned in conjunction
with the number of items in the SL [17]. A NIL node with
a MaxValue is placed at the very end of the list. Figure 1
shows the key features of the structure.
Searching of the SL is initiated at the header cell and

follows the highest possible pointer until no further progress
can be made. At this point, the value at the current node
is greater than that of the search key. Subsequently, the
searching moves down one pointer level at the header node
and the above process is repeated. This continues until
pointer level one is reached. Searching at this level will
either reveal the cell of the structure that maintains the key
if it exists, or indicate that the search has failed. The dashed
line in Figure 1 indicates the path traversed in order to locate
the node with key `301'.
The main idea for both insertion and deletion operations

is "rst to search for the correct location and then splice
the structure with the assistance of an auxiliary Update
vector containing pointers from the traversed path. The
Update array simply keeps track of the forwarding pointers
encountered thus far. Let us assume that we need to insert an
item whose key value is `303'. In Figure 1, the forwarding
pointers pertinent to the item to be inserted (`303') are
circled. In particular, the nth entry of this auxiliary array
contains a pointer to the right-most node of level n or higher
to the left of the location of the insertion/deletion [18]. To
insert a key value, a new node with a random number of

pointers is created and inserted into the appropriate position.
This random number underlines the probabilistic nature of
the SL. Figure 2 shows the insertion of a node with key `303'
after four forwarding pointers have been generated with the
help of the Update vector.
On the other hand, the BB-Tree could be characterized

as a binary representation of the 2�3 tree. BB-Tree nodes
maintain a record of balancing information along with their
data. This balancing information simulates the behaviour
of the 2�3 tree nodes and is called the `level' of the node
[20]. The bottom layer of the structure has balance equal
to 1. The root of the tree has the maximum level in the
structure. Figure 3 depicts a BB-Tree. Each node contains
the level information (next to the key). Note that only right-
hand edges are allowed to be in the same level (i.e. `325' and
`631').
Rearrangement occurs if there are more than two nodes

with the same level value. This situation corresponds to
the case of an over#owing node in a 2�3 tree. Sibling
nodes belonging to the same level can be connected with
left- and right-hand edges called `horizontal edges'. In order
to maintain balance in the BB-Tree, two cases have to be
dealt with: "rstly, all the horizontal left-hand edges have
to be eliminated; secondly, the tree has to be rearranged
if more than two siblings exist with the same level values
(i.e. over-#oating tree nodes at the same level). The former
action both checks and corrects against `skewed' internal
node arrangement in the BB-Tree and the latter provides for
the balanced expansion of the tree upwards through splitting.
Therefore, only two operations are required to maintain the
BB-Tree, namely Skew(n) and Split(n), where n is a tree
node. The former extends horizontal left-hand edges beneath
n. The latter splits the pseudo-node n if it is too large by
augmenting the level of every other node.
The searching of the BB-Tree is similar to that of the

binary tree. Insertions and deletions are constructed around
the Skew() and Split() operations since updates are likely to
violate the balancing relationship among the tree's nodes.
Insertions occur initially at the "rst (lowest) level of the
structure. Subsequently, the tree is traversed from this new
node to the root and at each node both the Skew() and

THE COMPUTER JOURNAL, Vol. 40, No. 4, 1997

CONTEMPORARY ACCESS STRUCTURES UNDER MIXED WORKLOADS 185

325

185

301

99 309 398

410

504

510

631

681

731 9171

1

11

1

1 1

2 2 2

3

3

1

FIGURE 3. The BB-Tree structure.

325

398

410

504

510

631

681

731 91799 1 11

1

1 1

185 2
2 2

3

3

309 1301

2

1

303

FIGURE 4. The BB-Tree structure after the insertion of item `303'.

Split() operations are applied to rectify possible imbalances.
Figure 4 shows the resulting structure if a node with the
key `303' is inserted. Node deletion from the lowest level
is followed by a traversal up to the root of the tree. While
ascending in the structure, the level of the current node is
checked against the levels of its children. If the level of
the current node differs from a child by two then the level
of the node is reduced by two and the Skew() and Split()
operations are performed. To handle deletions of internal
nodes, two additional global pointers are used to keep track
of the traversal [20].

3. EXPERIMENTAL SETTINGS AND
WORKLOADS

In order to secure a fair comparison, we took particular
care to design software modules that re#ect the algorithms
presented in [18, 20]. In addition, we implemented on our
own an iterative version of the maintenance routines for the
BB-Tree to avoid possible delays due to extensive recursive
operations. This version, termed `Iterative BB-Tree', is
implemented around a stack of pointers that is allocated
statically by the driver routine of the package. ANSI C
was used for the implementation of the access methods and
the gcc compiler helped us compile our packages on a
number of Sun Microsystems platforms. The experimental
results reported here were generated with a Sun IPX
SparcStation having 64 Mbyte of main memory and running
Solaris 2.4-System V Release 4.0. Our experiments were

also run on a number of various other con"gurations, namely
a Sun IPC equipped with 24Mbyte of main memory, running
Sun OS-4.1.3; a SparcStation20 with 64 Mbyte, running
Sun OS-4.1.4 and "nally a Sparc ULTRA1 workstation
with 96 Mbyte of RAM, running Solaris 2.5-System V
Release 4.0. Results with these three con"gurations were
consistent with those reported here.
The data sets used in the experiments were varied along

three dimensions: size, type and workload composition.
We created structures with sizes ranging from 1000 to
200 000 entries, as we were particularly interested in devel-
oping a thorough understanding of the methods' behaviour
under very large data requirements. The data types of the
nodes used in our experiments were integer, long (real) num-
bers, strings with an average length of 20 characters and
structures of 50 bytes each (including the key). For brevity,
we only present results compiled with nodes with a size of
20 bytes (pointers and level information not included).
Structures were created from both ordered (input data ar-
ranged in ascending and descending order) and random data
sets. Once the data were in place, queries were carried out
and response-time statistics were collected. A complete set
of queries retrieved all data items in a structure. Finally,
batch jobs consisting of both queries and updates were
submitted against the structures in order to study the
behaviour of the access methods under mixed workloads
[12]. We considered as updates either deletion or insertion
operations.

THE COMPUTER JOURNAL, Vol. 40, No. 4, 1997

186 A. DELIS AND Q. LEVIET

40.00

60.00

80.00

100.00

120.00

140.00

160.00
BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Average Creation Time Per Entry: Random Input

FIGURE 5. Average insertion time per entry�structure created
from input in random order.

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Average Creation Time Per Entry: Input in Descending Order

FIGURE 7. Average insertion time per entry�structure created
from input in descending order.

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Average Creation Time Per Entry: Input in Ascending Order

FIGURE 6. Average insertion time per entry�structure created
from input in ascending order.

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Response Time for Successful Queries: Input in Ascending Order

FIGURE 8. Response time for successful searches�structure
created from input in ascending order.

THE COMPUTER JOURNAL, Vol. 40, No. 4, 1997

CONTEMPORARY ACCESS STRUCTURES UNDER MIXED WORKLOADS 187

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Response Time for Unsuccessful Query: Input in Ascending Order

FIGURE 9. Response time for unsuccessful searches�structure
created from input in ascending order.

Our experimentation commenced by building the data
structures for the various sizes and by comparing the
average costs involved. Measurements from experiments
with regular BTs were used as the baseline case whenever
necessary. In the second phase, both successful and
unsuccessful searches for all different types of input
data were performed on static structures. Finally, three
experiments were carried out using mixed workloads. Each
of these workloads consisted of both queries (i.e. searches)
and updates (i.e. deletions and insertions) mixed randomly
in a pre-determined ratio. The three workloads were: 80%
queries and 20% updates (denoted as 80�20%), 50% queries
and 50% updates (denoted as 50�50%), and 20% queries
and 80% updates (denoted as 20�80%). The objective of
these experiments is to examine the performance of the
methods in diverse settings and is in line with previous
work [12]. The "rst workload corresponds to environments
with conventional database processing requirements [1, 24].
The other two workloads examine the performance of the
methods under discussion in highly dynamic environments.
In such settings, frequent modi"cations of structures occur.
Dynamic environments of this form are managed by real-
time systems [25], main-memory databases [26, 27], rule-
based systems [28] and directory maintenance systems for
mobile telephony [29].
The clock() system call [30] was used to measure

the average response time (µs) per operation (insertion,
query/search, deletion). Our results were compiled by
executing a large number of iterations for each individual
experiment. We computed the average times observed
and the standard deviations. In all experiments involving

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Response Time for Successful Queries: Random Input

FIGURE 10. Response time for successful searches�structure
created from input in random order.

the two implementations of the BB-Tree (the proposed
recursive [20] and our own iterative implementation), the
standard deviation was found to be <1%. For almost
all the experiments involving SLs, the standard deviation
was found to be <3.5% (a very few experiments produced
larger deviations with a maximum observed value of 4.55%).
The higher deviation values obtained in the case of SL
are attributed to the probabilistic nature of this method.
The experiments were conducted with a single user on
the system during the night so that we maintain an
environment free of interference from other processes. It
is worth mentioning that even under usual daytime resource
contention conditions, we obtained approximately similar
trends to those reported here.

4. EMPIRICAL RESULTS

Figure 5 shows the average time needed (µs) to insert an
entry into structures using SL, BB-Tree and Iterative BB-
Tree routines as the number of entries ranges from 1000
to 200 000. Entries are identi"ed by unique value keys.
Items to be inserted into the structures are created and if
necessary randomized off-line (before the measurement of
the build-up time commences). The same random data
sets are used to create not only the SL and the BB-
Tree but also the Binary-Tree baseline structure. From
Figure 5, it is apparent that the SL consistently produces a
much faster average insertion time than the recursive BB-
Tree. However, the iterative implementation of the BB-Tree
produces response times directly comparable with those
attained by the SL. The average time to insert an item in

THE COMPUTER JOURNAL, Vol. 40, No. 4, 1997

188 A. DELIS AND Q. LEVIET

20.00

40.00

60.00

80.00

100.00

120.00 BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Response Time for Unsuccessful Queries: Random Input

FIGURE 11. Response time for unsuccessful searches�structure
created from input in random order.

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Response Time for Unsuccessful Queries: Input in Descending Order

FIGURE 13. Response time for unsuccessful searches�structure
created from input in descending order.

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Response Time for Successful Queries: Input in Descending Order

FIGURE 12. Response time for successful searches�structure
created from input in descending order.

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Average Response Time(80%Ð20%, Random Input)

FIGURE 14. Response time for 80�20% mixed workload and
structure created from random input.

THE COMPUTER JOURNAL, Vol. 40, No. 4, 1997

CONTEMPORARY ACCESS STRUCTURES UNDER MIXED WORKLOADS 189

20.00

40.00

60.00

80.00

100.00

120.00

140.00

BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Average Response Time(50%Ð50%, Random Input)

FIGURE 15. Response time for 50�50% mixed workload and
structure created from random input.

a structure of 100 000 entries was 168 µs using the BB-
Tree routines, 59 µs using the iterative BB-Tree routines and
"nally 58 µs for SL.
Figures 6 and 7 depict the average time required to

insert an entry as the size of the structure ranges up to
200 000 entries in the case of ordered input data sets. Input
sets are ordered in ascending (Figure 6) and descending
fashion (Figure 7). The SL offers extremely competitive
response times for this form of insertion. Here, the SL
insertions are more than four times faster than those achieved
by the BB-Tree and two times faster than the rates obtained
by the Iterative BB-Tree. This is mainly due to the extensive
BB-Tree re-balancing required for the ordered input data
sets. Table 1 summarizes the responses obtained for up to
20 000 entries and includes measurements compiled with the
baseline BT structure. Since BT is a non-self-organizing
access method, it suffers as the size of the ordered data set
becomes large. Indeed, for more than 30 000 entries we were
unable to compile any results as a number of our platforms
were thrashing. Although for ordered input (both cases), the
BB-Tree is de"nitely superior to its BT counterpart, it still
lags behind the SL.
Once the data structures are set up, they are subjected to

read-only requests (queries). All items present in a structure
are retrieved and response times are computed. Figures 8�13
show the average response times for both successful and
unsuccessful searches in the presence of structures created
by both ordered and random data sets. SL offers a 3�
4 times faster response time than the recursive version
of BB-Tree for both successful and unsuccessful searches.

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Average Response Time (20%Ð80%, Random Input)

FIGURE 16. Response time for 20�80% mixed workload and
structure created from random input.

Although the SL in general performs more comparisons, it
avoids the inherent overheads of the recursive programming
style used to encode the routines of the original BB-Tree
proposal. However, in this query-only setting, the iterative
version of the BB-Tree out-performs the SL as the structure
remains balanced and the above-mentioned two types of
overheads are avoided. Only when structures were created
from skewed input data was the SL able to perform slightly
better than our iterative version of the BB-Tree. The average
improvement in query response time for the iterative BB-
Tree over the SL throughout the space of the experiment
was calculated as 46.36% (successful search) and 25.29%
(unsuccessful search) in the case of structures created by
randomly ordered input sets.
The time required to search an entry in a standard Binary-

Tree is orders of magnitude worse than that of a BB-Tree.
For instance, for a structure consisting of 15 000 entries, a
successful search takes on average 84 µs in the BB-Tree,
24µs in the iterative BB-Tree, 32µs in the SL and 89 303µs
for the Binary-Tree (structures constructed from random
input data).
Table 2 summarizes the space overhead in bytes required

for the BB-Tree, the SL and the Binary-Tree as the number
of entries increases from 1000 to 200 000 nodes (the data
"eld is 20 bytes long per node). The BB-Tree shows 50%
more storage overhead than the BT due to the additional
integer used for the node balancing information. On the
other hand, the SL demands notably less space than both
BB and BT as the forwarding pointers of its structure cells
are highly utilized. Ordered input sets also generate notably

THE COMPUTER JOURNAL, Vol. 40, No. 4, 1997

190 A. DELIS AND Q. LEVIET

TABLE 1. Insertion response time (µs) for up to 20 000 entries (input in ascending order)

Number of entries 1000 2000 5000 10 000 20 000

BT (iterative) 5630 11 815 30 184 62 342 93 563
BB-Tree 110 140 152 176 179
BB-Tree (iterative) 50 55 60 65 69
SL 40 45 40 41 41

TABLE 2. Space overhead (byte) for BT, BB-Tree and SL

Number of entries 2000 10 000 20 000 50 000 100 000 150 000 200 000

BT 16 000 80 000 160 000 400 000 800 000 1 200 000 1 600 000
BB-Tree 24 000 120 000 240 000 600 000 1 200 000 1 800 000 2 400 000
BB-Tree (iterative) 25 200 121 200 241 200 601 200 1 201 200 1 801 200 2 401 200
SL (input in random order) 11 208 53 988 105 932 247 564 437 412 588 308 702 052
SL (input in ascending order) 11 048 55 412 110 868 277 192 555 188 835 408 1 112 592
SL (input in descending order) 11 108 55 708 111 192 278 252 556 276 833 468 1 115 276

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Average Response Time(80%Ð20%, Input in Ascending Order)

FIGURE 17. Response time for 80�20% mixed workload and
structure created from input in ascending order.

increased space overheads for the SL if compared with the
space requirements of random input sets.
Figures 14�22 show results from the three experiments

with mixed workloads. Deletions and insertions participate
equally in the update percentages of the workloads. These
mixes of searches and modi"cations are submitted to the
structures created by SL and BB-Trees. At the end
of each experiment, the structure under examination was

20.00

40.00

60.00

80.00

100.00

120.00

140.00

BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Average Response Time(50%Ð50%, Input in Ascending Order)

FIGURE 18. Response time for 50�50% mixed workload and
structure created from input in ascending order.

reconstructed so that we avoid possibly undesirable ripple
effects in the course of our measurements. In all these
graphs, the SL response times are 3�7 times better than those
achieved by its recursive BB-Tree counterpart. Although the
iterative implementation of BB-Tree performs much better
than the original proposal, it is still inferior to SL in the
light of skewed input and mixed workloads that involve
signi"cant and/or heavy updating. More speci"cally for

THE COMPUTER JOURNAL, Vol. 40, No. 4, 1997

CONTEMPORARY ACCESS STRUCTURES UNDER MIXED WORKLOADS 191

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Average Response Time(20%Ð80%, Input in Ascending Order)

FIGURE 19. Response time for 20�80% mixed workload and
structure created from input in ascending order.

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Average Response Time(50%Ð50%, Input in Descending Order)

FIGURE 21. Response time for 50�50% mixed workload and
structure created from input in descending order.

20.00

40.00

60.00

80.00

100.00

120.00

140.00

BB-Tree

BB-Tree(iterative)

Skip-List

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

Average Response Time(80%Ð20%, Input in Descending Order)

FIGURE 20. Response time for 80�20% mixed workload and
structure created from input in descending order.

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

BB-Tree

BB-Tree(iterative)

Skip-List

Average Response Time(20%Ð80%, Input in Descending Order)

0 50,000 150,000100,000 200,000
Number of Entries in the Structure

FIGURE 22. Response time for 20�80% mixed workload and
structure created from input in descending order.

THE COMPUTER JOURNAL, Vol. 40, No. 4, 1997

192 A. DELIS AND Q. LEVIET

50 000 entries in Figure 19, SL offers an average of 33 µs
operation response, the BB-Tree produces 153 µs, and the
iterative BB-Tree implementation results in 49 µs. For a
structure of 200 000 entries (Figure 19), the SL achieves
37 µs and the two versions of BB-Tree 181 and 54 µs,
respectively.
As we move from mostly read-type (80�20% job

composition) to mostly update-type workloads (20�80%),
the response times by the BB-Tree become longer, as
expected. Nevertheless, the performance of both Iterative
and SL appears to level-off for more than 50 000 entries
at 35 µs. The required extensive re-balancing of the
BB-Tree (especially in the 20�80% workload), as well as
the delays due to recursive calls of the initially proposed
implementation, contribute to this picture.
Figure 14 depicts the only case where the iterative BB-

Tree implementation consistently offers better performance
than SL in the presence of mixed workloads. In particular,
SL produces on average 27.40% worse response times than
the iterative implementation of the BB-Tree. This is due to
the fact that a large majority of the operations are queries
whose short response times dilute the costs of lengthy and
infrequent updates in structures created by random inputs.
For instance in Figure 14 and for a 200 000-item structure,
the SL gives an average response time of 49 µs while the
iterative BB-Tree produces 37 µs.

5. CONCLUSIONS

The ever-increasing sizes of databases call for indexing
techniques that furnish very short response times in spite of
the high performance of contemporary computer systems.
In this paper, we have experimentally evaluated two
modern access structures that provide for ef"cient accessing
of voluminous main-memory resident data, namely the
probabilistic SL and the BB-Tree. Apart from analytical
results [18, 19], there are few and limited experimental
results to provide an understanding about the effectiveness
of the above two access methods in diverse settings [18, 20].
In addition to the initially proposed recursive maintenance
routines for BB-Tree [20], we have created an iterative
implementation of this access method. Our experiments
focus on large data sets constructed from random and
skewed input sequences as well as mixed workloads. To
the best of our knowledge, no benchmarking with mixed
workloads has been presented before.
Our major results are:

1. In environments where data rarely change, the iterative
version of the BB-Tree consistently outperforms the SL
for queries on structures created from randomly ordered
input data.

2. The SL provides a much better alternative for mixed
workloads with a high volume of updates. The use of
the SL is also advantageous when the input data used
are highly skewed.

3. The iterative implementation of BB-Trees presents very
competitive response times in the light of workloads
with a limited number of updating operations and

structures generated from randomly ordered data. In
this type of environment, we have found that the SL
offers inferior response times.

4. Under large space requirements, the SL demonstrates
the smallest space overhead of the structures consid-
ered. This is due to high utilization of the forwarding
pointers of the SL cells. Our experience also indicates
that it is practically impossible to create a degenerate
SL.

5. The recursive maintenance routines of the BB-Tree
produced consistently inferior performance than the SL
in all our experiments.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous referees for
their comments and suggestions, to Mikhail Reznikov for
providing counter implementations, and to Stephen Milliner
for commenting on earlier versions of the manuscript. This
work was partially supported by the Center for Advanced
Technology in Telecommunications (CATT) in Brooklyn,
NY.

REFERENCES

[1] Litwin, W., Roussopoulos, N., Levy, G. and Hong, W. (1991)
Trie hashing with controlled load. IEEE Trans. Software
Engineering, SE-17, 678�691.

[2] Walker, A. and Wood, D. (1976) Locally balanced binary
trees. Comp. J., 19, 322�325.

[3] Manolopoulos, Y. and Kollias, J. G. (1989) Expressions
for completely and partly unsuccessful batched search of
sequential and tree-structured "les. IEEE Trans. Software
Engineering, SE-15, 794�799.

[4] Özden, B., Biliris, A., Rastogi, R. and Silberschatz, A. (1994)
A low-cost storage server for movie on demand databases. In
Proc. 20th Very Large Databases Conf., Santiago, Chile.

[5] Frost, R. A. and Peterson, M. M. (1982) A short note on the
binary search tree. Comp. J., 25, 158.

[6] Bayer, R. (1972) Symmetric binary B-trees: data structure
and maintenance algorithms. Acta Informatica, 1, 290�306.

[7] Rahm, E. (1993) Empirical performance evaluation of
concurrency and coherency control protocols for database
sharing systems. ACM Trans. Database Syst., 18, 333�337.

[8] Palmer, M. and Zdonik, S. (1991) Fido: a cache that learns
to fetch. In Proc. 17th Int. Conf. on Very Large Databases,
Barcelona.

[9] Knuth, D. (1973) Sorting and Searching: the Art of Computer
Programming, Vol. 3. Addison-Wesley, Reading, MA.

[10] Gabarro, J., Martinez, C. and Messeguer, X. (1996) A design
of parallel dictionary using skip lists. Theor. Comp. Sci., 158,
1�33.

[11] Adelson-Velskii, G. M. and Landis, E. M. (1962) An algo-
rithm for the organization of information. Dokl. Akademia
SSSR, 146, 1259�1262.

[12] Bell, J. and Gupta, G. (1993) An evaluation of self-adjusting
binary search tree techniques. Software Practice Experience,
23, 369�382.

[13] Gonnet, G. and Baeza-Yates, R. (1991) Handbook of
Algorithms and Data Structures. Addison-Wesley, Reading,
MA.

THE COMPUTER JOURNAL, Vol. 40, No. 4, 1997

CONTEMPORARY ACCESS STRUCTURES UNDER MIXED WORKLOADS 193

[14] Singhal, M. (1990) Update transport: a new technique for
update synchronization in replicated database systems. IEEE
Trans. Software Engineering, SE-16, 1325�1336.

[15] Ciciani, B., Das, D., Iyer, B. and Yu, P. (1990) A
hybrid distributed centralized system structure for transaction
processing. IEEE Trans. Software Engineering, SE-16, 791�
806.

[16] Koster, C. H. A. and Van Der Weide, T. P. (1995) Hairy search
trees. Comp. J., 38, 691�694.

[17] Pugh, W. (1989) A Skip List Cookbook. Technical Report
UMIACS-TR-89-72.1. The University of Maryland, College
Park, MD.

[18] Pugh, W. (1990) Skip lists: a probabilistic alternative to
balanced trees. Commun. ACM, 33, 668�676.

[19] Kirschenhofer, P., Martinez, C. and Prodinger, H. (1995)
Analysis of an optimized search algorithm for skip lists.
Theor. Comp. Sci., 144, 199�220.

[20] Andersson, A. (1993) Balanced search trees made simple. In
3rd Workshop on Algorithms and Data Structures (WADS),
Montreal, Canada.

[21] Kirschenhofer, P. and Prodinger, H. (1994) The path length of
random skip lists. Acta Informatica, 31, 775�792.

[22] Devroye, L. (1992) A limit theory for random skip lists. Ann.
Appl. Probab., 2, 597�609.

[23] Munro, J., Papadakis, T. and Sedgewick, R. (1992)
Deterministic skip lists. In 3rd Ann. ACM Symp. on Discrete
Algorithms, Orlando, FL, pp. 367�375.

[24] Gray, J. (ed.) (1991) The Benchmark Handbook: for
Database and Transaction Processing Systems. Morgan
Kaufmann, San Mateo, CA.

[25] Kao, B. and Garcia-Molina, H. (1996) Scheduling soft
real-time jobs over dual non-real-time servers. IEEE Trans.
Parallel Distrib. Syst., PDS-7, 56�68.

[26] Salem, K. and Garcia-Molina, H. (1990) System M: a
transaction processing testbed for memory resident data.
IEEE Trans. Knowledge Data Engineering, KDE-2, 161�
172.

[27] Eich, M. (1987) A classi"cation and comparison of main-
memory database recovery techniques. In Proc. IEEE Int.
Conf. on Data Engineering, pp. 332�339.

[28] Ceri, S. and Windom, J. (1992) Production rules in parallel
and distributed database environments. In Proc. 19th Int.
Conf. on Very Large Databases, Vancouver, BC, Canada.

[29] Qiu, X. and Li, V. (1995) Performance analysis of PCS
mobility management database system. In Proc. 4th Int. Conf.
on Computer Communications and Networks (ICCCN'95),
Las Vegas, NV.

[30] Sun Microsystems (1992) Sun OS 4.1.3 Answer Book.
SunSoft.

THE COMPUTER JOURNAL, Vol. 40, No. 4, 1997

