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Abstract needs of multiple, concurrent data acquisition requests in an
efficient manner.
In this paper we present algorithms for building and It is generally agreed that one cannot simply move the

maintaining efficient collection trees that provide the con- readings necessary for processing an application request out
duit to disseminate data required for processing monitor- of the network and then perform the required processing in
ing queries in a wireless sensor network. While prior tech- a designated node such abase station Wireless sensor
niques base their operation on the assumption that the sen-nodes have limited energy capacity and such an approach
sor nodes that collect data relevant to a specified query will not only result in overburdening their radio links, but
need to include their measurements in the query result atwill also quickly drain their energy as radio transmission is
every query epoch, in many event monitoring applications by far the mostimportant factor in energy consumption [14].
such an assumption is not valid. We introduce and formal- Thus, most recent proposals rely on building some type of
ize the notion of event monitoring queries and demonstratead-hoc interconnect for answering a query such asatie

that they can capture a large class of monitoring applica- gregation tree[13, 24]. This is a paradigm of in-network
tions. We then show techniques which, using a small set ofprocessing that can be applied to non-aggregate queries as
intuitive statistics, can compute collection trees that mini- well [7]. In this paper we concentrate on building and main-
mize important resources such as the number of messagetaining efficientdata collection treeshat will provide the
exchanged among the nodes or the overall energy consumpeonduit to disseminate all data required for processing many
tion. Our experiments demonstrate that our technigues canconcurrent queries in a sensor network, including long-term
organize the data collection process while utilizing signifi- and ad-hoc type of queries, while minimizing important re-

cantly lower resources than prior approaches. sources such as the number of messages exchanged among
ducti the nodes or the overall energy consumption.
1 Introduction While prior work [4, 20, 22] has also tackled similar

Many pervasive applications rely on sensory devices thatproblems, previous techniques base their operation on the
are able to observe their environment and perform simpleassumption that the sensor nodes that collect data relevant
computational tasks. Driven by constant advances in mi-to the specified query need to include their measurements
croelectronics and the economy of scale it is becoming in- (and, thus, perform transmissions) in the query result at ev-
creasingly clear that our future will incorporate a plethora of ery queryepoch However, in many monitoring applications
such sensing devices that will participate and help us in oursuch an assumption is not valid. Monitoring nodes are of-
daily activities. Even though each sensor node will be ratherten interested in obtaining either the actual readings, or their
limited in terms of storage, processing and communication aggregate values, from sensor nodes that detect interesting
capabilities, they will be able to accomplish complex tasks events. The detection of such events can often be identified
through intelligent collaboration. by the readings of each sensor node. For example, in vehicle

Nevertheless, building a viable sensory infrastructure tracking and monitoring applications high noise levels may
cannot be achieved through mass production and deploy-indicate the proximity of a vehicle. In military applications,
ment of such devices without addressing first the techni- high levels of detected chemicals can be used to warn nearby
cal challenges of managing such networks. In this papertroops. In other applications, as in the case of approximate
we focus in developing the necessary data collection infras-evaluation of queries over the sensor data [6, 15, 18], an
tructure for supporting data-hungry applications that needevent is defined when the current sensor reading deviates by
to acquire and process readings from a large scale sensamore than a given threshold from the last transmitted value.
network. While previous work has focused on optimizing In all of these scenarios, each sensor node is not forced to
specific types of queries such as aggregate [13], join [2], include its measurements in the query output at each epoch,
model-based [8, 12] and select-all [7, 19] queries, we pro- but rather such guery participationis evaluated on a per
pose a data dissemination framework that can address thepoch basis, depending on its readings and the definition



l Aggregate Query I Non-Aggregate Query | both) regarding the sensor nodes. Examples of static pred-

SELECT Aggrfun(s.value) SELECT 5id,svalue icates may involve, but are not limited to, the collection of
WHERE inclusionConditions(s) = truBVHERE  inclusionConditions(s) = trug measurements from: (i) Sensors with specific identifiers; (ii)
SAMPLE PERIOD e FORT SAMPLE PERIOD e FORT Immobile sensors in a specific area; or (iii) Sensors moni-
toring a specific quantity, in cases of sensor networks with
Table 1: An Aggregate and a non-Aggregate Query diverse types of sensor nodes that monitor different quan-
over the Values Collected by the Sensor Nodes. tities. Static predicates are very useful in a variety of ap-

of interesting events. In this paper we term the monitoring Plications and have received the focus of the bulk of past

queries where the participation of a node is based on the defesearch [13, 24].
tection of an event of interest &vent monitoring queries However, there is a large class of monitoring queries that
(EMQs). cannot be expressed using static inclusion conditions. Ex-
Our techniques base their operation on collecting sim- amples include vehicle tracking and equipment monitoring
ple statistics during the operation of the sensor nodes. Theapplications where inclusion predicates need to be condi-
collected statistics involve the number of events (or, equiv- tioned on readings taken by the sensor nodes such as noise
alently, their frequency) that each sensor detected in the relevels or temperature readings. In its most simple form
cent past. Our algorithms utilize these statistics as hints fora dynamic inclusion predicate may be a condition of the
the behavior of each sensor in the near future and periodi-form “current reading> threshold”. More complex forms
cally reorganize the collection tree in order to minimize cer- may require the evaluation of a user defined function over
tain metrics of interest, such as the overall number of trans-a history of accumulated readings. We call such predicates,
missions or the overall energy consumption in the network. Whose evaluation depends also on the readings taken by the
Our contributions are summarized as follows: nodes, as dynamic predicates as they specify which nodes
should include their response in the query evaluation at each
1. We introduce the notion of EMQs in sensor networks. €Poch (i.e., nodes whose values exceed a given threshold,
EMQs are a superset of existing monitoring queries, but are®r deviate significantly from previous readings). We term
handled uniformly in our framework, irrespectively of the those monitoring queries that contain dynamic predicates
minimization metric of interest. asevent monitoring querieEMQs). Given a monitoring
2. We present detailed algorithms for minimizing impor- query, ex_lstmg techniques seek t_o devetmiiection trees
tant network resources such as the number of messages eibat specify the way that the data is forwarded from the sen-

changed or the energy consumption during the execution of>o' nodes to th@oot .”Ode: Periodically these COHE.’Ct'On
an EMQ. The presented algorithms are based on the collec-trees may b_e reorganized in order to adapt to evolving data
tion and transmission of a small, and of constant size, set Ofcharac_:tensucs [18]. o o

An important characteristic of EMQs, which is not taken

statistics. We introduce our algorithms along with a succinct Ala C ] ¢
mathematical justification. into account by existing algorithms that design collection

3. We extend our framework for the case of multiple con- g\?aellsjlalt?ot:att) eﬁ‘q‘é?uzei:s%rsr;gggira% ?ﬁét'cl:%?terg‘s:ﬂte grl]Jlery
current EMQs of different types. - » DY 9 9 query , only

. . . a limited number of times, based on how often the inclu-
4. We present a detailed experimental evaluation of our al'sion conditions are satisfied. We can thus associaépach
gorithms. Our results demonstrate that our technigues Caharticipation frequency Pwith each sensor nodg, which

achieve a significant reduction in the numbe_r of transmitted specifies the fraction of epochs that this node participated in
messages, or the overall energy consumption, compared tohe query result in the recent past.

alternative algorithms. Given estimates of the epoch participation frequencies,

— one can design significantly more efficient collection trees

2 Motivational Example than prior approaches. Consider the sample scenario de-

In Table 1 we present examples of the two main classes ofpicted in Figure 1(a). In this figure, 36 sensor nodes are
monitoring queries in sensor networks. We borrow the syn- placed in a grid. The sensor identifiers appear next to each
tax of TinyOS [13] to denote the epoch duration (e) and the sensor node. We also distinguish Bt node at the lower
lifetime of the query (t). The predicateclusionConditions  left corner, a monitoring node that performs queries over the
has been added in order to specify which sensor nodes willdata collected by the sensor nodes. In our sample network
participate in the query evaluation per epoch. At each querywe assume that each sensor node can communicate with its
epoch, all the sensor nodes that include their collected datammediate horizontal, vertical or diagonal neighbors, while
in the query result are termed in our frameworkeggoch only nodeSsg can communicate with theoot node. In Fig-
participating nodes For queries that wish to collect data ure 1(b) we depict sample estimates for the number of times
from all the sensor nodes at each epoch, the above predicateach sensor node will participate in the query result within
always evaluates tiue. the next 100 epochs. In the above scenario, given the pre-

When a monitoring query specifies inclusion predicates, sented epoch participation frequencies, two interior nodes
these may contain either static or dynamic predicates (oralong with all the boundary nodes on the upper and right-
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Figure 1: (a) Identifiers of sensors in grid arrangement; (b) Estimated number of participations in query
result in 100 epochs; (c) Collection tree for MinHops algorithm. Cost = 3130 transmissions; (d) Collection
tree for our algorithm. Cost = 1900 transmissions.

most edges of the network always detect events, while theing sensor nodes. A good classification of aggregate func-
remaining interior nodes detect events with a lower prob- tions is presented in [13], depending on the amount and type
ability, whose average value is about 5%. For the afore- of state required in non-leaf nodes in order for them to cal-
mentioned sample scenario, in Figure 1(c) we depict a sam-culate the aggregate result for the partition of descendant,

ple collection tree chosen by an algorithm, termedvias- in the collection tree, participating sensors. Table 2 summa-
Hopsthat seeks to minimize the number of hops that eachrizes this classification.
node’s data needs to traverse until it reache&the node. A crucial part of the operation of our algorithms is the

Next to each node we depict the actual number of transmis-estimation of the amount of data that will be transmitted
sions that each node performed within these 100 epochsin a given (or candidate) collection tree. In order to accu-
Similarly, in Figure 1(d) we present the collection tree that rately estimate this information, the aggregate function be-
our algorithms created for the evaluation of the SUM aggre- ing used needs to be distributive, algebraic or holistic (see
gate. A significant observation is that our algorithm seeks Table 2). Unique and content-sensitive aggregate functions
to forward the query results from nodes with high epoch can only be supported by using a worst case estimate for the
participation frequencies through a limited number of inte- amount of transmitted data. Please note that holistic aggre-
rior nodes, compared to thdinHopsalgorithm. One can  gate queries share similar characteristics with non-aggregate
easily establish the significant reduction in the number of queries and, thus, are treated in a similar way in our frame-
transmissions that our algorithm achieved (1900 vs 3130 or,work.

equivalently, a 65% reduction). 3.2  Problem Definition

3 Problem Formulation In this paper we seek to develop dissemination protocols
We first introduce the types of EMQs that our framework for the classes of EMQs described in Section 3.1. The goal

supports and then present the optimization problems tackleds, given the type of query at question, to design the collec-

in this paper. We then present the cost model used in ourtion tree so as to minimize either: (1) The number of trans-

algorithms in order to estimate the energy consumption of amitted messages in the network; or (2) The overall energy

sensor node during the transmission process. consumption in the network.

3.1 Supported Queries The minimization of additional metrics of interest is dis-

) cussed in Section 4.4. Our algorithms do not make any as-
In Table 1 we presented the two main classes of SQL

. - sumptions about the placement of the sensor nodes, their
gueries that our framework supports. It is important to em-

. : . S characteristics or their radio models.
phasize at this point that even non-participating nodes may

take part in the query evaluation process by forwarding mes-3-3 Energy Consumption Cost Model

sages towards thoot node. However, the collected val- A sensor node consumes energy at all stages of its oper-
ues of non-participating nodes influence neither the reportedation. However, because our algorithms do not require any
query result nor its size. significant computational effort by the sensor nodes, we ig-

The first class of supported queries involve non- nore in the cost model used in this paper the power con-
aggregate queries over the values of epoch participating sensumption when the sensor node is idle and the consump-
sor nodes. In this type of queries the amount of data trans-tion due to computations. The notation that will be used in
mitted by any node of the collection tree depends on the our discussion here, and later in the description of our algo-
number of epoch-participating sensors that are descendantdthms, is presented in Table 4. Additional definitions and
of that sensor node. explanations are presented in appropriate areas of the text.

The second class of supported queries involves aggregate We first describe the cost model used to estimate the en-
functions over the measurements collected by the participat-ergy consumption of a nod& during the data transmission



[ Category || Type of Partial State Needed | State Size [ Examples ] ’ Symbol H Typical Value ‘
Distributive Aggregate values for descendants Constant MAX, MIN, COUNT, SUM

Algebraic Aggregate values for descendants, Constant AVG SC 1“‘3
Holisti & flgrt(‘mfel:;e{1 t a? cgjregatedfuntaio Proportional t MEDIAN Erx 50nJ/bit
olistic ntire Data of descendants roportional to -
#epoch-participating descendants ERF 1OOpJ/blt/rT\2
Unique Distinct Values of descendants Data-Dependent COUNT DISTINCT E 50nJ/bit
- = : RX I
Content-Sensitive Aggregate-Specific Data-Dependent Histogram of Values
Table 3: Typical Radio Pa-
Table 2. Characteristics and Examples of Aggregate Function Types. rameters.
[_Symbol ][ Description ___ _ ‘ (number of messages or energy consumption). We also pro-
Root The node that initiates a query and which collects the relevant ¢lata vide detailed pseudocode in addition to a formal analysis
of the sensor nodes .
S Thei-th sensor node . .
P The epoch paricipation frequency §f 4.1 Construction/Update of the Collection Tree
D The minimum distance, in number of hops,$from theRoot : fe e . :
\a‘ggr\ The size of the (non-)aggregate values transmitted by a node The algorlthm 1S |_n|t|ated with the query propagatlon
B Energy spent by to transmit a new packet G&ggr bits oS, phase. The query is propagated from the base station
DEu; j Efnergy Spent b toktra)msmit additionaJaggr bits t0S; through the network using a flooding algorithm. In densely
on an existing packet). ; _
A Aftachment cost of To 3 candidaie pares populated sensor networks, a nogemay receive the an
CF, DCF || Cost factors utilized by neighboring nodesspwhen nouncement of the query from several of its neighbors. As
HCR estimating their attachment costSo in [13, 24] the node will select one of these nodes agats

ent node The chosen parent will be the one that exhibits
the lowestattachment costneaning the lowest expected in-
crease in the objective minimization function. For example,
of |aggr| > 0 bits of data to nod&;, which lies in distance  if our objective is to minimize the total number of transmit-
dist ; from S§. The energy cost can be estimated using a ted messages, then the selection will be the node that is ex-

Table 4. Symbols Used in our Algorithm

linear model [17] as: pected to result in the lowest increase in the number of trans-
, mitted messages in themtire path from that sensor until the
Eirj = SG+ (H +|aggr]) x (Erx + Erg x dist)), Root node (and similarly for the rest of the minimization

where: (i)SG denotes the energy startup cost for the data metrics). At this point we simply note that in order fo_r other
transmission of§. This cost depends on the radio used Nodes to compute their attachment cost, nfideansmits a
by the sensor node; (i denotes the size of the packet's small set of statisticStats and defer their exact definition
header; (iii)Erx denotes the per bit power dissipation of for Section4.2. . .
the transmitter electronics; and (i#ks denotes the per bit The result of this process is a collection tree towards the
and squared distance power delivered by the power ampli-0ase station that initiated the flooding process. A key point
fier. This power depends on the maximum desired commu-in our framework is that the preliminary selection of a par-
nication range and, thus, from the distance of the nodes withent hode may be revised in a second step where each node
which § desires to communicate. Thus, the additional en- evaluates the cost of using one of its sibling nodes as an al-
ergy consumption required to augment an existing packetternative parent. Due to the nature of the query propagation,
from § to S; with additional |aggr| bits can be calculated ~@nd given simple synchronization protocols, such as those
as:DEy. . = |aggr x (Erx + Erg x dist2,). specmec_i in [13], the nodes lyifghops from thekoot node

For tlﬁe case when each sénsor ricJ)de receives data, W@/lll receive the query announcement before the nodes that
need to keep in mind that each sensor must open its radio if'€ ©n€ hop further from th@cot node. LetRec denote
order to receive data or queries transmitted by neighboringth® Set of nodes that receive the query announcement for
nodes. This startup cost is incurred when the node wakes ugh€ first time during thécth step of the query propagation
from its sleep mode and, in contrast to the data transmissiorP125€ ,
case, is not directly related to the reception of data (since . At Stepk of the query propagation phase, after the pre-
the sensor may receive no data). Thus, this mandatory cosfiminary parent selection has been performed, each pde

is not taken into account in our model. in setRecg, needs to consider whether it is preferable to al-
When a sensor nod§ receivesH -+ b bits from node ter its current selection and choose as its paresibbng

S;, then the energy consumed Byis given by: Ereq = nodewnhm ;et Rec% - S. Each node_ cglculates a new
Erx x (H + bj), where the value oEry depends on the set _of stat|stlcsStat_$, bgsgd on its prehmmary parent se-
radio model. Some typical values [17] 8€, Etx, Erx and lection, and transmits anvitation, which also includes tht_e
Err are presented in Table 3. node’s newly calculate®tats values, that other nodes in

. . Recg (and only these nodes) may accept. Of course, we
4 Algorithm Overview need to be careful at this point and make sure that at least

We now present our algorithms for creating and main- one node withinRecg{ will not accept any invitation, as
taining a collection tree that minimizes the desired metric this would create a disconnected network and prevent nodes



from Recg to forward their results to nodes belonging in 4.2.1 Minimizing the Number of Transmissions

Recg-1. We will achieve this by imposing a simple set of The attachment cost & when selecting; as its parent
rules regarding when an invitation may be accepted by angde can be calculated by the increase in the transmission

sensor node. frequency of each link fror§ to theRoot node as:
Let CandPar denote the set of nodesRecg that trans-
mitted an invitation tha§ received. LeS, be the prelimi- AG;=PR+PR(1-P)+PR(1-P)(1-Pj_1)+...

nary parent node @&, as decided during query propagation.

Amongst the nodes i@andPar, nodeS considers the node A significant problem concerning the above estimation of

Sp such as the attachment cdi; , is minimized. If ties  AG j is that its value depends on the epoch participation fre-

occur, then these are broken using the node identifiers (i.e.guencies of all the nodes in the pathSfto theRoot node.

prefer the node with the highest id). Th&pis selected as  Since the number of these values depends on the actual dis-

the parent of§ instead of the preliminary choice,®nly if tance, in number of hops, @; to theRoot node, such a

all of the following conditions apply: solution does not scale in large sensor networks.

Fortunately, there exists an alternative formula to calcu-

e AG p < AG m. This conditions ensures thdf seems asa |ate the above attachment cost. Our technique is based on

better candidate parent than the current sele@ipn a recursive calculation based on a singtest factor CFat

e AG., < AG,;. This conditions ensures that it is better to each nod&. In our example discussed above, the values of
selectS, as the parent o, than to selec§ as the parent CF andAG j can be easily calculated as:

of Sp. CF = (1-PR)x(1+CF)
o If AG p =AGC,;, then the identifier 0§, is also larger than AG R x (1+CF)

the identifier ofS. This condition is useful in order to '

allow nodes to forward messages through neighbor nodesone can verify that expanding the above recursive formula

in Recg and also helps break ties amongst nodes and toand setting as the boundary condition that @fevalue of

prevent the creation of loops. the Root node is zero gives the desired result. Thus, only

) o ) the cost factor, which is a single statistic, is needed at each

The collection tree may periodically get updated, either nodes; in order for all the other nodes to be able to estimate
because of a significant change in data distribution or be-their attachment cost t§;.
cause of the addition/termination of queries in a multi-query e also need to note that the formulas presented above
setup discussed in section 5. Such updates are triggered b|so address the case of non-aggregate or holistic aggregate
the base station using the same protocol used in the initialgyeries. In these cases the size of the transmitted data in-
creation. In th|S (.:aS(.E, the nodes Compute and transmit theilbreases proportiona”y to the number Of each node’s epoch_
computed statistics in the same manner, but do not need tgarticipating descendants in the collection tree, as we ap-
propagate the query itself. proach theRoot node. Thus, sometimes the transmitted
4.2 Calculating the Attachment Cost data by a node may be split into multiple messages due to

Determining the candidate parent with the lowest attach- the maximum packet size. However, we first note that such

ment cost is not an easv decision. as it depends on sever2SeS typically occur in higher levels of the collection tree
y decision, pet a((iand, thus, by a potentially small subset of the sensor nodes)
parameters. For example, it is hard to quantify the result-

! > - L ; and that, more importantly, our techniques seek to compute
Ing transmission probability of;, if a nodeS decides o and utilize simple statistics. Our study of alternative cost
selectS; as its parent node. In general, the transmission

frequency ofS; (please note that this is different than the models that incorporated this factor yielded only minor im-

epoch participation frequency of the node) may end up be_p_rovements _vvhile significa_mtly increasing the communica—

ing as high as mifP. -+ P;, 1} (when nodes transmit on dif- tion cost during the collection tree formation. We thus omit
P S such extensions from our presentation.

ferent epochs) and as low Bs(when transmissions happen A ) )

on the same epochs afi< P;j). A commonly used tech- 4.2.2 M|n|m|2|ng Total Energy Consumption, Dis-

nique that we have adopted in our work is to consider that tributive and Algebraic Aggregates

the epoch participation by each node is determined by inde-This case is very similar to the case described above. When

pendent events. Using this independence assumption, nodeonsidering the attachment cost$fto a candidate parent

Sj will end up transmitting with a probabiliti + P; — B P;, Sj, we note that additional energy is consumed by nodes in

an increase oP,(1— P;) overPj. Similarly, if S;_; is the the path ofS; to theRoot node only if a new transmission

parent ofS;, this increase will also result in an increase in takes place. This is because each node aggregates the par-

the transmission frequency 8f_1 by R (1—P;)(1—Pj_1), tial results transmitted by its children nodes and transmits a

etc. In our following discussion, for ease of presentation, new single partial aggregate for its sub-tree [13]. Thus, the

when considering the attachment costofo a nodeS;, we size of the transmitted data is independent of the number

will assume that the nodes in the path fr@nto theRoot of nodes in the subtree, only the frequency of transmission

node are the node§_1,S;_»,...,S;. may get affected. L&tri‘j denote the energy consumption



when§ transmits a message & consisting of a header

Minimization Type of Decision Invitation
Metric Aggregate

and the desired aggregate value(s) - based on whether this Transmissions Aggregate o B CF

is a distributive or an algebraic aggregate function. The en- __| Non-Aggregate

ergy consumption follows the cost model presented in Sec- | ="' Consumption - BEbube Ch .

tion 3.3, where thérs value may depend on the distance Energy Consumption|  Holistic CF,HCF, R.CF,
Non-Aggregate DCH HCR,DCHR

betweer§ andS; (thus, the two indices used above). Using
the above notation, and similarly to the previous discussion,

. Table 5. Statistics Attached to Messages
the attachment co#(C ; is calculated as: g

AG = PRxEBw; +Rx(1-P)xEyj;,+ the last two rules in Section 4.1) As it can be clearly seen
Px(1—P)x(1—P_1)xEy . ,+... from this table, our algorithms utilize only a limited num-
) ) o=z ber of statistics, which are computed using only information
= P x (B, +CF), where transmitted by neighboring sensor nodes. Due to space con-
CR = (1-PR)x(Er,;+CF) straints, the proof of the following Theorem can be found in

the full paper [21].

If one wishes to take the receiving cost of messages into
account, all that is required is to replace in the above formu- Theorem 1 For sensor networks that satisfy the connectiv-
las the symbols of the fori, , with (Eter + Erec,), SiNCe ity requirements of Section 3 our algorithm always creates
each message transmitted 8yto S, will consume energy  a connected routing path that avoids loops.
during its reception bys,.
4.2.3 Minimizing Total Energy Consumption, Holistc 43 Algorithm Implementation

Aggregate and Non-Aggregate Queries In Algorithm 1 we present the complete algorithm for the

When considering the attachment costSpto a candidate decisions of a sensor node. This algorithm is invoked both
parentS;, we need not only consider the new messages gen-2t the guery propagation phase and when updating the col-
erated in the path fron§; to theRoot node, but also the lection tree. Each node first waits to receive the decisions

energy consumption due to the increase in the length of mesBY nodes that lie one hop closer to theot node (Line 2).
sages that would have been transmitted anyway. Please réBased on the received decisions it performs an initial parent
call that the energy consumption for each transmission of_selectlon using th@rocessDemsmnsubrout|ne described
laggr bits byS to'S; is given by:DE, ; = |agar x (Prx + in Algonthm 2 (Lines 3-4). It then. ce_llcqlates some nec-
Pre x dis2.). Calculating the af . tioned ber of €SSary statistics and transmits an invitation to neighboring
R X 'Sﬁai)' aiculating the aforementioned number ol - ;. & (Lines 5-6). The node then waits (Line 7) to receive
messages Is simple, as we have already discovered aSIm'I""lrnvitations from neighboring nodes and makes a final de-
recursive formula that estimates the attachment cost when_. . . 9 '9 . N
cision on its parent selection using tReocesslnvitations

only Cp_n5|der|ng the transmission of new Messages. S, WSubroutine presented in Algorithm 3 (Lines 8-9). The node
will utilize two new recursively computed statistics. The

DCF value of a node will be similar to th€F value, but then transmits its final dec!smn (L'.”e. 10) to ngng_hbormg_
. o : nodes and ignores any received decisions or invitations until
will use theDE;,, , transmission costs, instead of thg, ,

- . the next update period when the collection tree will be re-
transmission costs used in W& formula. TheHCF value organized (a counter denoting the reorganization period can
of a node will be equal to the sum of tbd,, , values in the 9 9 9 P

nodes path to theoot node. One can verify that the energy be attached to the queries transmitted bbeeF _node in
. order to help the nodes understand the transition to a new
consumption due to the enlargement of messages, because

of the attachment  to S, that would have been transmit- Update period). An interesting observation that we have not

. _ ' : mentioned so far involves the nodes with zero epoch partic-
ted anyway ish x (H,CF‘ —DCFy). The required formulas ipation frequencies. For these nodes, the computed attach-
are presented below:

ment costs to any neighboring node will also be zero. In
CF = (1-PR)x(Ey. +CF) such cases we select the candidate parent which produces
. . the lowestEy, ; +CF; + HCF; — DCF; value. This decision

HCR = DEy; +HCH is expected to minimize the attachment cost, if the sensor at
DCF = (1-R)x (DEy;+DCF) some point starts observing events.
AGj = PR x(Er;+CF)+R x(HCF —DCF) 4.4 Extensions
In the full paper [21] we describe extensions on refining
4.2.4 Summary the statistics utilized by the sensor nodes. Furthermore, we

Table 5 summarizes the statistics required to be transmit-show that our techniques can be easily adapted to incorpo-
ted by each node during the query propagation. Please noteate different minimization metrics, than the ones presented
that the invitation phase always requires one more transmit-in Section 3.2. For example, the formulas for minimizing
ted statistic, as the nodes need to check whether it is morghe number of transmitted bits can be derived using the for-
beneficial to be attached to another node or the reverse (seeulas for the energy minimization for the corresponding



Algorithm 1 BuildCollectionTree() Subroutine

Algorithm 3 ProcessInvitations(Inv, k) Subroutine
1: {S is the node being examingd

2: Wait to receive decisions by neighboring nodes 1: {S is the node being examingd
. ) B . o ) 2: {Sis the current parent nogle
3: SetDecas the received decisions by the nodes with mininiuwelues (ignore 3: In the following discussion, all estimations of the attachment cost utilize the same
other decisions). Erp; value, as discussed at the end of Section 4.2.3.
4: k = ProcessDecisionBgc) {Returns index of selected parént 4: Selectinvy, as the invitation with the minimum attachment costB 1= 0 utilize
5: Di=1+Dg in the calculations a non-zero value at this step to prevent all nodes from having
6: Transmit invitation to neighboring nodes the same (zero) attachment cost.
7: Wait to receive invitations by neighboring nodes . Let Sy, be the sender dhvp,
8: Setlnv as the received invitations by the nodes witlvalues equal t®; (ignore ¢ if AG.m < AG i then

other invitations). : enlsefturnk {No benefit in changing parent noe
9: m = Processlnvitationsfv) {Returns index of selected parént CalculateAGy,; using information from nvy,
10: Transmit decision L if AGm > AGyj then

5
6
7
8
9
10
11: Ignore received decisions and invitations until next reorganization. 11: Returnk {Reverse decision is betfer
12
13
14

. else ifAG m == ACyj AND i > mthen
Returnk {Base decision on identifigr

:end if
15: Setparent(S) =

1: {S is the node being examingd st .
2° SelectDeq as the decision with the minimum attachment cos K 0 utilize 16: Calculate statistics (cost factors) for current node based on current parent selec

in the calculations a non-zero value at this step to prevent all nodes from having
the same (zero) attachment cost.

Algorithm 2 ProcessDecisions(Dec) Subroutine

on
17: Returnm {Index of selected parent nofle

3: Let S be the sender dbeq,
g ggtlgjraigmsstz)ngues (cost factors) for current node based on current parent selecquerles in order based on their identifier (I €., from Mp

" tion P we demonstrate in the full paper [21] that the attachment
6: Returnk {Index of selected parent nope costAC,k of § to Sj regarding thek-th query is calculated

] S as follows

type of query (i.e., distributive, non-aggregate). In these S o
formulas one simply has to substitute the telEy); with e Minimizing Total Number of Transmissions.
the size of a packet (including the packet's header) and to .
substitute the termDEy,, . with the size of each transmitted Aqlfj - P‘k x (JC':lk+ part'alproqifi)
aggregate value (thus, ignoring the header size). In the case JCR¢ = PROD+ (1-PR¥) x JCF¥

where the goal is to maximize the minimum energy amongst

the sensor nodes, the attachment cost can be derived from

the minimum energy, amongst the nodes in a sensor’s pathe Minimizing Total Energy Consumption: Distributive and

to theRoot node, raised te-1 (since our algorithms select Algebraic Aggregates.

the candidate parent with tmeinimumattachment cost).

5 Multl-dery Optlmlgatlon . P« (1— partialProd,) x DEq,
In the multi-query scenario, each ndgenay choose dif- ‘ K ok ‘

ferent parent nodes for each posed query. Thus, the resulting A" < JCH +R"x (J ECFJk —JDCH’)

network topology may not be a tree after-all but a directed JCR'= PROO x Etr, g0 + (1— P x JCF}!‘(k)

acyclic graph. In the case of multiple concurrent queries we K X

need to introduce some additional (or augmented) notation JECR'= (1-Pf)x (DEr gy +IECHK )

for the presentation of our algorithms. Lle'f denote the JDCFIKZ pRod< x DEtr, +(1—P|k) X JDCF]!‘(k)

epoch participation frequency 8fregarding thé-th query. ‘

Let fi(k) denote the index of the selected parent nod§ of

for thek-th posed query. e Minimizing Total Energy Consumption: Holistic Aggre-
In order to be able to derive recursive formulas for gate and Non-Aggregate Queries.

the estimation of the attachment cost, in our approach we ‘ _ «

break the posed queries into two groups. The first group ACk|=P{* x partialProd; x Eqr,; +

of queries contains the distributive and algebraic aggregate Pik x (1— partiaIProq'fj) x DEy,,, +

queries, while the second group contains the holistic and

non-aggregate queries. In our discussion below we assume

that the group of queries handled in each case contains a JCR¥=PROD x By, + (1—Pf) x JCFy

total of M queries of similar type.

ACK;=P¥ x partialProd¥; x Ey,  +

P x JCF+ PK x (JHCF — JDCF)

JHCR*=DEy, ,, +JHCFy

M
Using the notation PROL :X|:|1 (1-F) and IDCR‘=PROI x Dy, , + (1~ P x IDCFy,
f(x) = f(k) 6 Experiments
partialPROEtj =[1 (1-F"). and by processing the We developed a simulator for testing the algorithms pro-
x <k posed in this paper under various conditions. In our dis-

f(x) =S cussion we term our algorithm for minimizing the number
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; to theRoot node, and the only sharing that can be achieved
3 in combined messages involves the message’s header, we
: expect little energy savings in this case. We also evaluated

5 ST Mincost a S_UM aggregate query over the vglues of epoch patrtici-

En 3243,3455;;7‘;%3'%35 pating sensor nodes using all algorithms. We present the

< padince tptal number of transmissions .for 1_aach type of query, algo-

S e i rithm and number of sensors in Figure 2. Please note that

B b Roing e fes the MinEnergy algorithm built very different collection trees

® et P for the two types of queries. For the remaining algorithms,

SMRERy Aoy Tl the number of transmitted messages was the same for both
Eiets B types of queries. The corresponding average energy con-
O 200 A0 6007 B0 ;2009;20(:1:11?, 16007 1800 . 20001 /2200, 12400 ?_ur;lptiBon by the sensor nodes for each case is presented in

able 6.

) As we can see, owlinMesgalgorithm achieves a sig-
Figure 2: Messages and Message Overhead nificant reduction in the number of transmitted messages
for Synthetic Data Set. Results for MinEnergy compared to the MinHops and MinCost algorithms. The
Presented for both Aggregate SUM and Non- reduction in messages is up to 64% and 105%, respectively,
Aggregate Query. with an average gain of 48% and 93.7%, respectively, com-

pared to the théMinHops and MinCostalgorithms. How-
ever, since these gains depend on the number of transmis-
sions that epoch-participating nodes perform, it is perhaps
more interesting to measure theuting overheadf each

of transmissions aslinMesg and our algorithm for mini-
mizing the overall energy consumption lnEnergy Our
techniques are compared against two intuitive algorithms.
In the MinHops algorithm, each sensor node that receives

the query announcement randomly selects as its parent nogtechnique. We define the routing overhead of each algo-
a sensor amongst those with the minimum distance, in num-ithm as the relative increase in the number of transmissions

ber of hops, from th@oot node [13]. In theMinCostalgo- when compared to the number of epoch participations by

rithm, each sensor seeks to minimize the sum of the squaredl® Sensor nodes. Note that the latter numbemsiadatory
distances amongst the sensors in its path t®te node, cost that represents th_e transmissions in the network if each
when selecting its parent node. Since the energy consumed€nsor could communicate directly with theot node. For

by the power amplifier in many radio models depends on theexample, if the total number of epoch participations by th_e
square of the communication range, MimCostalgorithm sensor nodes was 1000, but the overall number of transmis-

aims at selecting paths with low communication cost. sions was 1700, then the routing overhead would have been
equal to(1700— 1000 /1000= 70%. As we observe from

In all sets of experiments we place the sensor nodes MFigure 2, ourMinMesgalgorithm often results in 3 times
random locations over a rectangular area. The radio param- 9 ’ 9alg

eters were set accordingly to the values in Table 3. The mes_s_maller rout.ing overhead compared to the alternative algo-
sage header was set to 32 bits, similarly to the size of eack{'thmS considered. We also observe that the MinEnergy al-

statistic and aggregate value. In all figures we account forgorithm in the_aggregate case produced results very close to
the overhead of transmitting statistics and invitation mes- the ones of _MmMesg. Amain dlff(—;-rence between _thes_e two
sages during the creation of the collection tree in our algo- algorithms is that amongst cand@ate parents .W'th similar
fithms. cost fac_:tors, the_ MinEnergy algor_lthm is less I_|ker to se-
lect a distant neighbor than the MinMesg algorithm, which
6.1 Experiments with Synthetic Data Sets only considers epoch participation frequencies. This is a

We initially placed 36 sensor nodes in a 300x300 area, trend that we observed in all our experiments. However, in
and then scaled up to the point of having 900 sensors. Wethe case of non-aggregate queries, the MinEnergy algorithm
set the maximum broadcast range of each sensor to 90m. iformed very different collection trees, as it avoided routing
all cases th@oot node was placed on the lower left part of Measurements through very long paths.
the sensor field. In each case we set the epoch participation The MinEnergy algorithm performs very well in both
frequency of the sensor nodes with the maximum distance,types of queries. Compared to the MinHops algorithm, it
in hop count, from the&koot to 1. Unless specified other- achieves up to a 2-fold reduction in the power drain for ag-
wise, with probability 8% some interior node assumed an gregate queries and up to 19% for non-aggregate queries.
epoch participation frequency of 1, while the epoch partici- Compared to the MinCost algorithm the energy savings are
pation frequency of the remaining interior nodes was set to smaller but still significant (i.e., up to 79% in the aggregate
5%. query). The MinMesg algorithm is obviously a very poor

We first evaluated a non-aggregate “SELECT *’ query choice, with respect to the energy consumption, for non-
over the measurements obtained by the epoch participatingggregate queries.
sensor nodes. Since in this query the measurements of each We expect that the more the epoch participation frequen-
epoch participating node need to be propagated all the waycies of sensor nodes increase, the less likely that out tech-



| Aggregate SUM Query Il Non-Aggregate "SELECT *" Query ]
| MinMesg | MinEnergy [ MinHops | MinCost || MinMesg [ MinEnergy | MinHops [ MinCost |

’ Sensors [ #Sensors [[ MinMesg [ MinEnergy | MinHops | MinCost |

36 109.339 109.341 161.278 | 136.354 381.483 292.231 335.920 | 303.270 15 3607 57821 751 51590
144 70.129 68.971 139.821 | 121.640 515.215 344.489 390.806 | 344.213 500 SRR w5573 57 958 35158
324 71.662 68.703 146.425 106.416 687.083 444157 523.670 448.816 1350 50418 79350 89231 75009
576 65.921 64.717 127.315 104.156 624.817 457.788 547.147 471.845 - - - -
900 67.107 64.077 128.299 | 102.708 756.902 549.262 640.830 | 559.183
Table 7: Average Power Consumption (in
Table 6: Average Power Consumption (in mJ) for Synthetic mJ) for SchoolBuses Dataset
Dataset
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E 700()()0: MII’IHOpS 7 <
= . ~ L, 600w —
[ #—* MinCost j o SOtnEegy = 0 Mandatory Cost
- - CRC —— y
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Figure 3: Transmissions Varying the Epoch Partic- Wessages (x10%0)

ipation Frequency
Figure 5. Transmissions - SchoolBuses data

1350-MinCost =
[
1350-MnHops . . . . .
i : a node’s sibling as its parent node in the collection tree. As
E oy we can see, the benefits from utilizing the 2-step process are
LV S—— important_in all aspects (transmitted messages and power
5 SOty [ — & Nanditory Gost Consumptlon).
§ E00:hAr<). B Routing Overhead
Y 150-MnCost [N - .
£ e i 6.2 Experiments with Real Data Sets
150-MnEnergy [ERIEEN . . .
150 ko o We also experimented with the following two real data
° 1000 sets. Thelrucks data set contains trajectories of 276 mov-
Messages (x1000) . . . .
’ ing trucks [1]. Similarly, theSchoolBuseglata set contains
_ o trajectories of 145 moving schoolbuses [1]. For each data
Figure 4. Transmissions - Trucks data set we initially overlaid a sensor network of 150 nodes over
o T e e e thg monitored area. We set the brogdcast range such that in-
ES 10547 79587 Ta758 109341 terior sensor nodes could communicate with at least 5 more
144 405279 232298 126.374 68.971 .
322 729013 287889 112,962 58.703 sensor nodes. Moreover, each sensor could detect objects
0 e s 7 e within a circle centered at the node and with radius equal
_ to 60% of the broadcast range. We then scaled the data set
Table 8: Comparison of 1-Step and 2-Step Par- up to a network of 1350 sensors, while keeping the sensing
ent Selection for MinEnergy Algorithm. Number of range steady. In Figures 4 and 5 we depict the total num-
Transmissions and Average Power Consumption ber of transmissions by all algorithms for the Trucks and
(in mJ) for Synthetic Data Set SchoolBuses data sets, correspondingly, when computing

the SUM of the number of detected objects. In our scenario,
niques will be able to provide substantial savings comparedn©des that do not observe an event make a transmission only
to the MinHops and MinCost algorithms. In Figure 3 we | they need to propagate measurements/aggregates by de-
repeat the aggregate query of Figure 2 at the sensor networgcendant nodes. Due to space constraints we present the av-
with 324 nodes, but vary the epoch participation frequency €/@9€ €nergy consumption of the sensor nodes in the same
R, of those nodes that do not make a transmission at eactEXPeriment for only the SchoolBuses data setin Table 7. As
epoch (i.e., of those nodes with < 1). While Figure 3 It is evident, our algorithms achieve significant savings in
validates our intuition, it also demonstrates that significant POth metrics. For example, the MinCost algorithm, which

savings can be achieved even when sensor nodes have larg&hibits lower power consumption than the MinHops algo-
R values (i.e.p > 0.5). rithm, still drains about 50% more energy than our MinEn-

ergy algorithm. Moreover, both our MinMesg and MinEn-

A novel feature of our technique is the 2-step parent se- €rgy algorithms significantly reduce the amount of transmit-
lection phase. In Table 8 we compare the performance ofted messages by up to 42% and 73% when compared to the
our MinEnergy algorithm in the aggregate SUM query de- MinHops and MinCost algorithms, respectively.
scribed above versus a variant that was not allowed to select We then decided to mix the data sets. We separated



[ #Sensors[[ MinMesg [ MinEnergy [ MinHops | MinCost |

150 70,583 125,686 107,887 122,532
600 286,894 401,431 [ 336,143 479,544
1350 430,094 774,530 | 606,105 | 1,038,093

Table 9. Messages for Multi-Query Scenario

the SchoolBuses into two categories (by randomly coloring

each schoolbus as either colarand B) and overlaid this

data set with the trucks data set. We then performed three
simultaneous queries requesting the total number of trucks, [4

schoolbuses of colok and schoolbuses of col&observed

in the network. We used the same topology, network scale
and placement of theoot node as above and compared our

MinMesgand MinEnergyalgorithm with theMinHopsand

MinCostalgorithms, which were modified to select a single

have also demonstrated that our algorithms can handle a
mix of event monitoring queries (EMQs) including aggre-
gate and non-aggregate queries.

References
[1] Rtree Pportal. http://www.rtreeportal.org.

[2] D.J. Abadi, S. Madden, and W. Lindenr. REED: Robust, Efficient
Filtering and Event Detection in Sensor NetworksVIcDB, 2005.

[3] A.CerpaandD. Estrin. ASCENT: Adaptive Self-Configuring sEnsor
Network Topologies. IINFOCOM, 2002.

] Jae-Hwan Chang and Leandros Tassiulas. Energy Conserving Rout-
ing in Wireless Ad-hoc Networks. INFOCOM, 2000.

[5] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate Aggrega-
tion Techniques for Sensor DatabasesldBE, 2004.

[6] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Hierarchical In-
Network Data Aggregation with Quality GuaranteesEDBT, 2004.

[7] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Dissemination

parent node for all queries (this produced the best results for ~ °f Compressed Historical Information in Sensor Networkd.DB

them). Due to space constraints, in Table 9 we depict only
the total number of transmitted messages for all algorithms.

7 Related Work

Journal, 2007.

[8] A. Deshpande, C. Guestrin, S. Madden, J.M. Hellerstein, and
W. Hong. Model-Driven Data Acquisition in Sensor Networks. In
VLDB, 2004.

[9] M. Duckham, S. Nittel, and M. Worboys. Monitoring Dynamic Spa-

The database community has Iong been the advocate of tial Fields Using Responsive Geosensor NetworkszI8 2005.

using an embedded database management system for dattl
acquisition in sensor networks [13, 24]. The use of a declar-

] D. Estrin, R. Govindan, J. Heidermann, and S. Kumar. Next Century
Challenges: Scalable Coordination in Sensor Networks Mdaibi-
COM, 1999.

ative SQL-like query interface allows rapid development [11] c. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidermann. Im-

of applications in such systems without the need to man-

pact of Network Density on Data Aggregation in Wireless Sensor

age hand-coded programs at each sensor node [14]. In the Networks. InlCDCS 2002. - _
database Community different types of popular queries havell2] Y. Kotidis. Snapshot Queries: Towards Data-Centric Sensor Net-

been discussed, such as aggregate [5, 6, 13, 18, 16], join [2]
model-based [8, 12] and select-all queries [7, 19]. Tracking

works. InICDE, 2005.

{13] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag:
A Tiny Aggregation Service for ad hoc Sensor Networks.O8DI

queries that seek to determine the spatial extent of a partic-  conf, 2002.

ular phenomenon have also been considered [9, 23].

Many of the low-level networking details have already
been discussed in the networking community and, thus, ca
be utilized in our framework. As an example, nodes in unat-

[14] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The
Design of an Acquisitional Query processor for Sensor Networks. In
ACM SIGMOD 2003.

r-'[15] C. Olston and J. Widom. Offering a Precision-Performance Tradeoff

for Aggregation Queries over Replicated DataVItDB, 2000.

tended wireless networks must be able to self-configure [3] [16] S. Pattem, B. Krishnamachari, and R. Govindan. The Impact of

and discover their surrounding nodes [10]. Prior work on
computing energy-efficient data routing paths (such as the

Spatial Correlation on Routing with Compression in Wireless Sen-
sor Networks. INPSN 2004.

aggregation tree) [11' 20, 22] have tackled similar prob|emsy [17] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava. Energy

but these techniques base their operation on the assumption
that the sensor nodes that collect data relevant to the speci

aware wireless microsensor networkSEE Signal Processing Mag-
azine 19(2), 2002.
[18] A.Sharaf,J. Beaver, A. Labrinidis, and P. Chrysanthis. Balancing En-

fied query need to include their measurements in the query  ergy Efficiency and Quality of Aggregate Data in Sensor Networks.
result at every query epoch. However, this assumption does  VLDB Journal 2004.

not hold in event monitoring queries that are the scope of[19] A. Silberstein, R. Braynard, and J. Yang. Constraint Chaining: On
our framework. Due to space constraints. a more elaborate EnergyEfficient Continuous Monitoring in Sensor NetworksSI-

discussion of the related work can be found in [21].

8 Conclusions

MOD, 2006.

[20] S. Singh, M. Woo, and C. S. Raghavendra. Power-aware routing in
mobile ad hoc networks. IACM/IEEE International Conference on
Mobile Computing and Networking998.

In this paper we presented algorithms for building and [21] V. Stoumpos, A. Deligiannakis, Y. Kotidis, and A. Delis. Pro-

maintaining efficient collection trees in support of event
monitoring queries in wireless sensor networks. We demon-
strated that is it possible to create efficient collection trees ,,
that minimize important network resources using a small set

cessing Event-Monitoring Queries in Sensor Netwrks.  Tech-
nical Report, University of Athens, June 2007. Available at
http://www.cs.umd.edu/ adeli/TRO7.pdf.

] N. Trigoni, Y. Yao, A.J. Demers, J. Gehrke, and R. Rajaraman. Multi-
query Optimization for Sensor Networks. DDCOS$2005.

of statistics that are communicated in a localized manner[23] W. Xue, Q. Luo, L. Chen, and Y. Liu. Contour Map Matching for

during the construction of the tree topology. Furthermore,

Event Detection in Sensor Networks. $5iGMOD, 2006.

our technigues utilize a novel 2-step refinement process that24] Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query

significantly increases the quality of the created trees. We

Processing in Sensor Networl&IGMOD Record31(3):9-18, 2002.



