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Abstract—In contemporary [aaS configurations, resources are
distributed to users primarily through the assignment of virtual
machines (VMs) to physical nodes (PMs). This resource allocation
is typically done in a way that does not consider user preferences
and is unaware of the underlying network layout. The latter
is of key significance as cost of the cloud’s internal network
does not grow linearly to the size of the physical infrastructure.
In this paper, we focus on IaaS clouds built on the highly
fault-tolerant and scalable PortLand networks. We examine how
the performance of the could can benefit from VM placement
algorithms that exploit user-provided hints regarding the features
of sought VM interconnections within a virtual infrastructure. We
propose and evaluate two such VM placement algorithms: the first
seeks to rapidly place the required VMs as closely as possible on
the PortLand network starting with the most demanding virtual
link and by following a greedy approach. The second approach
identifies promising neighborhoods of PMs for deploying the
virtual infrastructure sought. Both methods try to reduce the
network utilization of the physical layer while taking advantage
of the PortLand layout. Moreover, we seek to minimize the time
expended for the placement decision regardless of the size of
the infrastructure. Our experimentation shows that our methods
outperform the traditional methods (first-fit) in respect to network
usage. Our greedy approach reduces the network traffic routed
through the top-level core-switches in the PortLand topology by
up to 75%. The second approach attains an additional 20%
improvement.

Keywords—topology-aware; hint-aware; network optimization;
virtual machine placement

I. INTRODUCTION

Effective resource management in IaaS clouds is essential
for the productive use of the underlying physical infrastructure.
The provision of virtual machines (VMs) featuring their own IP,
CPU(s), main-memory, disk space and network bandwidth is
the outcome of the “VM placement” phase; during this period,
VMs are assigned to physical machines (PMs) so that user—
requests for service are facilitated. In this paper, we tackle
the VM placement problem in a physical infrastructure whose
network fabric is organized using the PortLand approach [1].
It is well established that network operating costs alone in
data centers may account for up to 20% of the overall power
bill [2]. Moreover, conventional tree-like network architec-
tures deployed in modern data centers often encounter over-
subscription and network resource contention especially at
their core top-levels [3], [4]. This leads to bottlenecks and
corresponding delays in rendered services. As an alternative
network fabric, PortLand can play a significant role in the
effective management of cloud computational resources while
making a better job in managing the available network band-
width. In addition, PortLand-based clouds may help restrain
the rising cost of the traditional tree-like network structures as
PMs are added into the infrastructure. We also expect that the

inherently enhanced management of the PortLand-networks
will ultimately assist the scalability of the cloud.

Planning tools for VM consolidation almost exclusively
focus on server resources and frequently disregard the impact
virtual infrastructures (VIs) have on the cloud internal net-
work [5]. Efforts that optimize the networking utilization [6]
do overlook the diversity of the requested VMs as well as
the ways with which these VMs are linked together. In this
paper, we propose two VM-to-PM placement algorithms that
exploit user provided hints regarding the resource demands of
entire VIs. As multiple VMs are joined together in a operational
workflow (i.e., VI) to accomplish a task, the above hints are
about:

e  bandwidth needs for specific pairs of VMs in the VI,
e anti-collocation constraints for pairs of VMs.

Our two proposed algorithms realize a Virtual Infrastructure
Opportunistic fit (VIO) as well as a Vlcinity-BasEd Search
(VIBES). VIO attempts to place VMs as close as possible to
each other on the physical network. The algorithm commences
by placing the two VMs that demand the highest bandwidth
for the Virtual Link (VL) connecting them. VIBES on the other
hand, seeks to identify an appropriate PortLand neighborhood
to accommodate the entire VL and then applies VIO in this
vicinity. While selecting the “areas” of the underlying network
fabric which are to be used for placement, the suggested
methods take advantage of the PortLand layout and properties
to reduce network operational costs. Moreover, they help main-
tain healthy oversubscription usage ratios. Our key contribution
is that the placement of VMs on PMs connected through a
PortLand-fabric assisted by user hints for their deployment
yields noteworthy network resource utilization enhancements.

We have developed and experimented with a simulated
environment to compare our proposed placement methods
against the First-Fit Decreasing (FFD) [7] approach often
used as a resource allocation option. FFD is expected to
offer viable results for VM placement in practice [8]. Our
approach consistently outperforms FFD and shows up to 60%
lower network utilization over the physical substrate. When
experimenting with high bandwidth VIs, our VIO placement
algorithm displays 75% less usage of core/top-level links,
while our VIBES technique further reduces the stress of
core switches up to 95% when compared to FFD. Finally,
we examine the performance impact of our approach as we
scale both the cloud infrastructure and the VIs. We show that
planning times of our work remain below 200ms even in
infrastructures of more than 8,000 PMs and VIs of more than
100 VMs.
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Fig. 1. Sample PortLand topology with number of ports per switch k=6

II. NETWORK-OPTIMIZED VM SCHEDULING PROBLEM

Users request services in the form of VMs from
virtualization-based data-centers. By and large, users remain
“agnostic” of the policies that govern the assignment of the re-
quested VM(s) on PM(s) in the underlying laaS-infrastructure.
It is also often the case that users ask for entire virtual infras-
tructures (VIs) in the form of a group of VMs linked in specific
ways through VLs featuring diverse characteristics intended
to serve specific application needs. In many environments,
the deployment of such a comprehensive VI is carried in an
isolated manner as the middleware considers the placement of
each VM individually and without giving the due consideration
on how VMs are linked over the network fabric.

The consumption of the bandwidth among VMs in a data-
center is an issue that has to receive attention as indiscriminate
placement of service-nodes will certainly lead to significant
operational bottlenecks. Recent studies [6], [9], [10] on traffic
patterns generated by VMs in intra-communication for cloud-
infrastructures reveal:

1)  Skewed distribution of network traffic: while 80% of
communication remains at low bandwidth levels, 4%
of the traffic increases by a tenfold. This implies that
the cloud administration cannot make consistently
accurate estimations on intra-VI traffic.

2)  Traffic rate remains relatively stable: despite the
above highly skewed distribution of traffic, traffic
rates present minor fluctuations. This suggests that
users likely possess knowledge of the minimally
fluctuating traffic that will unfold among the VMs of
their virtual infrastructures even before the placement
occurs.

In addition to the above, a user can always offer useful
information on the network requirements of her VMs in the
requested VI. In this context, a cloud-provider can produce
VM placement solutions that reduce the power costs and
yield better QoS characteristics through lower oversubscrip-
tion of network resources [11]. In this paper, we propose a
VI placement approach in which the provider may elect to
put into good use anti-collocation constraints for VMs and
exploit fundamental characteristics of PortLand network fabric.
PortLand is a layer-2 network that demonstrates promising
scaling and fault-tolerance. As Fig. 1 shows, PortLand entails
the classic notion of “neighborhood” —encountered in fat-
tree networks— in the form of pods. The factor k, which
expresses the number of ports on all Core, Aggregation and
Edge switches, characterizes each PortLand deployment. Each
PortLand infrastructure contains k pods and supports a total of
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excellent candidate for real-life data-centers. It is this afore-
mentioned combination of user hints and the characteristics
of PortLand that allow for the rapid creation of network-
optimized placement plans.

III. RELATED WORK

The scheduling of VMs in parallel with focus on network-
ing has recently attracted much attention. In [6], an approxima-
tion algorithm is proposed to solve the VM placement problem
with minimized network traffic. However, this work only
considers the network aspect of the physical infrastructure,
treating every VM as equally demanding in terms of server
resources. Elastic tree [11] employs a network-wide power
manager which dynamically turns network elements (switches
and links) on or off, and routes the active flows appropriately;
this work is complimentary to ours. In [12], elastic trees are
extended and a simplified approach of VM to PM mapping is
proposed; yet, diversified resource requirements of VMs are
not taken into account. Similarly, [13], [14] promotes traffic
awareness through monitoring the network and implements
live—migration techniques to offer network optimization. Here,
migrations stress the network and may also affect live TCP
connections. In our work, user-offered hints provide resource
utilization information prior to the VM deployment and thus,
we do not consider after placement migration.

In [5], the VM placement is treated as a knapsack problem
trying to satisfy the maximum possible placement demands.
[15] optimizes a placement approach for minimum power
usage in its PMs; the approach though does not consider man-
agement of network resources as VMs are treated as individual
entities and optimizations apply only on server-resources such
as CPU, RAM and disk. Similar to our approach, in [16], [17]
neighborhood allocations are also considered. However, here
the authors do not offer extensive flexibility in terms of com-
munication and resource requirements, as well as the flexibility
of the placement itself. In [18], we utilize a variety of hints and
constraints including VM collocation suggestions and favoring
specific VMs. However, we do not exploit hints regarding
VI bandwidth needs that could result in improved network
utilization. Compared to prior approaches [5], [6], [12], we
consider VMs as heterogeneous, communicating groups of
entities operating atop the PortLand; this allows for promising
outcomes regarding the networking infrastructure.

IV. OVERVIEW
Figure 2 depicts the key elements of our approach. PMs
along with PortLand make up the physical infrastructure that
receives oversight from a middleware; the latter consists among
others, of the following two elements: a) a deployer component



often 3rd-party provided whose responsibility is to deploy
compiled plans for a virtual infrastructure (VI) under forma-
tion, and b) a planner whose job is to execute a placement
algorithm that would determine how VIs are to be assigned
by the deployer. The planner takes as input user suggestions
regarding desired features in their requested VIs and exploits
information about the current resource allocations across the
underlying machinery.
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Fig. 2. Overview of our approach (including the planner.

A user formulates her request for a VI by launching
an XML document that outlines not only conventional re-
quirements (cores, memory, etc.) but also, the way each
of the participating VMs is connected with its counterparts.
More specifically, we expect that for each VL, the user
would indicate an estimate of the average network bandwidth
to be “consumed” by its two connected VMs. Listing 1
presents such a VL deployment request; it solicits two VMs
whose VL is set at 20Mbps. Here, there is no stated re-
quirement regarding the anti-collocation of the two VMs on
a single PM as the pertinent clause has been set to off.

Listing 1. Designating a VI of 2 VMs
<TaskInfo>
<vmList>
<VirtualMachine>
<cores>6</ cores><ram>12</ram>
<disk>1000</disk>
</VirtualMachine>
<VirtualMachine>
<cores>2</ cores><ram>21</ram>
<disk>2000</disk>
</VirtualMachine>
</vmList>
<vIList>
<VirtualLink>
<vml reference="VirtualMachine[1]”/>
<vm2 reference="VirtualMachine [2]”/>
<bandwidth>20</bandwidth>
<antiCollocation>off</antiCollocation>
</VirtualLink>
</vlList>
</ TaskInfo>

Alternatively, we could explicitly promote operational inde-
pendence and fault-tolerance by setting this anti-collocation
constraint to on and so, explicitly asking the planner to come
up with a respective solution.

The planner works off an initial listing of the available
physical infrastructure offered by the cloud—provider. Such
a description of physical resources appears in Listing 2
and it is “fed” to the planner as Figure 2 shows. In this

listing, the network is set to be of type PortLand and the
cloud machinery includes 1024 PMs each having 32-cores,
64 GBytes of main-memory, 6 TBytes of disk and a network
connection at 100 Mbps. At any time in its operation, the
planner maintains structures clearly indicating the availability
of all “hard”’-resources made available initially to it. While
in operation, the planner keeps this information up to date as
Figure 2 depicts; the physical infrastructure makes the level
of its resource availability known as soon as VMs depart.

Listing 2. Physical Infrastructure Initially Available
<infrastructureinfo>
<nettop>PortLand</nettop>
<nodeinfo>
<entry>
<card>1024</card>
<nodetemplate>
<cores>32</ cores>ram>64</ram>
<disk>6000</disk><nlink>100</link>
</nodetemplate>
</entry>
</nodeinfo>
</infrastructureinfo>
Below, we introduce two policies that the planner may use
in order to appropriately place VMs: Virtual Infrastructure Op-
portunistic fit (VIO) and Vlcinity-BasEd Search (VIBES). Both
methods attempt to reduce the network utilization of physical
links and present low decision time overhead regardless of the

infrastructure size.

V. VIRTUAL INFRASTRUCTURE OPPORTUNISTIC-FIT
(VIO)

Drawing inspiration from the nn-embed greedy algorithm
proposed in [19], we have implemented an Opportunistic
algorithm that places a VI while considering the provided
list of the VLs. Each VL references two VMs as well as
the required network bandwidth between them. Information
regarding VMs requirements includes CPU, RAM and disk
storage. The availability of resources is kept in a graph that
contains a node for every PM and an edge for every physical
link (PLs) in the infrastructure.

Our algorithm needs to assign both VMs of a VL to PMs
with enough available resources. At the same time a path with
sufficient bandwidth connecting the two VMs must exist. In
absence of an anti-collocation constraint, the best placement
for the VMs of a VL is to be co-located on the same PM. In this
way we eliminate the need to consume the network bandwidth
of the physical infrastructure. If we are unable to fit both VMs
on the same host, we place them on the nearest possible PMs.

In case anti-collocation constraints and/or resource short-
age do not allow a VM to be placed on any PM or a path cannot
be created between the PMs of a VL our algorithm employs
backtracking that reverts to a proper amount of previously VM-
to-PM assignments before resuming its search. Each VL is
associated with a revert counter that limits the backtracking
attempts.

Alg. 1 outlines our VIO placement method and Table I
summarizes notations used. Placement begins by first sorting
the list of VLs in descending bandwidth order. The sorted
list along with all the PMs is provided as input to the
recursive Alg.1. There are two cases in handling a VL (switch
statement): either a VM has to be assigned to a PM or both
referenced VMs are already assigned and we just need to verify
the validity of the path connecting them.

For the assignment of the first VL of the VI performed in
the place method call, we consider the PM with the highest
weighted sum of all available resources (CPU, RAM, disk



Algorithm 1 PlaceVLs

Input: vList: The sorted list of VLs we attempt to place

i: The index in the vList of the VL we attempt to place

pmList: The list of physical machines we are considering for placement

Output: true if the VL placement leads to a successful VI placement, otherwise
false

1: if no more VLs to place then

2:  return true

3: end if

4: v1 = vList[i]

5: switch v1.placedVMs do

6:  case at most one VM placed
7

8

9

10

while place(vl, pmList) do
if PlaceVLs(vList, i+1, pmList) then
return true
else if !revert(v1) then

11: return false

12: end if

13: end while

14: setProblematicVL(v1)

15: return false

16:  case both VMs placed

17: if !verify_and_find_path(v1) then
18: setProblematicVL(v1)

19: return false

20: else

21: if PlaceVLs(vList, i+l, pmList) then
22: return true

23: else

24: return revert(v1)

25: end if

26: end if

27:  end case
28: end switch

storage); we term this PM the most available one. With this
approach we promote a load balanced environment as VIs are
deployed around different PMs. If the most available PM has
insufficient remaining resources to host the VM pair of the
first VL, or an anti-collocation request is present between the
respective VMs, we place the most resource demanding VM of
the VL on the most available PM and look for a nearby PM to
accommodate the second VM. Should we fail to assign both
VM:s of the first VL, we reject the VI placement request. Should
we succeed, we bootstrap a list of used PMs (placed_PM_list)
by storing the chosen PM(s) in it. The placed PM_list plays
a pivotal role in placing the rest of the VLs.

If we are to handle a VL with none of its VMs already
placed we attempt to place the two VMs of the VL on one of
the already used PMs stored in placed_PM_list. If that fails
we look for the closest possible PMs of the last PM on that
list. We always attempt to place the VMs of each VL as close
as possible to previously assigned VMs since they are likely to
communicate with each other. In case the VL at hand contains
an anti-collocation request, we follow a different strategy. First,
we attempt to assign the most resource demanding VM on one
of the PMs in placed_PM_list. If that fails, we choose the last
PM in placed_PM_list and attempt to find one of its neighbors
capable of hosting the pertinent VM. Second, we search for a
nearby PM capable of hosting the VL’s second VM. For a
VL with any of its VMs already assigned to a PM, we either
attempt to place the VM on the same PM (no anti-collocation
constraint present) or we find an appropriate nearby PM.

In light of a VL with both of its VMs assigned (meaning
that the respective VMs are also part of other VLs), no VM
assignment is necessary. Yet, we must always verify the
satisfaction of any anti-collocation constraints as well as the
network requirements set by the user. If the two VMs are placed
on separate PMs, a path with enough bandwidth must be found
between the two PMs. In order for a path to be admissible for
a specific VL, every physical link (PL) of the path needs to

have at least as much available bandwidth as the VL requires.

The placement of the entire VI is considered successful
as soon as all VLs of the VI are assigned. In this case Alg.1
returns true.

TABLE 1. SUMMARY OF ABBREVIATIONS USED
Used notations
PM Physical Machine
\%4 Virtual Infrastructure
VM Virtual Machine
VL Virtual Link between a pair of VMs
PL Physical Link in the network graph
path A list of PLs that connects two PMs
path length | The number of PLs (or hops) in a path
cc; Core capacity of PM;
uc; Cores used in PM;
cr; Memory capacity of PM,
ur; Memory used in PM;
cs; Storage capacity of PM;
us; Storage used in PM;
cb; Bandwidth capacity of PL;
ub; Bandwidth used in PL;
Tpms Number of PMs in the infrastructure
Noyms Number of VMs in the VI

Two operations in our Opportunistic-fit VIO approach
that play a crucial role are the finding of nearby PMs and
backtracking from a state where we are not able to satisfy all
requirements. In what follows we describe in detail these two
operations.

Finding nearby PMs: finding a PM’s neighbors involves
calculating all network paths towards all other PMs given
a fixed amount of network hops (path length) between the
original PM and its neighbor. For each of the paths and its
Physical Links (PLs) list, we use the link’s bandwidth ub; to

calculate a weight:
Wpath = Z Ubi
i€list

Out of all paths between a neighbor and the original PM,
we choose the one with the lowest W, We always verify
that a path is valid for the existing topology since in PortLand a
switch must never forward a packet out along an upward-facing
port if the ingress port for that packet is also an upward-facing
port. Having compiled a list of the best paths (one path for
each neighbor of a PM), we sort this list in ascending W4,
order. When trying to place a VM on a neighboring PM, we
iterate over this the path list. Placement of the VM can fail
either due to lack of resources of the neighboring PM or due
to inadmissibility (not enough bandwidth) of the patrh. In either
case, we continue with the next path of our sorted list. VLs
consume resources of the PLs, thus a path is admissible only if
every PL in the path has at least as much available bandwidth
as the VL requires. In case we are not able to find a PM that
can both host the VM and provide a path that would satisfy
the requirements set by the assignment of VMs on its ends,
we extend the path length by increasing the number of hops
allowed among PMs. We term the amount of hops “Radius”.
In PortLand, the first radius level allows 2 hops, while each
subsequent level allows 2 additional hops. We end the process
of trying to find a neighbor as soon as the maximum allowed
radius of 6 hops is reached.

Backtracking and reverting VLs: During our
Opportunistic-fit, we might reach a “dead-end” state where
we cannot place the VL at hand. This VL placement inability
is due to any of the following three reasons: a) there is no PM
with enough resources to host a VM of the VL, b) we cannot



allocate a path with enough bandwidth between the VMs of
the VL, c¢) an anti-collocation constraint is violated. Upon
reaching this state, we mark the VL at hand as problematicVL
(setProblematicVL method call) and proceed with what we
term backtracking. During the backtracking process we
revert the placement of the VLs. The VL’s reverting order is
determined by the recursive nature of Alg.1; that is VLs are
reverted in the opposite order they have been placed.

Reverting firstly involves freeing the network bandwidth in
case the respective VMs are placed on separate PMs. Freeing
the network resources involves deallocating the bandwidth
reserved by the VL on every PL in the path between the
PMs where the VMs were assigned. Secondly, when we have
reverted all VLs a VM is part of, we also deassign the VM from
its PM host, deallocating the resources reserved for it (cores,
RAM and disk usage).

We stop backtracking (reverting the VL placements) as
soon as any VM of the problematic VL is reverted back to
unassigned. If both VMs of a problematic VL are placed (back-
tracking caused by the failure to verify the VL placement), we
need to revert to the last partial placement where any of the
involved VMs is not yet placed. We note that a VM may be
part of multiple VLs, thus reverting that VM means reaching a
partial placement state where all the VLs referencing the VM
are also reverted. If problematicVL had none of its VMs placed
when it reached the “dead-end”, we backtrack only one step,
reverting a single VL and continuing the search.

As soon as backtracking stops, we continue our search for a
placement. However, in order not to reach the same placement
“dead-end” we need to mark the unsuccessful placement. We
do so by not allowing the VM of the problematic VL to be
hosted on the same PM as before.

To confine the extent of our reverting process and terminate
the search for a placement accordingly, we utilize a revert
counter on each VL. In case the maximum amount of reverts
has been reached for a VL, we terminate the placement and
reject the VI. This counter limits our backtracking attempts and
allows our algorithm to maintain reasonable decision times.

Algorithm 2 Revert

Input: v1: the virtual link we are reverting
Output: true if we are stopping the backtrack process and resuming our search, otherwise
false
1: deallocateResources(v1)
2: revertingVL := getProblematicVL()
3: if (v1 shares a VM with revertingVL AND the shared vm is now unassigned) OR
revertingVL.placedVMs==0 then
unsetProblematicVL();
return true
. end if
. return false

A

VI. VICINITY-BASED SEARCH (VIBES)

In VIBES we realize a two-phase approach according to
which we first find a fitting neighborhood of PMs for our VI
and then we utilize our VIO algorithm to place the VI. In
essence we create a subgraph of our physical infrastructure
that guarantees an overall resource availability throughout its
PMs. This subgraph is used as input to VIO in producing the
final VM placement. The reduced search space enables us to
shorten execution time and enhance the placement quality.

In the first phase of our approach we formulate a group
of PMs in close vicinity that can possibly host our VI. We
call this group of PMs a neighborhood. The neighborhood
formation is achieved with a call to the getNeighborhood

method in Alg.3. PortLand proves to be ideal in forming
neighborhoods as it provides already clustered PMs in its
pods. We start the neighborhood formation by finding the edge
switch with the biggest sum of available host and network
resources considering the PMs it connects. Should we require
a larger neighborhood, we locate the pod with the most
available resources. The neighborhood expands even further
by progressively merging the next most available pod to the
set of the already selected pods. The distance, in terms of
path length, is not considered when selecting the pod to be
merged to the neighborhood. The reason for this is that in
PortLand the distance between pods is fixed. The only metric
we have to define in order to identify which pod to merge next
is its resource availability. We denote resource availability of
a resource r as: ar;=cr;-ur;, where cr; indicates the capacity
of the resource for the included PMs, and wur; reflects how
much of the resource is currently being used. We rank all
neighborhoods using the following formula:

E (wcpuaci + wramam; + wdiskasi)
PM ;eneigh

+wnp Z ab;

PL;cneigh

Scoreneigh = we

Each of the three resources (cores, RAM and disk) must
have their individual availability calculated. Weights w. and
wy, represent the overall significance of host and network re-
source significance. Similarly, weights wcpy, Wram and wg;sk
correspond to CPU, RAM and disk importance.

Algorithm 3 VicinitySearch

Input: infra: Our infrastructure with information on PMs and the topology
vinfra: The VI to be placed, with its given VMs and VLs
size_limit: The maximum allowed PMs a neighborhood is allowed to contain
Output: true if application was fully placed, otherwise false
1: min_PMs:= amount of PMs a switch can accommodate
: vList := sort(vinfra.virtualLinkList)
. while true do
neigh := getNeighborhood(infra, min_PMs, size_limit)
if size_limit was reached then

2
3
4
5:
6: break
7
8
9

else if Opportunistic(vList, 0, neigh) then

return true
else if neigh includes the PMs of only a single switch then
10: min_PMs:= amount of PMs in a pod {request a pod}
11 else
12: min_PMs:= neigh.size + amount of PMs in a pod {request a merge of pods}
13:  end if

14: end while
15: return false

In the getNeighborhood method of Alg.3 we also need to
verify the admissibility of a neighborhood. To do so, we sum-
up each PM related resource of the neighborhood and require
that they sum to at least the sum of each respective resource
requested for the VI. This means that the neighborhood should
include for example as many free cores as the sum of cores the
VMs of the VI require. If this requirement is not met, we search
for a larger neighborhood. At this point, we do not compare the
neighborhood’s internal network bandwidth availability against
the total bandwidth requirements of the VI since we are likely
to be hosting multiple VMs on each of our neighborhood’s
PMs, eliminating some of the communication costs.

Should the neighborhood have less PM related resources
than requested, it is expanded with the addition of pods. The
search for a large enough neighborhood continues until we



are either presented with enough available resources, or our
search window is growing larger than a set amount (size_limit).
Beyond that point, we assume that including more PMs in our
search will most likely only expand the decision time without
reaching a successful placement as we already include the most
resource-free PMs in our neighborhood. The administration of
the cloud is free to tune this parameter so as not to expend
valuable time and resources in trying to achieve a placement.
When we reach this size_limit, the algorithm rejects the VI.

In the second phase of our algorithm, we attempt to
place our VI in the PMs of the neighborhood returned from
the first phase. For the placement decision we employ our
Opportunistic-fit algorithm presented in Section V, providing
it with the list of PMs of the selected neighborhood. However,
the placement can possibly fail. This can happen either due
to inadequate bandwidth in the neighborhood, inability to
satisfy anti-collocation constraints, or imbalanced resource
availability. For example we could have two PMs in the
neighborhood with 2 and 4 available cores respectively, but
our VI included two VMs with 3 cores required each, therefore
we cannot attain a successful placement. If such a placement
failure occurs, we return to phase one and repeat the process,
forcing getNeighborhood to return a bigger neighborhood. To
this end we update and utilize the minimum amount of PMs
the returned neighborhood should have (min_PMs).

VII. EVALUATION

The evaluation of our work is based on simulation of phys-
ical infrastructures. The algorithms as well as the simulated
infrastructure are implemented in Java using the JgraphT-
graph library that provides multiple pathfinding and traversal
algorithms. Our tests were run on a Intel Q6600 processor.

The infrastructure consists of PMs with 32 cores, 64GBytes
RAM and storage of 6TBybes, linked through 1Gbps Ethernet
connections; this configuration was based on IBM x3850 X5
Servers. Our PortLand switches are connected through 1Gbps
links as well. Unless stated otherwise, the simulation is run
on a 1,024 PM infrastructure. Regarding the weights used in
our evaluation, we set the computational and network weights
of our vicinity search algorithm to w.=0.65 and w,=0.35 as
these values produced placements of good quality. For CPU,
RAM and disk weights we use Wepy=Wram=wqisk=0.33. We
also set the maximum allowed vicinity size to be 5-times the
amount of the given VI’s VMs, namely size_limit=>5 % nyps.
Lastly, we set the pre-determined amount of maximum allowed
reverts for each VL to 8.

Our objectives in this evaluation are to: /) compare the
performance of our algorithms against other typically used
placement approaches, 2) determine the behavior and place-
ment time in light of diverse physical infrastructures, VI sizes
and workloads and 3) examine core and aggregation network
switch utilization in each algorithm for communication-heavy
VIs. We want to stress the importance of user-provided band-
width needs, therefore we compared our VIO and VIBES
algorithms with the FFD baseline approach which is network-
agnostic.

The VIs used in our experiments display three different
data flow topologies termed Pipeline, Data Aggregation and
Epigenomics. All three topologies are inspired by workflow
structures analyzed in [20] and are shown in Fig.3. Our
evaluation scenario involves placing the following default VIs:

1)  20% Pipeline VIs (Fig.3(a)) with 5 VMs

2)  30% Data Aggregation VIs (Fig.3(b)) with 14 VMs

3)  50% Epigenomics VIs (Fig.3(c)) with 20 VMs

As we request VIs for deployment, we also randomly select
already deployed VIs for removal. The removed VIs are 30% of
the total VIs placed. In what follows, we examine the network
usage with respect to switch utilization per infrastructure tier.
We also consider the impact of scaling three different factors
of the problem, namely the infrastructure size, VI size, and the
bandwidth levels of the tested VIs.

e Overall network utilization and average path length: In
this experiment, we examine the network utilization while we
gradually place additional VIs. We choose to take snapshots
of the network usage within our infrastructure at different PM
load levels, as we keep adding VIs. We term load of a PM the
weighted sum of all its resources utilization. We begin at 10%
load and we gradually reach up to 90%.

In Fig4 we show the performance of the 3 placement
algorithms. Our proposed methods outperform FFD by up
to 3 times. The VI rejection rate established by the three
algorithms remains almost identical for FFD and VIO, while
VIBES displays up to 2% higher rejection rate. The tendency
of VIBES to reject more VIs is explained by the limit on the
maximum allowed vicinity size. Inspecting Fig.5 gives us a
view of how the average path length fluctuates among the three
algorithms, with VIBES exhibiting up to 40% less hops than
FFD, and 20% less hops against VIO. This experiment points
into the fact that VIBES places nodes on groups of PMs more
effectively than its two counterparts.
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e Scaling the bandwidth requirements of the VIs: Here,
we stress the network by increasing the average bandwidth
required by the VIs. We do so by increasing the bandwidth
needs by a factor of 3. We gradually increase the amount of
VIs placed until we reach 90% resource utilization of the PMs.
Fig.6 shows the network utilization of core, aggregation, and
edge switches for the 3 placement policies.

FFD displays high core and aggregation physical link (PL)
usage, since it is treating each VM as an isolated entity instead
of being part of a VI. Compared to FFD, VIO and VIBES
present 75% and 95% respectively less core switch PL usage.
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In regards to the aggregation PLs, VIO and VIBES reduce the
utilization by a factor of 2 and 4 respectively compared to FFD.
The reason for VIO to show higher utilization in core/aggre-
gation switches compared to VIBES is the following: assume
that we remove a VI from a load-balanced infrastructure and
then, we ask for a new VI that calls for more resources than
those released by the just-removed VI. VIO will likely choose
to start the placement on one of the just off-loaded PMs
even though the other neighbouring PMs are heavily loaded.
Consequently, some of the VMs of the VI will not be placed in
PMs under the same edge switch due to this low PM resource
availability. In turn, this causes VIO to look for neighbours
on a larger path length, utilizing aggregation and at some
cases even core switches. However, VIBES treats this situation
more effectively. The neighbourhood in which VIBES attempts
to place the new VI is a group of closely linked PMs that
makes sure we utilize the least amount of core/aggregation
PLs. Therefore, even at high loads and bandwidth-demanding
VIs, VIBES makes minimal use of core switches. We must
also note that during high-bandwidth demand tests FFD was
constantly bringing multiple edge PLs to an over-committed
state of up to 150%. At low PM loads we observe an average
of 3% over-committed edge links, while at a maximum load
this number reaches up to 13%.

e Scaling the physical infrastructure size: We now look at
the decision time of our algorithms as we scale the physical
infrastructure (by adding more PMs) while maintaining the
default amount of VMs in the VIs (5 VMs for Pipeline, 14 VMs

(b) Data Aggregation VI.
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Fig. 7. Average decision times for different data center sizes

for Data Aggregation, and 20 VMs for Epigenomics). In order
to get an accurate measurement of decision times for both the
successful and the unsuccessful placement requests, we deploy
VIs until we reach a 20% rejection rate. The decision time for
successfully placed VIs are on average 50-80% less than the
decision times for rejecting VIs. This is because rejecting a
VI involves exploring a much larger search space that requires
much time for reverting VLs and reattempting the placement.
We evaluate the performance of the three algorithms in phys-
ical infrastructures of three sizes, decided by the PortLand k
factor (the number of ports on each switch): 1,024 PMs (k=16),
3,456 PMs (k=24) and 8,192 PMs (k=32). The results are
shown in Fig.7. Our algorithms remain comparable to the fast
nature of FFD with VIO and VIBES exhibiting decision times
of up to 185ms and 95ms respectively, against FFD’s 50ms.
The extra time required by our algorithms is due to the need to
execute complex path calculations within our topology graph,
as well as the time spent for backtracking. In addition, the
vicinity search algorithm evidently succeeds in making use
of the reduced search space provided by the neighbourhood
subgraphs to lessen decision time by up to 50% compared to
VIO. This performance lead is extended as we add more PMs
in the infrastructure.

e Scaling the virtual infrastructure size: In this final exper-
iment we measure the impact of the VI sizes on the placement
decision time. We gradually increase the average number of
VMs that a VI includes, while keeping the infrastructure size
to 1024 PMs. We select three group ranges for the VI sizes:
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1) 5-20 VMs: 5 VMs for Pipeline flows, 14 for Data
Aggregation, 20 for Epigenomics
2)  10-50 VMs: 10 VMs for Pipeline flows, 30 for Data
Aggregation, 52 for Epigenomics
3) 20-104 VMs: 20 VMs for Pipeline flows, 80 for Data
Aggregation, 104 for Epigenomics
The Epigenomics workflows have a pre-set topology that we
scale by increasing the amount of VMs operating in parallel
(spreading a job to more VMs than the default amount of 4).
As previously, we stop our simulation as soon as we reach a
rejection rate of 20%. The decision time of the three algorithms
is presented in Fig.8. Evidently none of the three algorithms
seems to be largely affected by the VI size, maintaining a low
decision time of under 12ms even for very large VIs.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose two algorithms that perform
the placement of VIs made of several VMs while taking into
account user-provided constraints and network usage hints.
Our approach keeps the user agnostic of the underlying in-
frastructure while exploiting hints and the PortLand-specific
network topology. We show how the information regarding
bandwidth for intra-VI network combined with knowledge of
the cloud’s topology can be crucial for the efficient operation
of the physical infrastructure. Through our evaluation, we
demonstrate the advantages our algorithms have over tradi-
tional placement methods. Such methods typically ignore the
cloud’s structure and often resort to post-placement complex
and network-demanding live migrations. Instead, our focus is
to address the efficient management of the network resource
during the initial placement of the VMs. In the future, we
intend to improve the VM placement of the second phase of our
VIBES algorithm and further reduce the network utilization.
We will test our approach in other network topologies such
as BCube [21] and VL2 [22]. Finally, we plan to exploit the
reduced network utilization provided by our work to optimize
power usage of network switches [11].
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