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Uncovering Local Hierarchical Overlapping
Communities at Scale

Panagiotis Liakos, Alexandros Ntoulas, and Alex Delis

Abstract—Real-life systems involving interacting objects are typically modeled as graphs and can often grow very large in size.
Revealing the community structure of such systems is crucial in helping us better understand their complex nature. However, the
ever-increasing size of real-world graphs and our evolving perception of what a community is, make the task of community detection
very challenging. A critical relevant challenge is the discovery of the possibly overlapping communities of a given node in a billion-node
graph. This problem is very common in modern large social networks like Facebook and LinkedIn. In this work, we propose a scalable
local community detection approach to efficiently unfold the communities of individual target nodes in a given network. Our goal is to
reveal the clusters formed around nodes (e.g., users) by leveraging the relations within all different contexts these nodes participate in.
Our approach, termed Local Dispersion-aware Link Communities or LDLC, considers the similarity of pairs of links in the graph as well
as the extent of their participation in multiple contexts. Then, we determine the order in which we should group the pairs of links so that
we form meaningful hierarchical communities. We are not affected by constraints existing in previous techniques such as the need for
several seed nodes or the need to collapse multiple overlapping communities to a single community. Our experimental evaluation using

ground-truth communities for a wide range of large real-world networks shows that our LDLC algorithm significantly outperforms
state-of-the-art methods on both accuracy and efficiency. Moreover, we show that LDLC uncovers very effectively the hierarchical
structure of overlapping communities by producing detailed dendrograms.

Index Terms—Community detection, complex networks, hierarchical communities, dispersion.

1 INTRODUCTION

HE neurons in our brains, the proteins in live cells, the
Tpowerplants of an electrical grid, and the users of an
online social networking service, are all entities of complex
systems that play a vital role in our daily lives. Networks
are a powerful tool for modeling relations and interactions
between the components of such complex systems. Respec-
tive real-world networks are often massive; yet they exhibit
a high level of order and organization, which allows the
study of common properties they exhibit, such as the power-
law degree distribution and the small-world structure [1],
[2]. Another important property that real-world networks
exhibit is the presence of community structure [3]. At a
high level, communities are groups of nodes that share a
common functional property or context, e.g., two people
that attended the same school, or two movies with the same
actor. In several cases communities in a network are distinct;
consider for example the fans of different basketball teams.
However, it is often the case that communities overlap. Fig-
ure 1 illustrates the communities of an individual in a social
network, i.e., her family, co-workers, basketball buddies and
friends from college. It is obvious that the communities may
overlap in different ways. For example, a co-worker may
also be a basketball buddy and a friend from college. Such
overlapping communities may have a complex structure of
connections that are not easy to discern and are certainly
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Fig. 1. lllustration of the social circles of an individual. Her family, co-
workers, basketball buddies and friends from college are distinct yet
overlapping communities.

more challenging to identify compared to non-overlapping
ones.

Effectively extracting the community structure of a node
in a network has many useful applications:

o We can provide more informative and engaging social
network feeds by better understanding the membership
of an individual to various organizational groups.

o We can suggest common friends of an individual to
connect because they share mutual interests.

e We can create match-making algorithms for online
players based on the similarity of their game play.

o We can identify groups of customers with similar be-
havior and enhance the efficiency of recommender sys-
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tems.

Early community detection approaches focused either
on grouping the nodes of a network or on searching for
links that should be removed to separate the clusters [4].
However, these approaches did not consider the fact that
communities may overlap, and ultimately could not provide
an accurate representation of a network’s community struc-
ture. Algorithms that followed [5], [6], [7], [8], [9], [10] allow
for nodes to belong to several overlapping communities by
employing techniques such as link clustering, matrix fac-
torization, and personalized PageRank vectors. Still, these
approaches are not applicable to the massive graphs of the
Big Data era, as they focus on the entire graph structure
and do not scale with regards to both execution time and
memory consumption. Recent efforts have therefore shifted
the focus from the global structure to a local view of the net-
work [11], [12], [13], [14]. More specifically, such approaches
locally expand a set of target nodes in the community of
interest, instead of uncovering the communities of the entire
network.

Seed set expansion approaches employ techniques such
as random walks to estimate the likelihood of a node to
participate in the target community, and manage to scale
to large networks [11], [12], [13], [14]. These approaches
consider that overlaps between communities are sparsely
connected whereas the areas where communities overlap
are denser than the actual communities. However, studies
of real-world networks show that two nodes are more
likely to be connected if they share multiple communities
in common [15]. For example, people belonging to both the
co-workers and basketball buddies communities of Figure 1,
are expected to know each other with high probability.
Hence, as the overlapping area is in fact denser than the
actual communities, seed set expansion approaches are
driven towards nodes that reside in the overlap. In addition
to this, all scalable methods require multiple seeds to avoid
detecting multiple overlapping communities as a single one.
This constitutes a challenge, as it is usually the case that we
are interested in all communities of a single node, instead
of seeking one community involving multiple predefined
nodes. Finally, seed set expansion approaches are shown to
perform well when detecting relatively large communities,
whereas high quality communities are in fact small [15].

In this paper, we focus on the neighbors of a single node
in the network, i.e., its egonet, and aim at extracting the —
possibly overlapping— communities of this node. We build
upon the ideas of link clustering [5], [6] and employ simi-
larity measures that allow for effectively handling densely
connected overlaps between communities. Our intuition
is that when grouping pairs of links we should capture
the extent to which a link belongs to multiple overlapping
communities. To this end, we utilize a dispersion-based tie-
strength measure that helps us quantify the participation
of a link’s adjacent nodes to more than one community.
Our approach is both efficient and scalable as we focus on
local parts of graphs comprising a target node and its
neighbors. As we show in our experimental evaluation, we
produce a more accurate and intuitive representation of the
community structure around a node for a number of real-
world networks.

In summary, we make the following contributions:

2

o We propose a local community detection algorithm that
effectively reveals the overlapping nature of real-world
network communities of individual target nodes.

o We operate with less input from the user (a single seed
vs a set of multiple seeds) and generate communities of
equal or better quality.

e We experimentally evaluate our algorithm against
state-of-the-art approaches using publicly available net-
works. Our results show that our approach significantly
outperforms current methods using popular evaluation
metrics.

o We reduce the execution time notably, by focusing on
the neighborhood of a node and thus, manage to handle
billion-edge scale graphs.

o We provide a detailed view of the rich hierarchical
structure of the derived community.

Our paper is organized as follows: We first introduce
definitions and metrics that will be used in describing our
approach in Section 2. In Section 3, we describe our local
hierarchical overlapping community detection algorithm
named Local Dispersion-aware Link Communities (LDLC), and
explain its rationale. In Section 4, we extensively evaluate
our approach both qualitatively and quantitatively. Section 5
reviews related work and finally, Section 6 concludes our

paper.

2 BACKGROUND

In this section we review some basic principles and defini-
tions for our work. First, we provide the definition of the
egonet and subsequently we discuss measures that are used
to estimate the strength of ties in networks. Finally, we give
the definition of partition density and detail the dataset used
in our study.

2.1 Egonet

Large-scale graph mining applications are often based on
local neighborhoods of nodes [16]. The set of nodes that
are one hop away from a given node allows for a variety
of analyses that build intuition about that node and its
role. Focusing on local neighborhoods of nodes enables
respective applications to scale effortlessly to large networks
as the task in hand can be executed in parallel for all nodes
in the network. In the context of social networks, this one
hop neighborhood is frequently called the egonet of a user.
Figure 1 depicts such an egonet of an individual and the
overlapping communities she is part of.

In this work, we address the challenge of extracting
efficiently the community structure formed by the nodes
adjacent to a single target node. The networks we are inter-
ested are often massive and, thus, our approach should scale
to graphs of extreme volume. To this end, we investigate
ground-truth communities of real-world networks and in
particular, whether these communities are recoverable us-
ing egonets alone. Eventually, we focus on the egonets of
target nodes to significantly reduce the search space of our
algorithm.
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2.2 Tie Strength Measures

The closeness between nodes in a network and its impact on
the network’s dynamics has been studied extensively [17],
[18]. Understanding the complex nature of interacting ob-
jects calls for quantifying the strength of ties to distinguish
the connections of particular importance. We outline here
the tie strength measures that we employ in the context of
this work:

2.2.1 Embeddedness

Intuitively, a large number of shared neighbors between
nodes indicates a strong tie, whereas a few mutual neighbors
indicate a weak tie. Therefore, a frequently used measure
to estimate the tie strength between two nodes u and v is
embeddedness, formally defined as:

[N (u) O Ny ()] ©)

where N, (u) is the set of nodes adjacent to u.

In the case of social networks, individuals operating on a
common context are more likely to share joint activities with
each other, as opposed to people that do not share this par-
ticular context [19]. Therefore, embeddedness can effectively
be applied for the identification of couples [20].

emb(u,v) =

2.2.2 Jaccard similarity coefficient

The Jaccard similarity coefficient is a frequently used mea-
sure of similarity of two sets and is defined as the size
of their intersection divided by the size of their union. In
the case of two nodes u and v in a network, the Jaccard
similarity coefficient can be applied on the respective sets of
neighbors, N, (u) and N, (v), as follows:

[Ny (u) NN (v)|
[Ny (u) U N4 (v)|

J(u,v) = 2)

2.2.3 Absolute and Recursive Dispersion

The task of identifying spouses or romantic partners in
a social network is also the focus of [21]. Backstrom and
Kleinberg address this challenge through the use of disper-
sion-based measures. They analyze real data from Facebook
and conclude that high dispersion is indeed present, not
only to spouses or romantic partners, but to people who
share multiple relevant aspects of their social environment
in general.

Formally, we consider the egonet G, of u in G and define

absolute dispersion as:
D du(s,t) 3)
$,t€C Yy
s<t

disp(u,v) =

where (), is the set of common neighbors of v and v in G,
and d,(s,t) is a distance function equal to 1 when s and
t are not directly linked themselves and have no common
neighbors in G, other than « and v, and 0 otherwise.
Experiments show that for a fixed value of disp(u,v),
increased embeddedness is a negative predictor of whether
v is close to u [21]. Thus, absolute dispersion is more effective
when normalized using embeddedness. In addition, the
performance of dispersion is found to strengthen when
applying it recursively as follows. First, we consider x, = 1

3

for all neighbors v of u. Then, we iteratively update z,, using
the formula:
SNooxR 42 > dy(s, t)msay

HJECU s,tECij
s<t

emb(u,v)

Ly = (4)
The value produced after the third iteration of (4) is empir-
ically found to perform the best [21]. We will refer to this
value as recursive dispersion of v in G, for the rest of this
paper, and use it to identify pairs of nodes that operate in
multiple common contexts.

2.3 Partition Density

Agglomerative community detection algorithms provide us
with a dendrogram describing the hierarchical organization
pattern of communities [4], [5], [22]. To obtain meaningful
communities from the dendrogram it is necessary to deter-
mine the level at which to cut the tree at. To this end, Ahn
et al. [5] introduced the measure of partition density D, that
is formally defined as follows:

~1E] - Ze‘

where C is the set of communities discovered, e. is the
number of links in a community ¢ € C, and n, is the number
of nodes all the links in e, touch.

We can come up with the optimal value of D by ex-
amining its value at each step of the hierarchical clustering
process. Cutting the dendrogram at the level that produces
the optimal value of D is shown to effectively derive
meaningful and relevant communities. In addition, partition
density is suitable for large-scale graphs as it does not suffer
a resolution limit like modularity [23], being that every term
in Equation (5) is local in each community c.

nc—l)

o= 5)

2.4 Networks in our Dataset

Evaluating and comparing communities detected by differ-
ent algorithms is not a trivial task. Large networks exhibit
extremely complex organization and cannot be visualized in
meaningful ways. However, we can measure the accuracy
of a community detection algorithm given the presence of
ground-truth communities [15].

In this work, we employ all six of the real-world
networks with available ground-truth communities that
are provided by the Stanford Network Analysis Project
(SNAP).! In particular, our evaluation is based on the top-
5,000 highest quality communities of each of these net-
works [24]. Table 1 provides the details of our dataset.

DBLP is a co-authorship network and ground-truth is
formed from authors who published in the same journal or
conference. Amazon is a product co-purchasing network and
the annotated communities associated with it are based on
the categories of the products. Finally, Youtube, LiveJournal,
Orkut, and Friendster are all social networks, and the respec-
tive ground-truth communities are user groups that have
been formed in these networks. We note that Table 1 features
a graph that exceeds 1.8 billion edges, namely Friendster. We

lht’rps: / /snap.stanford.edu/data/#communities
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TABLE 1
Graphs of our dataset reaching up to 1.8 billion edges.

Graphs Type Nodes Edges Av. Degree | Av. Community Size
DBLP Co-authorship 317,080 1,049, 866 3.31 22.45
Amazon Co-purchasing 334,863 925,872 2.76 13.49
Youtube Social 1,134,890 2,987,624 2.63 14.59
LiveJournal Social 3,997,962 34,681,189 8.67 27.80
Orkut Social 3,072,441 117,185,083 38.14 215.72
Friendster Social 65,608,366 | 1,806,067,135 27.53 46.81

also see that, the average community size of most networks
is relatively small, with the exception of Orkut with an
average size of 215.72.

3 LocAL DISPERSION-AWARE LINK COMMUNI-
TIES

In this section we describe in detail our approach for local
community detection. We commence by examining the cov-
erage ratio of egonets on the ground-truth communities of
the networks in our dataset. We then discuss the difficulties
that existing methods based on seed set expansion and link
clustering face due to the nature of real-world overlapping
communities. We show that the use of dispersion-based
measures of tie strength can alleviate such issues. Then, we
present our algorithm, termed LDLC, in detail. Finally, we
discuss a novel sampling technique to effectively reduce the
search space of our algorithm.

3.1

Community detection methods that focus on the global struc-
ture of graphs fail to scale to the massive volume that real-
world networks reach, i.e., millions of nodes and billions
of edges. We aim at detecting communities for large-scale
graphs efficiently. To this end, we focus on the local structure
of a node in the network. Studies of real-world networks
show that community members tend to organize themselves
around hub nodes that are linked with most of the nodes
in the community [15]. We begin discussing our approach
by investigating ground-truth communities of real-world
networks, and in particular, the fraction of the nodes they
comprise that is part of egonets of nodes that belong to the
respective communities.

We report in Figure 2 the coverage ratio of egonets
regarding the ground-truth communities of the networks
of our dataset. For every ground-truth community of all six
networks of our dataset, we examined the coverage of the
egonets of each of the nodes belonging to the community.
The average coverage ratio depicted in Figure 2, results from
the egonets of the nodes with the largest coverage for each
ground-truth community. We observe that the coverage ratio
is very high for all networks, ranging from 87% to 97%, with
the exception of Orkut at slightly under 67%. The lower
coverage ratio of Orkut is attributed to the larger average
community size of this network. Empirical observations [15]
show that high quality communities usually consist of no
more than 100 nodes, whereas the average community size
of Orkut is more than twice as high and remains low even
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Fig. 2. Egonet coverage ratio for the ground-truth communities of the
different graphs provided by SNAP. We show that the coverage ratio for
all graphs, with the exception of Orkut, is above 87%. The ratio is lower
for Orkut due to its large average ground-truth community size.

when using the 2-step geodesic neighborhood of nodes, as
reported in [11].

The large coverage ratio of egonets on ground-truth com-
munities verifies our hypothesis that high quality communi-
ties can be detected when focusing on egonets of nodes. This
allows us to significantly reduce the scale of our search by
focusing only on a small part of a possibly extremely large
network. Even in the case of nodes exhibiting large degrees,
dealing with the respective egonets instead of the global
structure of the graph is beyond comparison with regard
to efficiency. Space complexity is also reduced greatly, as
the memory footprint of the egonet is insignificant when
compared to the whole network.

3.2 Effective Detection of Local Hierarchical Overlap-
ping Communities

Investigations on the structure of real-world networks have
revealed that there is an increasing relationship between the
number of shared communities and the probability of nodes
being linked with an edge [15]. Hence, the nodes residing
in overlapping parts of communities are more densely con-
nected than the nodes residing in the non-overlapping parts.
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Fig. 3. Social communities in the egonet of an individual (10) in a social
network. Using a force-directed layout we can easily identify two well-
connected groups of acquaintances. A special tie between (10) and (6)
is evident, as (6) is the only vertex having links (red colored) towards
both communities.

Moreover, connector nodes, i.e., nodes linked with most of
the members of a community, belong to the overlap [15].

Recent local community detection methods [11], [12],
[14] expand seed sets by utilizing the dynamics of random
walks initiating from the seeds. The participation of a node
in the target local community is determined by the corre-
sponding probability score that results from these random
walks. Naturally, nodes that reside in the dense overlapping
area of multiple communities of a particular node, have
high probability scores for random walks starting off this
node. In addition to this, nodes outside the overlapping
area that are selected in the resulting community due to
their probability scores, do not necessarily belong to the
same community, as each random walk starting from a seed
node is likely to reach a different community. Hierarchical
link clustering approaches focusing on the global network
structure [5], [6] examine the similarity of pairs of links, and
thus, avoid grouping nodes that actually belong to disparate
communities. However, such approaches do consider that
communities in whole are more densely connected than
their overlapping parts [25]. Therefore, these approaches are
also unable to handle overlaps appropriately.

Figure 3 illustrates the egonet of an individual (10) in a
social network. We use this egonet here as a toy example.
The use of a force-directed layout enables us to easily
identify the organizational groups shaped around this node.
In particular, we observe that the neighbors of node 10 form
two well-connected groups. We also notice, that the only
node in the egonet that maintains links (red-colored) with
nodes of both groups other than 10, is 6. The relationship
between nodes 10 and 6 is a particular case of a strong
tie which is frequent in networks and has to be considered
when identifying overlapping communities. Node 6 acts as
a connector in the egonet of 10 and is linked with nodes
that are not themselves well-connected, as they belong to
different organizational groups.

3.2.1 Local hierarchical link communities

We address the task of local community detection by merg-
ing pairs of links in the egonet of a target node. Links often
demonstrate a particular relation, e.g., a friendship between

(2,5,6,7,8,9,10)

Fig. 4. The hierarchical link structure of the malformed community that
results when performing link clustering in the egonet of Figure 3 using
Equation (6), and cutting at the level of optimal partition density. The
similarity of link (6,10) with link (8,10) leads to a community that groups
numerous nodes that are not linked with each other.

two nodes, whereas nodes are usually part of multiple
groups. Thus, by grouping links —instead of nodes— we al-
low for the participation of nodes into multiple overlapping
communities. To quantify the relevance of two edges e,
and e, sharing a common node w, we can properly adopt
the Jaccard similarity coefficient in the context of links [5].
Using the common node of the two links provides no
additional information, and may introduce bias, depending
on the degree of w. Therefore, using Equation (2), we can
define the similarity of the pair (€4, €wy) as:

N () AN ()
[N (u) UNS (0)]

where u and v are both adjacent to w.

After quantifying the similarity of all pairs of links in the
egonet of Figure 3 that share a common node using Equa-
tion (6), we can build a hierarchy of communities through
agglomerative clustering. More specifically, we proceed by
merging pairs of links by descending order of similarity.
Finally, we cut the resulting dendrogram at the level of
optimal partition density, and the communities we come up
with are:

1) {0,1,2,3,4,5,10}

2) {6,7,8,9,10}

3) {2,5,6,7,8,9, 10}
We see that the first two communities are well-knit, i.e.,
the respective sub-graph is quite dense. However, we also
observe that the third community coalesces numerous nodes
that are not linked together (2, 5 with 7, 8, 9). This is an
effect of the Jaccard similarity coefficient that is used for
quantifying the similarity of pairs of links, as this measure
is unable to capture how well the neighbors of two nodes
are interconnected. Indeed, the hierarchical link structure of
this particular community, as portrayed through Figure 4,
highlights evidently the cause of this undesired behavior.
We see that the third community actually results from the
coalescence of two well-separated clusters (2, 5, 6, 10 and
7, 8, 9, 10). This grouping occurs due to the similarity of
links (6, 10) and (8, 10). These links are in fact similar when
considering the Jaccard similarity coefficient; however they

J(ewu, wn) = J(u,v) (6)
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belong to an overlapping area of different communities that
Equation (6) is unable to take into account and consequently
reveal. In addition, as the distance between two clusters is
determined by a single pair, grouping large clusters with
each other results in a dendrogram that reveals very little
about the hierarchical structure of the community.

3.2.2 Building on dispersion-based measures

Estimating the relevance of pairs of links in the presence
of dense community overlaps calls for measures that take
into account the extent to which the neighbors of two nodes
are interconnected. Dispersion-based measures address this
challenge and therefore fit perfectly in the task of overlap-
ping community detection. Through their use, we are able to
single out connector nodes that lie in overlapping parts of com-
munities. For example, using Equation (3) we obtain that
node 6 exhibits the highest absolute dispersion in the egonet
of 10 with a value of 4. Hence, we can employ dispersion-
based measures to favor groupings of pairs of links with
adjacent nodes that share a lot of common neighbors (high
Jaccard similarity coefficient) only if these neighbors are
also well interconnected (low recursive dispersion). In this
way, connector nodes are involved in groupings at a higher
level of the resulting dendrogram, which then depicts more
accurately the hierarchical structure of the communities in
the egonet. In particular, we propose the use of the recursive
dispersion measure along with the Jaccard similarity coeffi-
cient in order estimate the relevance of pairs of links. More
formally, we define the similarity S of two pairs of links
(ewu, €wr) to be:

J(€wus €wo)
rec(u) + rec(v) + rec(w)

S(ewu; ewv) = (7)
where rec(u) is the recursive dispersion of v in the egonet
of the target node.

Returning on the example of Figure 3 and the egonet
of node 10, if we apply hierarchical link clustering using
Equation (7) as a measure of similarity instead of (6), we
come up with the following communities:

1) {0,1,2,3,4,5 10}
2) {7,8,9,10}
3) {2,5,6,10}
4) {6,8,9,10}

We observe that the nodes of all communities are much
more well-connected. Moreover, node 6 is featured in two
communities, in which every two distinct vertices are adja-
cent, i.e., they form cliques. Evidently, through Equation (7),
we are able to penalize the high dispersion that node 6
exhibits in this egonet. Links featuring this node are now
merged at a higher level of the resulting dendrogram, and
thus, we avoid forming communities featuring nodes of
different organizational groups.

3.3 Our Proposed LDLC Algorithm

We present here the LDLC algorithm for finding local hierar-
chical overlapping communities in large-scale graphs. LDLC
is an agglomerative clustering algorithm whose aim is to
reveal the hierarchical structure of the possibly overlapping
communities of a single target node in a network. LDLC
uses Equation (7) to determine the similarity of all pairs

Algorithm 1: LDLC(G, u)
input : An undirected network G = (V, E),
and anodeu € V.
output: A dendrogram depicting the hierarchical
(possibly overlapping) communities of G..

1 begin

2 Gu(Vu, Ey) < egonet(G, u);
3 rec + dict();

4 foreach v € G, v # u do

5 | reclv] < 1;

for iteration < 1 to 3 do
7 foreach v € V,,,v # u do

)

rec[v]4—
ZU’ECurU reclw]?+2 s tECy, d(s:t)rec]s]rec]t]
s<t

emb(u,v) ’
9 similarities <— min_heap();
10 fork €V, do
11 for (eik, eji) + combinations(N4(k),2) do
[Ny (0)NN4 (5)] .
2 I(eir, k) < [N moNL G

J(eikrejk)

13 S(eik, €jk) < Foamrrechitreh]

14 similarities < (1 — S(eik, ejk), (€ik, €jk));
15 foreach (similarity, (eij,ejr)) € similarities do
16 join_clusters(eix, e;x);

17 if len(clusters) == 1 then

18 | break;

of links in the egonet of the target node in the network
that share a common node. These pairs of links are merged
progressively in ranking order according to their similarity.
The groupings result in a dendrogram that depicts the
hierarchical organization of the communities the target node
belongs to. To derive the actual communities, we may cut
this dendrogram at the level that produces the optimal
partition density (Equation (5)), or alternatively, we can
cut it at the level that produces the desired number of
communities.

Algorithm 1 outlines our suggested LDLC. The input
of our algorithm comprises an undirected graph G(V, E)
and a single target node v € V. The output of LDLC is a
dendrogram depicting the rich hierarchical structure of the
local communities of node u.

Loading the egonet and initializing the communities:
We start by loading in memory the egonet of v, i.e., node
u, its adjacent nodes, and the edges among them (Line
2). Depending on the network representation, this process
can be quite costly. For example, using an edge-list or an
adjacency-list stored in a file would necessitate two passes
over the files, to identify the neighbors of u as well as the
neighbors of u’s neighbors. To alleviate this cost we focus
instead on space-efficient in-memory representations [26],
[27], [28], [29], [30]. Such approaches allow for fast neighbor
queries as they maintain adjacency lists in-memory, usually
in sorted order. Thus, to come up with the egonet of u, we
first retrieve the adjacency list of u, and then the adjacency
lists of u’s neighbors. For each of the latter adjacency lists we
keep only those nodes that are neighbors of v, by applying
intersection with the adjacency list of u. This operation ends
up with u’s egonet as it discards all nodes that are not
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adjacent to u, as well as the respective edges. Having loaded
the egonet, we proceed by initializing the communities.
More specifically, we consider every edge e € F, to be a
community of its own, with the two adjacent nodes as its
members.

Computing the recursive dispersion of u’s neighbors:
Lines 3-8 compute the recursive dispersion of all neighbors
of u, v € V,. We map the respective recursive dispersion
values of the neighbors in a dictionary (associative array)
that uses the nodes as keys (Line 3). We first assign a value of
1 for all nodes (Lines 4 — 5) and then we apply Equation (4)
for three iterations (Lines 6 — 8). This process results in
the values of recursive dispersion, as defined in [21] and
detailed in Section 2.2.3.

Computing the similarities of pairs of links: Our next
objective is to come up with the similarity of all pairs of
links in the egonet that share a common node. To this end,
for every node in the egonet we examine the similarity of
all possible pairs of its links (Lines 9 — 14). The use of a min-
heap allows us to maintain the similarities of pairs of links
sorted (Line 9). We first calculate the distance of two links
using the Jaccard similarity coefficient (Line 12), and then
we balance this distance using the previously calculated
recursive dispersion measure, as specified in Equation (7).
In particular, we divide the value of Jaccard similarity
coefficient with the sum of the recursive dispersion of the
nodes involved in the links (Line 13). Finally, we insert the
resulting similarity value in the heap holding the similarities
of all pairs (Line 14).

Creating the dendrogram: The last step of our algo-
rithm is to merge the pairs of links and come up with the
dendrogram that portrays the hierarchical structure of the
local communities of node u. More specifically, we iterate
through our heap holding the sorted similarities of pairs
of links, and group the pairs one by one (Lines 15-16).
At every grouping stage, we keep track of the action that
takes place to allow for the construction of the dendrogram.
Moreover, we monitor the current partition density using
Equation (5), to determine the best level at which to cut the
dendrogram at. When the dendrogram is built, i.e., when
we are left with a single cluster, LDLC terminates (Lines 17—
18). The resulting dendrogram we come up with reveals the
overlapping nature of the network’s communities through a
rich and intuitive hierarchical structure.

Analysis of LDLC: The running time of our algorithm
depends on the calculations needed to come up with the
intersection and the union of the neighbors of all pairs of
nodes in the egonet. The former is needed for the calculation
of both recursive dispersion and similarity, whereas the lat-
ter is needed just for calculating similarity. There are totally
(l‘g“ |) pairs of nodes in the egonet, where |V,,| is the number
of nodes in the egonet. Both the intersection and union oper-
ations require linear time, as we consider representations of
sorted adjacency lists. Therefore, the time needed for these
calculations is O(|V,|?). We maintain an associative array to
hold the results for the intersection and union of all pairs
of neighbors and access them in constant time in all steps
of Algorithm 1. To calculate the recursive dispersion (Lines
6-8) for every neighbor v of u we go through all possible
pairs of the common neighbors of u and v, which has a
worst case complexity of O(|V,,|?). For the calculation of the
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similarities (Lines 9-14) of the pairs of edges with a common
neighbor and their placement in a min-heap, the execution
time is at worst O(|V,|?log|V,|). Finally, going through the
calculated similarities and joining the pairs of edges (Lines
15-18) requires again O(|V,|?log|V,|) time. Consequently,
the running time of LDLC is O(|V,|?). When it comes to
egonets of nodes with large degrees, this order may become
unmanageable; hence, we continue with a discussion on
how we can reduce our search space and be efficient even
in such cases.

3.4 Reducing the Search Space

LDLC operates on the egonets of a target node, as com-
munity detection in the global structure of the network
is prohibitively expensive for large-scale graphs. However,
detecting communities in the egonets of certain nodes in
the network may have equivalent cost. In particular, many
real-world networks, such as the Internet router graph [2],
the World Wide Web graph [31], [32], [33], and citation
graphs [34], are known to exhibit power law degree dis-
tributions and a few of their nodes exhibit extremely large
degrees. Therefore, the size of the respective egonets of these
nodes is often comparable to the size of the network.

Uncovering the community structure of nodes with large
egonets efficiently calls for a sampling technique that is
applied on the egonet to reduce the search space. To this
end, a straightforward approach is to perform random
sampling, i.e., to pick uniformly at random a subset of the
nodes in the egonet, and apply LDLC on the respective
sub-graph that comprises these nodes. Such an approach
would successfully reduce the time needed to execute our
algorithm; however, a random sample of the neighborhood
of a node exhibiting high degree is likely include many
disparate nodes.

We propose an alternative sampling technique, outlined
in Algorithm 2. Instead of including nodes in our sample
at random, we maintain the most involved nodes of the
egonet. More specifically, first insert in a min-heap the first
k neighbors of a node u (Lines 2 — 4). Then, for the rest
of the nodes in the egonet (Line 5), we examine whether
their degree is larger than that of the inserted node with
the smallest degree (Line 6). If so, we remove the node in
the root and insert the current node in the min-heap (Line
7—8). After we have iterated through all nodes in the egonet,
the min-heap will hold the nodes with the largest degrees
in the network, which is the outcome of Algorithm 2. The
min-heap offers constant time access to the inserted node
with the smallest degree, as the min-heap holds this node in
its root. The insertion operation costs O(logk) whereas the
space complexity is O(k).

In our experimental section, we investigate the effec-
tiveness of our sampling technique through a comparison
against a random sampling approach, and study the im-
pact of k with regards to both efficiency and effectiveness.
We note that communities with more than 100 nodes are
reported to be of poor quality [15].

4 EXPERIMENTAL EVALUATION

We compare LDLC against three prominent community
detection algorithms based on seed-set expansion, namely
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Algorithm 2: k-largest(G,u)

input :The egonetof u € G, Gy = (Vu, Eu),
and maximum size k.

output: A sample V,, of V,,, where N (v) in the top-k
inG, YveV,.

1 begin
2 V. <+ min_heap();
3 fori < 1tok do

s || Vi VAl
fori« k+1to|V,| do
if V,,[i] > V,,.low() then
L delete V,[1];

® 9 o a

Vi <+ Vuli]

©

return V,;

LEMON [14], LoSP [11], and HeatKernel [12]. All three
above algorithms perform local community detection and
thus, allow for comparison with our approach in a similar
setting. We first discuss the specifications of our experimen-
tal setting. Then, we proceed with the evaluation of our
LDLC by answering the following questions:

o How well does LDLC overcome the need of constraints
other methods have, such as requiring multiple seeds
to avoid mixing-up multiple overlapping communities,
and detecting mostly large communities?

o How well does LDLC perform in detecting communities
of real-world networks compared to other methods?

o How efficient is LDLC when compared to other local
community detection approaches?

o What is the impact of dispersion-based measures on
the quality of the derived hierarchical community struc-
tures?

o How effective is our sampling algorithm when com-
pared with a random sampling approach?

4.1 Experimental Setting

Our dataset comprises six social, co-authorship, and co-
purchasing networks of different sizes, the details of which
are outlined in Section 2.4. We implemented LDLC using
Python 2.7 and the Snap.py interface’ of the SNAP sys-
tem [26]. Our algorithm is publicly available.> We conducted
our timing experiments on a Dell PowerEdge R630 server
with an Intel®Xeon® E5-2630 v3, 2.40 GHz with 8 cores,
and a total of 128GB of RAM. Only one of the CPU cores
was used in our experiments.

4.2 Qualitative Evaluation

We begin our discussion on experimental results by illus-
trating the behavior of our LDLC against LEMON, when
discovering the communities of a target node in the DBLP
co-authorship network.

Figure 5 depicts the egonet of the target node which we
use as a seed to both algorithms (white colored node), as
well as the communities detected by the two algorithms. The
force-directed layout we use to enhance the visualization,

Zhttps:/ /snap.stanford.edu/snappy/index.html
3ht’rps: / /bitbucket.org/panagiotisl/ldlc
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reveals that the nodes form two well-connected groups. The
nodes of the grouping in the right actually belong to one
of DBLP’s high quality ground-truth communities to which
none of the nodes of the left grouping belongs to. Moreover,
we observe, that the pink colored node is part of the left
group but features a link with a node that is part of the
right group and is not connected with any of the pink node’s
neighbors other than the white node. This results to a high
value of absolute dispersion for the pink node in the egonet
of the white node.

We illustrate using grey color part of the community that
is detected when providing the white colored node as a
seed to LEMON. In particular, LEMON produces a community
of 81 nodes in total, featuring all the neighbors of the seed
node, as well as nodes that are only connected to the
target’s neighbors. The numbers on the nodes in Figure 5
indicate their ranking according to their likelihood to belong
to the target community. We observe that the community
detected by LEMON exhibits certain unexpected or undesired
attributes. First, high quality ground-truth communities are
reported to be much smaller than the community detected
by LEMON. In particular, the high quality communities of
DBLP have an average community size of 22.45 nodes, as
shown in Table 1. The community of LEMON however, is
more than 3 times as large. Second, using the target node
as the single seed results in the participation in the detected
community of nodes that belong to different social circles. In
particular, LEMON performs random walks starting from the
target node to calculate the likelihood of a node belonging to
the detected community. Naturally, nodes of different social
circles are likely to exhibit high likelihood and LEMON is
unable to distinguish between the different and possibly
overlapping communities of the target node. This behavior
is evident in Figure 5. We observe that nodes ranked from 2
to 7 according to their likelihood, reside in the middle part
of the left well-connected group of the seed’s neighbors. The
node that LEMON adds to the community immediately after,
ranked 8th, does not share a single link with these nodes,
and clearly belongs to another community. Similarly, LEMON
continues to add nodes in the detected community from
diverse areas around the seed node, until it meets a stopping
criterion. Therefore, we see that LEMON favors nodes that
reside in dense areas regardless of their relevance to one another.
Overcoming this issue would require multiple cherry-picked
seeds that would increase the likelihood of nodes that are
actually part of the same community. This is equally true
for other methods that employ random walks for seed set
expansion, including LOSP.* Last, the pink colored node
continues to exhibit high dispersion in the community de-
tected by LEMON, as the community features its link with a
node of the cluster on the right side of Figure 5.

Figure 5 also illustrates the communities discovered in
the egonet of the white colored node using LDLC. We cut
the tree produced by LDLC at the level that produces the
optimal partition density and observe that our algorithm
detects two communities, depicted with pink and teal color,
respectively. The pink community has a size of 12 nodes,

4 As the authors show in [11] (Figure 2) the presence of three seeds
is essential to enable LOSP to distinguish between two overlapping
cliques.
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Fig. 5. The egonet of a node in the DBLP graph. LEMON’s detected community (grey color) features, among others, all the nodes in the egonet.
Numbers indicate the LEMON’s ranking of the nodes according to their likelihood of belonging to the detected community. LDLC uses hierarchical link
clustering in the egonet of the target node and penalizes the links with nodes exhibiting high dispersion to come up with two communities, colored

teal and pink.

and the teal community a size of 33 nodes. The average
size of the two communities of LDLC (22.5) is very close
to the average size of the ground-truth communities of this
network. Both detected communities are well-connected. In
addition, the pink-colored community is a very accurate
detection of an actual ground-truth community. Finally, the
pink-colored node is featured in both detected communities
and does not exhibit high dispersion in either community.
We saw here that previous approaches may not detect
communities well in situations like the one that we de-
scribed in this qualitative evaluation. Of course, there are
other examples where previous approaches can accurately
identify communities. Our goal was to show the strengths
of our method through a concrete example. To measure per-
formance more objectively, we now turn to comparing the
accuracy of previous local community detection techniques
and LDLC through the use of our ground truth datasets.

4.3 Evaluation via Ground-Truth

Evaluating and comparing communities detected by differ-
ent algorithms is not a trivial task. Large networks exhibit
extremely complex organization and cannot be visualized
in meaningful ways. However, the the presence of net-
works with ground-truth communities [15] has allowed for
a common-ground evaluation context for measuring the
accuracy of a community detection algorithm. In particular,
recent approaches [11], [12], [14] quantify the similarity of
a detected community C' and a ground-truth community T°
using F1 score, which is defined as:

2 % Precision(C,T) x Recall(C,T)
Precision(C,T) + Recall(C,T)
where precision is the fraction of detected nodes that are

relevant and recall is the fraction of relevant nodes that are
retrieved:

T
Precision(C,T) = ent| 9)
]
Recall(C,T) = —|C|;|T| (10)

As there is no standard way of selecting a seed, we
followed the procedure performed in [12]. We execute LDLC
for all ground-truth communities of each network of our
dataset, using every single node as an individual seed.
For each ground-truth community, we kept the seed that
produced the community with the highest F1 score. Ta-
ble 2 shows the average F1 score of LDLC for all ground-
truth communities of each network. In addition, we present
results of 3 state-of-the-art local community detection al-
gorithms on the same datasets. In particular, we used the
publicly available implementation of LEMON® to perform
experiments through the same exhaustive procedure. We
also executed LEMON using 3 random seeds as suggested
in [14]. The results we obtained are worse than the ones
reported in [14] for both cases, as the optimal initialization
setting of LEMON differs for the various networks of our
dataset. Therefore, we opt to present in Table 2 the results

Shttps:/ /github.com/YixuanLi/LEMON
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TABLE 2
F1 Score comparison.

Algorithm DBLP Amazon Youtube LiveJournal Orkut Friendster
LDLC 0.843 0.894 0.560 0.876 0.438 0.688
LEMON [14] 0.525 0.910 0.190 - 0.170 -
LOSP [11] 0.691 0.845 0.413 0.674 0.216 -
HeatKernel [12] 0.257 0.325 0.177 0.131 0.055 0.078
TABLE 3
Execution time comparison.
Algorithm DBLP Amazon Youtube LiveJournal Orkut Friendster
LDLC 0.0063 sec 0.0007 sec 0.0048 sec 0.1471 sec 0.3742 sec 0.0642 sec
LEMON 9.2781 sec 9.9206 sec 12.2579 sec - 13.1432 sec -
LOSP 0.38 sec 0.04 sec 3.85 sec 1.47 sec 4.74 sec -
HeatKernel 0.0467 0.01464 0.0714 0.0353 0.04986 -

reported in [14] instead. We also include the results on the
same dataset of LOSP, as reported in [11], and HeatKernel
from [12]. We note that the results of LOSP and HeatKernel
are obtained using a subset of only 500, and 100 ground-
truth communities for each network, respectively.

We see in Table 2 that our LDLC manages to outperform
all three state-of-the-art algorithms for all the networks of
our dataset, with the exception of the Amazon co-purchasing
graph for which LEMON is slightly better. The average F1
score of LDLC is significantly larger for all other networks,
and the improvement is more evident on the social networks
of our dataset, i.e., Youtube, LiveJournal, Orkut, and Friendster.
For DBLP, Youtube, and LiveJournal the results of LDLC are
impressive and much more accurate than all three other
methods. Regarding Orkut, accurate detection is a particu-
larly hard task, as the size of the ground-truth communities
is unusually large in this network. Nonetheless, LDLC is
much more effective than the other methods. The friendship
graph of Friendster almost reaches 2 billion edges, and both
LEMON and LOSP have failed to report results for this net-
work due to memory consumption. We are able to operate
on the Friendster network despite its size, as LDLC employs a
memory-efficient representation (SNAP). HeatKernel also
manages to report results on graphs of this scale by using
pylibbvg.® We see in Table 2 that LDLC is able to achieve an
F1 score of 0.688, which clearly outperforms HeatKernel.
The results regarding the Amazon network differentiate due
to the particular nature of its communities, which allows all
4 algorithms to achieve their best result regarding accuracy.
More specifically, Amazon is a co-purchasing network and,
thus, does not feature any connector nodes [15]. In addition,
the overlapping ground-truth communities of Amazon are
usually nested communities, that are subsets of other com-
munities [15].

4.4 Execution Time Comparison

We further evaluate LDLC as far as the execution time is
concerned. We adopt the methodology followed in citeHeS-
BHL15 and for every graph of our dataset we execute LDLC
for 5,000 trials which consist of choosing a node of the graph

Shttps:/ /pypi.python.org/pypi/pylibbvg

uniformly at random to be a seed. We perform the same
experiment for LEMON,” L0SP,® and HeatKernel? for the 5
smaller networks of our dataset, as their execution failed for
friendster in our setting.'?

We observe that LDLC is able to respond in real-time
for the communities of all the graphs of our dataset, in-
cluding Friendster that comprises 1,806,067,135 edges. We
see in Table 3 that LDLC significantly outperforms both
LEMON and LOSP with regard to execution time. This is
expected, as LDLC operates only on the egonet of a target
node. To produce the egonet we simply need to apply
intersection on the sets of neighbors of all neighbors of the
target node. Instead, LEMON and LOSP perform multiple
random walks to generate a local neighborhood around
the target node, a procedure that is much more costly
timewise. In addition, the local neighborhood of LEMON or
LOSP is usually significantly larger than the egonet of the
target node. Therefore, LDLC is applied on a much smaller
portion of the original graph, compared to LEMON and LOSP.
As far as HeatKernel is concerned, we see in Table 3
that it scales impressively with the size of the network
and outperforms all approaches for LiveJournal and Orkut.
However, as Table 2 shows, the accuracy of HeatKernel
on larger networks is not comparable to that of the other
three approaches.

We note, that the average execution time of LDLC for
the Friendster graph is smaller than that for LiveJournal and
Orkut, as the egonets of the first are sparser. Thus, LDLC has
to iterate over fewer pairs of links in the grouping phase for
the graph of Friendster and terminates faster.

4.5 Impact of Dispersion on the Resulting Hierarchical
Community Structure

LDLC builds on hierarchical link clustering and dispersion-
based measures to detect the communities of a single node
in its egonet. Having discussed the accuracy and efficiency

"https:/ / git.io/ £j6Xb
Shttps:/ / git.io/fj6Xy
https:/ /git.io/j6X5
10The largest network that all approaches could handle in our setting
is orkut. LEMON, LOSP, and HeatKernel required 18.8GB, 8GB, and
4.6GB of memory, respectively. LDLC required 1.7GB.



IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. X, SEPTEMBER 2019

800 T T T T T T

LDLC, 4 ——

700 LDLC s

600 7
500 |-

400

Total merges

300 -

200

100

0 =

Graph

Fig. 6. Impact of the use of recursive dispersion on the number of
merges that occur until LDLC terminates. When using recursive disper-
sion (LDLC) the number of total merges increases significantly. Thus,
the resulting dendrogram reveals the hierarchical community structure
in greater detail.

of our algorithm we investigate here its effectiveness with
regard to deriving a detailed hierarchical community struc-
ture. The toy example discussed in Section 3.2 shows that
there are cases in which relying strictly on the Jaccard
similarity coefficient may result in grouping overlapping
communities at an early stage. More specifically, clusters
featuring multiple links are likely to be grouped with each
other due to the similarity of a single pair at the low levels
of the respective dendrogram.

We attempt here to quantify the extent of this trend
as well as the impact of recursive dispersion on it. In
particular, we consider two settings for LDLC: i) the first one
(LDLCpq) employs Equation (6) to estimate the similarity of
pairs of links, whereas ii) the second one (LDLC) employs
Equation (7). Then, we investigate for every ground truth
community of every network of our dataset the total merges
involving the final cluster, i.e., the one featuring all links of
the egonet. We use the number of total merges as a quality
function, as it is indicative of the height the dendrogram
reaches, and thus, of the detail we achieve with regard to
the resulting community structure.

Figure 6 illustrates a comparison between the two set-
tings for all networks of our dataset. We see that the
first setting consistently leads to shorter dendrograms when
compared to the ones resulting using the second setting.
Evidently, the use of recursive dispersion results in den-
drograms with significantly richer structure. Through Equa-
tion (7) LDLC successfully delays the grouping of pairs of
links exhibiting high dispersion in the egonet. Thus, our
algorithm reveals the hierarchical community structure in
greater detail. The impact is noticeable in all networks as
we end up with at least twice as much merges using the
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Fig. 7. LDLC results on the networks of our dataset when using a ran-
dom sampling technique and our k-largest sampling technique. Impact
is negligible for the four first networks as very few or no egonets surpass
100 nodes. However, the k-largest sampling technique outperforms the
random technique for orkut and friendster.

second setting. The total number of merges depends on
network properties such as the average degree and the
average community size. For dblp, both these properties
exhibit small values and thus the number of total merges
that occur is small for both settings. In contrast, for orkut
both these properties exhibit large values and the number
of total merges that occur is large for both settings.

We note that, to the best of our knowledge, there exist
no real-world or synthetic networks with hierarchically
clustered ground-truth communities that would allow for
directly evaluating the accuracy of our algorithm as far as
the hierarchical structure is concerned.

4.6

We complete our experimental section by evaluating the
effectiveness of our sampling technique. More specifically,
if the target node has a large egonet LDLC obtains a sample
of the egonets and operates on the sample. Algorithm 2
outlines this process in which k nodes exhibiting the largest
degrees in the egonet are retrieved efficiently. We examine
here the effectiveness of this approach by comparing it with
a sampling technique that selects £ nodes of the egonet
uniformly at random.

Figure 7 illustrates the Fl-score results we obtain for all
networks of our datasets when applying each of the two
techniques for nodes with egonets larger than 100 nodes.
There are very few or no such nodes in our results for
the four smaller networks of the dataset, i.e., amazon, dblp,
youtube, and livejournal. Thus, the difference in performance
between the two techniques is negligible for these net-
works. However, for orkut and friendster several communi-
ties included in our results resulted from target nodes with

Impact of Sampling Technique
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TABLE 4
Impact of k£ on our sampling technique.

k | Fl-score Time Total Merges
200 0.7028 0.0586 sec 493.85
150 0.7095 0.0377 sec 437.44
100 0.7149 0.0207 sec 333.68

egonets comprising more than 100 nodes that were sampled
with the use of the two techniques. We observe that using
random sampling we achieve an Fl-score of 0.50 for orkut
and 0.67 for friendster. The respective values when using k-
largest sampling are 0.55 for orkut and 0.71 for friendster.
That is, sampling the most involved nodes of the egonet
instead of sampling uniformly at random has a significant
impact on the accuracy we achieve.

Furthermore, we investigate the impact of k as far as
accuracy, execution time, and total merges are concerned.
We focus on friendster and perform three experiments using
a value of 100, 150, and 200 for k, respectively. Limiting
k often leads to a worse recall but can also lead to better
precision for LDLC. Therefore, as we see in Table 4, the
Fl-score is actually improved as we limit k. Moreover,
we Table 4 shows noticeable improvements with regard to
execution time as we reduce the value of k. Finally, we see
that the number of average total merges reduces with £, but
remains high even with a value of 100.

5 RELATED WORK

The problem of identifying communities emanates from
research on graph partitioning, which has been active since
the 1970s [35]. Girvan and Newman, with their seminal
paper on community detection [3], build on Freeman'’s
betweeness centrality measure [36] and define edge betweeness
as the number of shortest paths between pairs of vertices
that run along an edge. Using this measure, they iteratively
remove the edges with high betweeness, as they have a
tendency to connect different clusters, and thus, reveal the
underlying community structure of a network. The algo-
rithm is computationally expensive, yet this work sparked
significant research in the field of community detection [4].

Many clustering methods aim at maximizing modularity,
a measure introduced by Newman and Girvan [37]. Modu-
larity captures the quality of a specific proposed division of
a network into communities, by examining how higher the
internal cluster density is than the external cluster density.
One such method is that of Clauset et al. [38]. There, the
proposed algorithm discovers a hierarchical community
structure and identifies the best level to cut the tree at as
the one that produces the division that maximizes modu-
larity. Blondel et al. [39] propose Louvain, another greedy
modularity maximization algorithm. Nodes are iteratively
aggregated into communities as long as such a move locally
improves modularity. Methods of this class are know to
suffer from a resolution limit [23].

Another popular direction in the field of community de-
tection, is the use of random walks. Pons and Latapy [40] use
random walks to measure the similarity between vertices.
In another line of work, Infomap [41] finds the shortest
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multilevel description of a random walker to get a hierarchical
clustering of the network.

The previous methods, hierarchically nested or else, do
not take into account the fact that communities in networks
may overlap [42]. Palla et al. [42], propose the Clique
Percolation Method, alocal approach based on k-cligues.
Overlaps between communities are allowed as a given node
can be part of several k-clique percolation clusters at the
same time. A revolutionary idea in overlapping community
detection was introduced in two approaches that were de-
veloped almost simultaneously [5], [6]. The core of these
approaches is that instead of focusing on grouping nodes,
communities should be formed by considering groups of
links. This allows for a natural incorporation of overlaps
between communities while also retaining a hierarchical
community structure. Ahn et al. [5] additionally report
a comparison of their proposed algorithm with previous
approaches, proving that it outperforms all of them.

Later research efforts focused on providing more scalable
approaches. Coscia et al. [43] use egonet analysis methods
and propose DEMON that allows nodes to vote for the com-
munities they see locally in an effort to improve the quality
of overlapping partitions. Yang and Leskovec [9] report that,
contrary to previous belief, community overlaps are more
densely connected than the non-overlapping parts. This
relaxes the assumption that governed all previous efforts
on overlapping community detection. Building on their
empirical observations, they also propose BrcCram [10], a
community detection method that uses matrix factorization
to detect communities. B1cCLaM requires as an input the
number of communities to look for, or else should be guided
with the minimum and maximum number of communities
as well as the number of tries it should make. Gleich and
Seshadhri [7] formalized the problem of community detec-
tion as finding vertex sets with small conductance, where
conductance of a cluster is a measure of the probability that
a one-step random walk starting in that cluster, leaves the
cluster. They proposed the use of personalized PageRank
vectors to identify communities with good conductance
scores. A similar approach is investigated in [8], where
a number of alternative seeding phases before the use
of personalized PageRank vectors is examined. However,
minimizing conductance leads to the identification of dense
areas of a network as single communities, when they are in
fact overlapping parts of multiple communities [25]. These
approaches are more efficient than previous overlapping
methods but fail to handle massive scale graphs.

Recent approaches depart from the direction of detecting
communities on the global graph structure. Instead, they
detect local communities in time functional to the size
of the community, and provide support for large scale
graphs. Kloster and Gleich [12] propose a deterministic
local algorithm to compute heat kernel diffusion and study
the communities it produces. The authors compare with
PageRank diffusion on real-world datasets and report that
their approach is able to detect smaller, more accurate
communities, with slightly worse conductance. Li et al. [14]
propose LEMON that uses seeds to perform short random
walks and form an approximate invariant subspace termed
local spectra. Then, LEMON looks for the minimum 1-norm
vector in the span of this local spectra such that the seeds
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are in its support. Building on the findings of LEMON, He
et al. propose LOSP [11] that is additionally able to detect
small communities and performs better when initiated with
a single seed. In another line of work, Metwally et al. [44]
employ general purpose clustering algorithms to detect click
rings that launch advertising traffic fraud attacks. However,
their techniques are applicable on multi-faceted graphs rather
than single graphs. Our approach focuses on local commu-
nities but employs hierarchical clustering of pairs of links in
the egonet of a target node, using tie strength measures that
effectively handle networks with dense overlapping parts
of communities. Thus, we efficiently reveal a more accurate
hierarchical community structure in large scale networks.

A preliminary version of our work appeared in [45]. In
this extended version:

e We delve into the merits of employing dispersion-based
measures with regard to the hierarchical community
structure provided by our algorithm. We show that such
measures result in richer hierarchical structures through
experimentation on our entire dataset.

o We propose a sampling technique that reduces the search
space of our algorithm by focusing on the most involved
nodes of an egonet. This technique allows us to maintain
the efficiency of our algorithm in cases when target nodes
exhibit large degrees in the network.

o We compare our sampling technique against a random
sampling technique and show that our approach is very
effective.

e We carry out the entire range of our experimentation
using our sampling technique and report updated results
with regards to both accuracy and execution time.

In another line of work [46], [47], we apply community
detection via seed set expansion on graph-streams. Our
approaches allow for local community detection without
a need for in-memory representation of the network, as
we employ a one-pass streaming approach and effectively
determines the size of communities automatically. However,
these approaches require more seed nodes than LDLC.

6 CONCLUSION

In this paper, we propose and develop LDLC, a novel local
community detection algorithm for large scale graphs. LDLC
focuses on the egonet of a target node in the network
and performs hierarchical agglomerative clustering on the
egonet’s pairs of links. We investigate measures that evalu-
ate the strength of ties in networks, building on the notion
that mutual neighbors of nodes may be or may be not well
interconnected. The nodes involved in ties that belong in
the second category, act as connector nodes between over-
lapping communities. Therefore, in a hierarchical approach
they should be considered for grouping when the higher
levels of the respective dendrogram are forming. We achieve
that, by using the recursive dispersion measure to balance
the similarity of two links and prioritize the grouping of
pairs of links with mutual neighbors that function in a single
context. Consequently, our approach is able to handle over-
lapping communities appropriately and provides increased
accuracy, while also revealing the rich hierarchical structure
of the communities of a node in the network. We compare
LDLC with three state-of-the-art local community detection
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methods to highlight the effectiveness of our approach
when handling overlapping areas of multiple communities.
Moreover, we examine the accuracy of all algorithms against
ground-truth communities and find that LDLC significantly
outperforms all of them for a wide range of publicly avail-
able networks. Our timing experiments showcase that LDLC
additionally offers improved efficiency and scales to large
scale graphs. Finally, we discuss the merits of employing
dispersion-based measures, as well as applying a sampling
technique we introduce on the egonets of target nodes.

We believe that an interesting future direction would be
a drift from the currently available ground-truth commu-
nities depicting metadata groups [48] to communities that
better portray the functional roles of a network’s nodes.
Such communities will allow for a more accurate compari-
son of community detection techniques. To this end, we will
collect data from social network groups where membership
signifies affinity.
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