
Memory-Optimized Distributed Graph Processing
through Novel Compression Techniques∗

Panagiotis Liakos
University of Athens

Athens, Greece
p.liakos@di.uoa.gr

Katia Papakonstantinopoulou
University of Athens

Athens, Greece
katia@di.uoa.gr

Alex Delis
University of Athens

Athens, Greece
ad@di.uoa.gr

ABSTRACT
A multitude of contemporary applications now involve graph
data whose size continuously grows and this trend shows
no signs of subsiding. This has caused the emergence of
many distributed graph processing systems including Pre-

gel and Apache Giraph. However, the unprecedented scale
now reached by real-world graphs hardens the task of graph
processing even in distributed environments and the current
memory usage patterns rapidly become a primary concern
for such contemporary graph processing systems. We seek
to address this challenge by exploiting empirically-observed
properties demonstrated by graphs that are generated by hu-
man activity. In this paper, we propose three space-efficient
adjacency list representations that can be applied to any dis-
tributed graph processing system. Our suggested compact
representations reduce respective memory requirements for
accommodating the graph elements up to 5 times if com-
pared with state-of-the-art methods. At the same time, our
memory-optimized methods retain the efficiency of uncom-
pressed structures and enable the execution of algorithms
for large scale graphs in settings where contemporary alter-
native structures fail due to memory errors.

Keywords
Graph compression; Pregel; distributed computing.

1. INTRODUCTION
The proliferation of WWW-based applications, the explo-

sive growth of social networks, as well as the continually-
expanding WWW-space, have collectively led to systems
whose operations routinely deal with voluminous data that
are modeled as graphs. The active users of Facebook are
more than 1 billion [11] and Google indexes over 1 trillion
unique URLs [2]. This ever-increasing requirement in terms
of graph vertices has given rise to a number of distributed

∗This work has been partially supported by the University
of Athens Special Account of Research Grants № 13233.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’16 , October 24-28, 2016, Indianapolis, IN, USA
© 2016 ACM. ISBN 978-1-4503-4073-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983687

6
1, 8

3

2
3,4,5

1
2, 3, 4

5
2

4
1, 7

7
8

8
7

Worker 2
Worker 1

Worker 3

Figure 1: A graph partitioned on a vertex basis in a dis-
tributed environment. Each vertex maintains a list of its
out-edges.

graph-processing systems [1, 18, 21, 22] that efficiently han-
dle large-scale graphs using commodity hardware [13].

Most of these approaches parallelize the execution of algo-
rithms by dividing graphs into partitions and assigning ver-
tices to workers (i.e., machines) following the “think like a
vertex”programming paradigm introduced with Pregel [19].
However, recent studies [9, 13] point out that the proposed
frameworks fail to handle the unprecedented scale of real-
world graphs due to ineffective memory usage [13]. Thus,
memory optimization has become critical when dealing with
graphs of such magnitude even in a distributed environment.

Figure 1 illustrates a graph partitioned over three workers.
Every vertex is assigned to a single machine and maintains
a list of its out-edges. This partitioning hardens the task
of compression, as related research efforts have focused on
a centralized machine environment and exploit similarities
exhibited between vertices [3, 5, 8, 10, 16, 17]. However, this
is infeasible when graphs are partitioned on a vertex basis.
A major step towards memory optimization was contributed
to Apache Giraph [1] by Facebook [11]. However, improve-
ments focused entirely on a more careful implementation for
the representation of the out-edges of a vertex; the redun-
dancy exhibited in real-world graphs was not exploited.

In this paper, we follow the Pregel paradigm and par-
tition the graph vertices among the nodes of a distributed
computing environment. In this context, we present three
novel techniques that 1) offer space efficient-representations
of the out-edges of vertices, 2) allow fast mining (in-situ)
of the graph elements without the need of decompression,
3) enable the execution of graph algorithms in memory-
constrained settings, and 4) ease the task of memory man-
agement, thus allowing faster execution. The vertex place-
ment policy that Pregel-like systems follow forces us to
store the out-edges of each vertex independently as Figure 1

http://dx.doi.org/10.1145/2983323.2983687

depicts. This preserves the locality of reference property,
known to be exhibited in real-world graphs [4, 20], and en-
ables us to exploit patterns that arise among the out-edges
of a single vertex.

Our first technique, termed BVEdges, applies all methods
of [5] that are appropriate for the vertex placement policy of
Pregel. BVEdges primarily focuses on identifying intervals
of consecutive out-edges of a vertex and employs universal
codings to efficiently represent them. To facilitate access
without imposing the significant computing overheads of
BVEdges, we propose IntervalResidualEdges, which holds
the corresponding values of intervals in a non-encoded for-
mat. Additionally, we propose IndexedBitArrayEdges, a
novel technique that considers the out-edges of each vertex
as a row in the adjacency matrix of the graph and indexes
only the areas holding edges using byte sized bit-arrays.

Our experimental results show significant improvements
on space-efficiency for all proposed techniques. We man-
age to reduce memory requirements up to 5 times in com-
parison with currently applied techniques. This eases the
task of scaling to billions of vertices and allows us to load
much larger graphs than was ever possible before. In settings
where earlier approaches were also able to execute graph al-
gorithms, we achieve significant performance improvements
in terms of time of up to 31% due to memory optimization,
as less time is spent for garbage collection. These findings
establish our structures as the undisputed preferable option
for web graphs, which offer compression-friendly orderings,
or any other type of graph, after the application of a re-
ordering that favors its compressibility.

2. RELATED WORK
Our work lies in the intersection of distributed graph pro-

cessing and compressed graph representations. In this re-
gard, we outline here pertinent aspects of these two areas.

Google’s proprietary Pregel [19] is a graph processing sys-
tem that enables scalable batch execution of iterative graph
algorithms. As the source code of Pregel is not publicly
available, a number of graph processing systems that follow
the same data flow paradigm have emerged. Apache Gi-

raph [1] is such an open-source Java implementation with
contributions from Yahoo! and Facebook, that operates on
top of HDFS. Our work focuses on Pregel-like systems and
extends Giraph’s implementation. GPS [21] is a similar Java
open-source system that proposes the large adjacency list
partitioning technique for high-degree vertices. Pregel+ [22]
is implemented in C++ and uses MPI processes as workers
to achieve high efficiency. Unlike the aforementioned sys-
tems, GraphLab [18] does not follow the Pregel paradigm
but rather supports asynchronous execution and adopts a
data-pull model with a shared memory abstraction. Our
work is orthogonal to these approaches as our compressed
representations can be readily applied to all above systems.

The field of graph compression has yielded significant re-
search results after the work presented in [20]. Randall et
al. exploit the locality of reference as well as the similarity
property that is unveiled in web graphs when their links are
ordered lexicographically. The seminal work on web graph
compression is that of Boldi and Vigna [5], who introduce
a number of sophisticated techniques to further reduce the
bits per link ratio. Following efforts present improved results
with regard to space [3], study the compressibility character-
istics of social graphs [10], and employ adjacency matrix rep-

vertex id1 weight1 . . .vertex id2 weight2

size1 size2 size1 size2

Figure 2: Giraph’s ByteArrayEdges representation.

resentations to reduce access time of the graph’s elements [8,
16, 17]. All the above approaches focus on providing a com-
pact representation of a graph to be loaded in the memory
of a single machine. Hence, they exploit the presence of all
edges in a centralized computing node, which is not suitable
for Pregel-like systems offering distributed execution.

To the best of our knowledge, Gbase [14] is the only ap-
proach that considers compressed graph representations in
a distributed environment. Kang et al. consider the case of
a graph stored over HDFS. Gbase uses block compression to
efficiently store graphs by splitting the respective adjacency
matrices into regions. The latter are compressed using sev-
eral methods including Gzip and Gap Elias’-γ encoding. We
should note, however, that Gbase does not follow the vertex-
centric model we have adopted in this work.

3. BACKGROUND
In this section we outline Pregel and Apache Giraph, and

offer definitions for the encodings that we use for our sug-
gested compression techniques.

3.1 Pregel & Apache Giraph
Pregel [19] is a computational model suitable for large

scale graph processing, inspired by the Bulk Synchronous
Parallel programming model. Pregel encourages program-
mers to “think like a vertex” by following a vertex-centric
approach. The input to a Pregel algorithm is a directed
graph whose vertices, along with their respective out-edges,
are distributed among the machines of a computing cluster.
Pregel algorithms are executed as a sequence of iterations,
termed supersteps. During a superstep, every vertex inde-
pendently computes a user-defined list of actions and sends
messages to vertices that are to be used during the following
superstep. A synchronization barrier between supersteps is
used to ensure that all messages are delivered at the begin-
ning of the next superstep. A vertex may vote to halt at any
superstep and will be reactivated upon receiving a message.
The algorithm terminates when all vertices are halted and
there are no messages in transit. Pregel loads the input
graph and performs all associated computations in-memory.
Thereby, Pregel only supports graphs whose edges entirely
fit in main-memory.
Apache Giraph [1] is an open-source implementation of

Pregel. The default Giraph structure for holding the out-
edges of a vertex is that of ByteArrayEdges [11]. This repre-
sentation is realized as a byte array, in which target vertex
ids and their respective weights are held consecutively, as
Figure 2 illustrates. The bytes required per out-edge are de-
termined by the data type used for its id and weight; for in-
teger numbers 4+4 = 8 bytes are required. ByteArrayEdges
are impractical for algorithms involving mutations as they
deserialize all out-edges to perform a removal.

3.2 Codings for Graph Compression
Over the last two decades studies of real-world graphs

have revealed the presence of common properties [5, 15, 20].

In this work we exploit two of these properties, namely the
heavy-tailed degrees’ distribution and the locality of refer-
ence, to achieve effective compression. The former property
implies the sparsity of such graphs, while due to the latter,
the majority of the edges of a graph link vertices that are
close to each other in the order. The locality of reference
is evident in web graphs whose vertices are ordered lexico-
graphically, and can be surfaced in other types of graphs by
applying the reordering algorithm of [4].

In order to compress the data in our structure, we can use
various encoding approaches; below, we provide the defini-
tions of Elias’ γ and ζ codings that we employ in Section
4.1.1. We also furnish the definitions of unary and minimal
binary coding that help define the first two codings. Let x
denote a positive integer, b its binary representation and l its
length. The aforementioned codings are defined as follows:

1. Unary coding : the unary coding of x consists of x−1 0s
followed by a 1.

2. Minimal binary coding over an interval: consider the
interval [0, z−1] and let s = dlog ze. If x < 2s−z then
x is coded using the x-th binary word of length s − 1
(in lexicographical order), otherwise, x is coded using
the (x− z + 2s)-th binary word of length s.

3. Elias’ γ coding [12]: the γ coding of x consists of l in
unary, followed by the last l − 1 digits of b.

4. ζ coding with parameter k [6]: given a fixed positive

integer k, if x ∈ [2hk, 2(h+1)k−1], its ζk-coding consists
of h+ 1 in unary, followed by a minimal binary coding
of x− 2hk in the interval [0, 2(h+1)k − 2hk − 1].

In the context of graph compression, Elias’ γ coding is
preferred for the representation of rather small values of x,
whereas ζ coding is more proper for potentially large values.

4. OVERVIEW OF OUR APPROACH
In this section we detail our compressed data structures

for the representation of a vertex’s neighbors in a graph.

4.1 Representations based on intervals
The locality of reference property is evident through the

adjacency lists of the graphs of our dataset, all of which
tend to have a lot of neighbors with consecutive ids. We can
exploit this property by applying a technique similar to the
one introduced in [5]. In particular, [5] distinguishes between
the neighbors whose ids form some interval of consecutive
ids, and the rest. To reconstruct all the edges of the intervals
only the leftmost neighbor id and the length of the interval
needs to be kept. This information is further compressed
using gap Elias’ γ coding. The rest of the edges, termed
residuals, are compressed using ζ coding. We build on these
ideas and introduce two vertex-centric representations that
exploit locality of reference in a similar fashion.

4.1.1 BVEdges
Our first representation, namely BVEdges, focuses solely

on compressing the neighbors of a vertex, at the cost of com-
puting overheads. Therefore, we simply adjust the method
of Boldi and Vigna [5] to the requirements imposed by Pre-

gel’s model. The compressed data structure discussed in [5]
considers the whole graph and exploits the current vertex’s
id during compression. However, this information is not
available in the level where adjacency lists are kept in the
Pregel model. To overcome this issue, we use the first neigh-
bor id we store in our structure as a reference to proceed with

︸ ︷︷ ︸
residuals4 bytes

(9)2

︸ ︷︷ ︸
interval

γ(0) ζ(13) ζ(11) ζ(2) ζ(0) ζ(1) ζ(106)

4 bytes

(1)2

︸ ︷︷ ︸
number

of intervals

Figure 3: The storage of neighbors in BVEdges, detailed in
Example 1. γ(x) and ζ(x) denote the γ and ζ encodings of
x respectively.

gap encoding. We use Elias’ γ coding for intervals, and ζ
coding for residuals. Elias’ γ coding is most preferable for
intervals of at least 4 elements [5]; shorter intervals are more
compactly stored as residuals.
Definition 1 (BVEdges): Given a list l of a node’s neigh-
bors, BVEdges is a sequence of bits holding consecutively: the
number of intervals in l of length at least 4; for each such
interval, the smallest neighbor id in it and the γ-coded dif-
ference of the interval length minus 4; a ζ coding for each of
the remaining neighbors, its argument being either the differ-
ence x between the current node’s id and the previous node
id which was encoded to be stored in the sequence minus 1,
or, in case x < 0, the quantity 2|x| − 1.
Example 1: Consider the following sequence of neighbors
to be represented: (2, 9, 10, 11, 12, 14, 17, 18, 20, 127).
We employ BVEdges as illustrated in Figure 3. Here, there
is only one interval of length at least equal to 4: [9 .. 12]. We
first store the number of intervals in unencoded binary form.
Then, we store the leftmost id of the interval, i.e., 9, again
using its unencoded binary representation. We proceed with
storing a representation of the length of the interval to en-
able the recovery of the remaining elements. In particular,
we store the γ coding of the difference of the interval length
minus the minimum interval length, which is 4 − 4 = 0 in
our case. Then, we append a representation for the resid-
ual neighbors. For each residual, we store the ζ coding of
the difference of its id with the id of the last node stored,
minus 1 (as each id appears at most once in the neighbors’
list). The residual id 2 is smaller than the smallest id of the
first interval, so we store the residual neighbor 2 as ζ(13),
since 2|2 − 9| − 1 = 13, and the residual 14 as ζ(11), since
14 − 2 − 1 = 11. Similarly, we store 17, 18, 20 and 127 as
ζ(2), ζ(0), ζ(1) and ζ(106), respectively.

The respective values computed in each step are written
using a bit stream. This, combined with the fact that values
have to be encoded, renders the operation costly. We also
investigated the idea of treating all neighbors as residuals to
examine if the re-construction of intervals was more expen-
sive. However, we experimentally found that the resulting
larger bit stream offered worse access time. Accessing the
out-edges of a vertex requires the following procedure: first,
we decode the intervals and create an iterator using them.
After this iterator returns all its elements, we create a second
one that decodes the residuals one by one.

4.1.2 IntervalResidualEdges
Our second representation, namely IntervalResidual-

Edges, also incorporates the idea of using intervals and resid-
uals. However, to avoid costly bit stream writes and reads,
we propose a different structure. In particular, we opt to
keep the value of the leftmost id of an interval unencoded,
along with a byte that is able to index up to 256 consecutive
neighbors. Residuals are then also kept unencoded. Clearly,

︸ ︷︷ ︸
residuals

4 bytes 4+1 bytes 4+1 bytes

(2)2 (9)2 (4)2 (17)2 (2)2

4 bytes

(14)2

4 bytes

(2)2

4 bytes

(20)2

4 bytes

(127)2

︸ ︷︷ ︸
number of
intervals

︸ ︷︷ ︸
1st interval

︸ ︷︷ ︸
2nd interval

Figure 4: The storage of neighbors in IntervalResidual-

Edges, detailed in Example 2. (x)2 is the binary represen-
tation of x.

any consecutive neighbors of length at least equal to 2 are
represented more efficiently using an interval rather than
two or more residuals. Therefore we set the minimum inter-
val length with IntervalResidualEdges equal to 2. Due to
the locality of reference property, this one byte allows us to
compress the adjacency list significantly, while also avoiding
the use of expensive encodings and bit streams. We note
here that all ids are stored in binary form.
Definition 2 (IntervalResidualEdges): Given a list l of a
node’s neighbors, IntervalResidualEdges is a sequence of
bits holding consecutively: the number of intervals in l; the
smallest neighbor id and the length of each such interval; the
id of each of the remaining neighbors.
Example 2: The representation of the aforementioned se-
quence of neighbors (2, 9, 10, 11, 12, 14, 17, 18, 20, 127)
using IntervalResidualEdges is illustrated in Figure 4. In
this case there are two intervals of at least 2 consecutive
neighbors, namely [9 .. 12] and [17, 18]. We first store the
number of intervals, and then use one 5-byte element for
each interval, consisting of a 4-byte representation of the
smallest neighbor id in it (i.e., 9 and 17), plus a byte hold-
ing the number of neighbors in this interval (4 and 2 respec-
tively). Finally we append a 4-byte representation for each
residual neighbor.

This representation delivers its elements through the fol-
lowing procedure: while there are still unread intervals, the
procedure reads 5-bytes, i.e., the leftmost element of the in-
terval and its length, and produces one by one the elements
of the interval. When all intervals are processed, the proce-
dure reads in the residuals directly as integers.

4.2 IndexedBitArrayEdges
Our first two representations exploit the consecutivity ex-

hibited among the neighbors of a vertex. Here we propose
IndexedBitArrayEdges, which takes advantage of the con-
centration of edges in specific areas of the adjacency matrix,
regardless of whether these edges are in fact consecutive.
IndexedBitArrayEdges uses a single byte to depict eight
possible out-edges. Using a byte array, we construct a data
structure of 5-byte elements, one for each interval of neigh-
bor ids having the same quotient by 8. The first 4 bytes of
each element represent the quotient, while the last one serves
as a set of 8 flags indicating whether each possible edge in
this interval exists. As the neighbor ids of each node tend
to concentrate within a few areas, the number of intervals is
small and the compression achieved is exceptional.
Definition 3 (IndexedBitArrayEdges): Given a bit-array r
representing a list of a node’s neighbors, IndexedBitArray-
Edges is a sequence of 5-byte elements, each one holding
an octet of r that contains at least one 1: the first 4 bytes

. . .

(a)

(0)2

(1)2

(2)2

(15)2

4 bytes 1 byte

(b)

Figure 5: A bit-array representation of an adjacency list (a)
and the storage of these neighbors in IndexedBitArrayEdges

(b), detailed in Example 3. (x)2 denotes the binary rep-
resentation of x.

hold the distance in r of the first bit of the octet from the
beginning of r; the last one holds the octet.
Example 3: The representation of the aforementioned se-
quence of neighbors (2, 9, 10, 11, 12, 14, 17, 18, 20, 127)
using IndexedBitArrayEdges is illustrated in Figure 5. The
bit-array representation of this adjacency list is shown in
Figure 5(a). The quotient and remainder of each node id
divided by 8 give us the approximate position (octet) and
the exact position, respectively, of the node in the bit-array;
hence, as depicted in Figure 5(b), the neighbors are grouped
in four sets: {2}, {9, 10, 11, 12, 14}, {17, 18, 20}, {127}. All
ids in each set share the same quotient when divided by 8,
which will be referred as index number henceforth. For in-
stance, the index number of the third set is 2, and is stored
in binary form, denoted by (2)2, in the first part of the third
element. Moreover, the remainders of the ids 17, 18 and 20
divided by 8 are 1, 2, and 4 respectively, and so the 2nd, 3rd
and 5th flags from the right side of the same element are set
to 1 to depict these neighbors.

Accessing the out-edges of a vertex requires the following
procedure: first, we read a 5-byte element. Then, we recover
out-edges from the flags of its last byte and reconstruct the
neighbor ids using the first 4 bytes. After we examine all
flags of the last byte, we proceed by reading the next 5-byte
element and repeat until we retrieve all out-edges.

5. EXPERIMENTAL EVALUATION
We implemented1 our techniques using Java and com-

pared their performance against ByteArrayEdges using a
number of well-studied web and social network graphs [4, 5],
reaching up to 2 billion edges. We first present the dataset
and detail the specifications of the machines used in our
experiments. Then, we proceed with the evaluation of our
out-edge representations by answering the following ques-
tions: (i) How much more space-efficient is each of our three
compressed out-edge representations compared to ByteAr-

rayEdges? (ii) Are our techniques competitive speed-wise
when memory is not a concern? (iii) How much more effi-
cient are our compressed representations when the available
memory is constrained? (iv) Can we execute algorithms for
large graphs in settings where it was not possible before?

1https://goo.gl/TSWcyO

https://goo.gl/TSWcyO

graph vertices edges ByteArrayEdges BVEdges IntervalResidualEdges IndexedBitArrayEdges

uk-2007-05@100000 100,000 3,050,615 22.61MB 6.41MB 7.92MB 8.91MB
uk-2007-05@1000000 1,000,000 41,247,159 279.16MB 67.36MB 82.7MB 97.79MB
indochina-2004 7,414,866 194,109,311 1,511.67MB 442.34MB 646.03MB 554.23MB
hollywood-2011 2,180,759 228,985,632 1,381.91MB 287.53MB 613.52MB 676.88MB
uk-2002 18,520,486 298,113,762 2,733.6MB 1,092.82MB 1,224.07MB 1,255.67MB

arabic-2005 22,744,080 639,999,458 4,820.09MB 1,428.97MB 1,674.75MB 1,849.83MB
uk-2005 39,459,925 936,364,282 7,401.88MB 2,383.54MB 2,728.74MB 2,928.81MB
sk-2005 50,636,154 1,949,412,601 14,829.64MB 4,889.85MB 5,657.79MB 6,354.17MB

Table 1: Memory requirements for the small and large-scale graphs of our dataset.

5.1 Experimental Setting
Our dataset consists of 8 web and social network graphs,

whose properties are detailed in Table 1. We run our exper-
iments on a cluster that comprises 8 virtual machines with
13GB of virtual RAM each, running on a Dell PowerEdge
R630 with an Intel®Xeon® E5-2630 v3, 2.40 GHz with 8
cores and 128GB of RAM. We set up Apache Hadoop 1.0.2
with 1 master and 8 slave nodes and a maximum per ma-
chine JVM heap size of 10GB. Lastly, we used Giraph 1.1.0.

5.2 Space Efficiency Comparison
We present here our results regarding space efficiency for

the web and social network graphs of our dataset. We com-
pare our methods involving compression with Giraph’s de-
fault representation, namely ByteArrayEdges.

Table 1 lists the memory required by all four representa-
tions in MB. We observe that our techniques require signifi-
cantly less memory compared to ByteArrayEdges. BVEdges

outperforms all representations, as expected. In particular,
BVEdges always needs less than 40% of the requirements of
ByteArrayEdges, and reaches much smaller figures in certain
cases, e.g., 20.08% for hollywood-2011. However, we see that
our novel IntervalResidualEdges, that does not impose
any computing overheads, also manages to achieve equiva-
lent space-efficiency, with its requirements ranging from 29%
to 44% compared to those of ByteArrayEdges. Finally, the
results of our IndexedBitArrayEdges are impressive as well,
as its requirements are usually less than 40% and always
below 50% of those of ByteArrayEdges.

5.3 Execution Time Comparison
In this section, we present results regarding the execu-

tion time of the PageRank [7] algorithm.2 We expect that
any Pregel algorithm not involving mutations would exhibit
similar behavior for the different representations, as it would
feature the same set of actions regarding out-edges, i.e., ini-
tialization and retrieval. Reported timings are averages of
multiple executions. We do not consider the initialization
time as it is negligible compared to the execution time.

5.3.1 Comparison using small-scale graphs
We begin by investigating the performance of the different

out-edge representations in settings where memory is suffi-
cient. Figure 6 depicts the total time needed for each of the
four techniques when executing the PageRank algorithm on
setups of 2, 4, and 8 workers for the graph indochina-2004.

We observe that IndexedBitArrayEdges and Interval-

ResidualEdges do not impose any latency in the process. In
particular, using either of our two novel representations we
achieve execution times that are slightly better than those

2https://goo.gl/CEbvOX

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

2 workers 4 workers 8 workers

E
x
e
c
u
t
i
o
n

t
i
m
e

(
i
n

m
i
n
u
t
e
s
)

ByteArrayEdges
BVEdges

IntervalResidualEdges
IndexedBitArrayEdges

Figure 6: Execution time of PageRank algorithm for the
graph indochina-2004 using 2, 4, and 8 workers.

of ByteArrayEdges for all three setups. BVEdges is inferior
speed-wise due to the computationally expensive access of
the out-edges offered through this structure which requires
decoding Elias-γ and ζ-coding values. Thus, the computing
overheads imposed by the techniques of [5] are not negligible
and simply adopting them proves to be inefficient.

For graphs which are equivalent to or smaller than in-
dochina-2004 the performance was similar. In particular, for
all three setups IndexedBitArrayEdges and IntervalResi-

dualEdges managed to execute the PageRank algorithm in
slightly less time than that of ByteArrayEdges. On the con-
trary, BVEdges required more time for each superstep.

5.3.2 Comparison using large-scale graphs
We further examine the performance of our representa-

tions using setups where memory does not suffice for the
needs of the execution of PageRank. Figure 7 depicts the
time needed for each superstep of the execution of PageRank
for the uk-2005 graph for all four out-edge representations.
We see that BVEdges requires significantly more time than
our two other representations for every superstep, as was the
case with small-scale graphs. We also see, however, that in
this setup the execution with ByteArrayEdges tends to fluc-
tuate in performance, and occasionally performs worse than
BVEdges. The increased memory requirements of Giraph’s
default implementation, result in an unstable pace during
the execution of PageRank, as it needs to perform garbage
collection very frequently to accommodate the memory ob-
jects required in every superstep. ByteArrayEdges still man-
ages to outperform BVEdges requiring an average of 4.8 min-
utes per superstep as opposed to 5.08 minutes per super-
step. However, both IndexedBitArrayEdges and Interval-

ResidualEdges greatly outperformed ByteArrayEdges, re-
quiring 3.15 and 3.56 minutes per superstep, respectively.

https://goo.gl/CEbvOX

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25 30

E
x
e
c
u
t
i
o
n

t
i
m
e

(
i
n

m
i
n
u
t
e
s
)

Supersteps of PageRank execution

ByteArrayEdges
BVEdges

IntervalResidualEdges
IndexedBitArrayEdges

Figure 7: Execution time for each superstep of PageRank
for the graph uk-2005 using 5 workers.

 0

 50

 100

 150

 200

uk-2005 (5 workers) uk-2005 (4 workers)

E
x
e
c
u
t
i
o
n

t
i
m
e

(
i
n

m
i
n
u
t
e
s
)

F
A
I
L
E
D

ByteArrayEdges
BVEdges

IntervalResidualEdges
IndexedBitArrayEdges

Figure 8: Execution time of the PageRank algorithm for the
graph uk-2005 using 5 and 4 workers.

The performance difference of the four representations with
regard to the total execution time of PageRank is evident
in Figure 8 (left). The executions using IndexedBitArray-

Edges and IntervalResidualEdges are faster by 31.1% and
27.54% than the one with ByteArrayEdges, respectively.

We repeat the same experiment using 4 workers and illus-
trate the respective results in Figure 8 (right). The execu-
tion with ByteArrayEdges on this setup fails as the garbage
collection overhead limit is exceeded, i.e., more than 98% of
the total time is spent doing garbage collection. Our pro-
posed implementations, however, are able to execute PageR-
ank for the uk-2005 graph despite the limited resources. We
observe that under these settings IntervalResidualEdges

performs worse than both BVEdges and IndexedBitArray-

Edges. As we can see in Table 1, the latter requires more
memory than IntervalResidualEdges to represent the out-
edges of uk-2005. However, the retrieval of out-edges using
IndexedBitArrayEdges is more memory-efficient than that
of IntervalResidualEdges. Therefore, execution spends
much less time performing garbage collection with Inde-

xedBitArrayEdges which results in it being 37.42% faster
than IntervalResidualEdges under these settings.

6. CONCLUSIONS
In this paper, we propose and implement three compressed

out-edge representations for distributed graph processing,
termed BVEdges, IntervalResidualEdges, and IndexedBit-

ArrayEdges. We focus on the vertex-centric model that
all Pregel-like graph processing systems follow and exam-

ine the efficiency of our structures by extending one such
system, namely Apache Giraph. Our techniques build on
empirically-observed properties of real-world graphs and of-
fer significant memory optimizations that are applicable to
any distributed graph compressing system that follows the
Pregel paradigm. Our IntervalResidualEdges and Inde-

xedBitArrayEdges representations outperform Giraph’s de-
fault representation, namely ByteArrayEdges, and are able
to execute algorithms over large-scale graphs under very
modest settings. Furthermore, our representations are cle-
arly superior than ByteArrayEdges when memory is an is-
sue, and are capable of successfully performing executions in
settings where Giraph fails due to memory requirements.

7. REFERENCES
[1] Apache Giraph. http://giraph.apache.org/.

[2] We knew the web was big. . . . https://goo.gl/ugjWuI.

[3] A. Apostolico and G. Drovandi. Graph compression by BFS.
Algorithms, 2(3):1031–1044, 2009.

[4] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered Label
Propagation: A Multiresolution Coordinate-Free Ordering for
Compressing Social Networks. In WWW, 2011.

[5] P. Boldi and S. Vigna. The Webgraph Framework I:
Compression Techniques. In WWW, 2004.

[6] P. Boldi and S. Vigna. The WebGraph Framework II: Codes
For The World-Wide Web. In DCC, 2004.

[7] S. Brin and L. Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. Computer Networks,
30(1-7):107–117, 1998.

[8] N. Brisaboa, S. Ladra, and G. Navarro. k2-Trees for Compact
Web Graph Representation. In SPIRE. 2009.

[9] Z. Cai, Z. J. Gao, S. Luo, L. L. Perez, Z. Vagena, and C. M.
Jermaine. A Comparison of Platforms for Implementing and
Running Very Large Scale Machine Learning Algorithms. In
ACM SIGMOD, 2014.

[10] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher,
A. Panconesi, and P. Raghavan. On Compressing Social
Networks. In KDD, 2009.

[11] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and
S. Muthukrishnan. One Trillion Edges: Graph Processing at
Facebook-Scale. Proc. of the VLDB Endowment,
8(12):1804–1815, 2015.

[12] P. Elias. Universal codeword sets and representations of the
integers. IEEE Transactions on Information Theory,
21(2):194–203, 1975.

[13] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and
T. Jin. An Experimental Comparison of Pregel-like Graph
Processing Systems. Proc. of the VLDB Endowment,
7(12):1047–1058, 2014.

[14] U. Kang, H. Tong, J. Sun, C. Lin, and C. Faloutsos. GBASE:
an efficient analysis platform for large graphs. VLDB J.,
21(5):637–650, 2012.

[15] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs over
Time: Densification Laws, Shrinking Diameters and Possible
Explanations. In KDD, 2005.

[16] P. Liakos, K. Papakonstantinopoulou, and M. Sioutis. On the
Effect of Locality in Compressing Social Networks. In ECIR,
2014.

[17] P. Liakos, K. Papakonstantinopoulou, and M. Sioutis. Pushing
the Envelope in Graph Compression. In CIKM, 2014.

[18] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. Distributed GraphLab: A Framework for
Machine Learning in the Cloud. Proc. of the VLDB
Endowment, 5(8):716–727, 2012.

[19] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A System for
Large-Scale Graph Processing. In ACM SIGMOD, 2010.

[20] K. H. Randall, R. Stata, J. L. Wiener, and R. Wickremesinghe.
The Link Database: Fast Access to Graphs of the Web. In
DCC, 2002.

[21] S. Salihoglu and J. Widom. GPS: A Graph Processing System.
In SSDBM, 2013.

[22] D. Yan, J. Cheng, Y. Lu, and W. Ng. Effective Techniques for
Message Reduction and Load Balancing in Distributed Graph
Computation. In WWW, 2015.

http://giraph.apache.org/
https://goo.gl/ugjWuI

	Introduction
	Related Work
	Background
	Pregel & Apache Giraph
	Codings for Graph Compression

	Overview of our approach
	Representations based on intervals
	BVEdges
	IntervalResidualEdges

	IndexedBitArrayEdges

	Experimental Evaluation
	Experimental Setting
	Space Efficiency Comparison
	Execution Time Comparison
	Comparison using small-scale graphs
	Comparison using large-scale graphs

	Conclusions
	References

