
MEGA: Overcoming Traditional Problems with OS
Huge Page Management

Theodore Michailidis
University of Athens

Athens, Greece
tmichailidis@di.uoa.gr

Alex Delis
University of Athens

Athens, Greece
ad@di.uoa.gr

Mema Roussopoulos
University of Athens

Athens, Greece
mema@di.uoa.gr

ABSTRACT

Modern computer systems now featurememory bankswhose
aggregate size ranges from tens to hundreds of GBs. In this
context, contemporary workloads can and do often consume
vast amounts of main memory. This upsurge in memory con-
sumption routinely results in increased virtual-to-physical
address translations, and consequently andmore importantly,
more translation misses. Both of these aspects collectively
do hamper the performance of workload execution. A solu-
tion aimed at dramatically reducing the number of address
translation misses has been to provide hardware support for
pages with bigger sizes, termed huge pages. In this paper, we
empirically demonstrate the benefits and drawbacks of using
such huge pages. In particular, we show that it is essential
for modern OS to refine their software mechanisms to more
effectively manage huge pages. Based on our empirical ob-
servations, we propose and implement MEGA, a framework
for huge page support for the Linux kernel. MEGA deploys
basic tracking mechanisms and a novel memory compaction
algorithm that jointly provide for the effective management
of huge pages. We experimentally evaluate MEGA using an
array of both synthetic and real workloads and demonstrate
that our framework tackles known problems associated with
huge pages including increased page fault latency, memory
bloating as well as memory fragmentation, while at the same
time it delivers all huge pages benefits.

CCS CONCEPTS

• Software and its engineering → Operating systems;
Memorymanagement;Allocation / deallocation strate-

gies;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR ’19, June 3–5, 2019, Haifa, Israel
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6749-3/19/06. . . $15.00
https://doi.org/10.1145/3319647.3325839

KEYWORDS

Huge pages, Address Translation, Memory Compaction

ACM Reference Format:

Theodore Michailidis, Alex Delis, and Mema Roussopoulos. 2019.
MEGA: Overcoming Traditional Problems with OS Huge Page Man-
agement. In The 12th ACM International Systems and Storage Con-
ference (SYSTOR ’19), June 3–5, 2019, Haifa, Israel. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3319647.3325839

1 INTRODUCTION

Computer memory capacities have been increasing sig-
nificantly over the past decades, leading to the development
of memory hungry workloads that consume vast amounts
of main memory. This upsurge in memory consumption rou-
tinely results in increased virtual-to-physical address trans-
lations and consequently, and more importantly, an increase
in TLB translation misses. Increased TLB translation misses
can cause execution time overheads of up to 50% [2, 4, 13].
Some proposed solutions to this problem, such as increasing
the TLB size or adding more page table levels simply increase
average and worst-case translations costs. However, one pro-
posed solution, dating back to the 1990s aims to dramatically
reduce the number of address translation misses by provid-
ing hardware support for pages with bigger sizes, known as
huge pages. Depending on the architecture, multiple huge
page sizes exist, with the most common being 2MB or 1GB.
As a result of hardware changes to add huge pages, software
techniques in modern OS have been developed to exploit
huge pages and their benefits.

Huge pages can significantly reduce address translations,
and consequently address translation misses in the TLB. Un-
fortunately, due to poor huge page management in modern
operating systems, huge pages also bring a number of prob-
lems such as increased page fault latency, increased memory
fragmentation and memory bloating, and high CPU usage.
These problems, combined with the fact that for many years
TLBs provided limited entries for huge pages, led multiple
software vendors to recommend disabling huge page sup-
port [11, 20, 24, 33, 34]. However, in recent years, hardware
vendors have dramatically increased the number of TLB en-
tries provided for huge pages, making them a more attractive

121

https://doi.org/10.1145/3319647.3325839
https://doi.org/10.1145/3319647.3325839

SYSTOR ’19, June 3–5, 2019, Haifa, Israel T. Michailidis et al.

option again. Thus, it is imperative for the OS community
to design new sophisticated algorithms that allow operating
systems to efficiently exploit huge pages, while minimizing
as much as possible their associated shortcomings.

In this paper, we empirically demonstrate the benefits
and drawbacks of using huge pages. Based on our empirical
observations, we design, implement, and evaluate MEGA:
Managing Efficiently Huge Pages1, a memory management
framework for huge page support for the Linux kernel. The
key insight of MEGA is to provide huge pages only when
they are needed and when their use does not impair system
and workload performance. We achieve this by tracking the
locality of virtual-to-physical mappings and their utilization
throughout execution. We introduce a novel compaction al-
gorithm that distinguishes physical memory blocks based on
their utilization and age of last virtual-to-physical mapping.

We experimentally evaluate MEGA using an array of
both synthetic and real workloads and demonstrate that
compared to previous work, MEGA tackles more effectively
the problems associated with the use of huge pages. Specif-
ically, compared with the mainstream Linux kernel with
huge page support, MEGA achieves an order of magnitude
lower page fault tail latencies. We show that both Linux
and Ingens, a recent, state-of-the-art huge page management
framework, suffer from gratuitous use of huge pages due
to aggressive policies. On the contrary, MEGA avoids this,
via intelligent selection of huge page placement. Moreover,
our memory compaction algorithm, based on a novel cost-
benefit approach, consistently achieves up to 2X the amount
of available free memory compared with Ingens, thus greatly
facilitating memory allocation.

2 BACKGROUND

In this section, we briefly present how the Linux kernel cur-
rently handles some aspects of huge pages and compaction
and then discuss its benefits and drawbacks.

2.1 Hugepage/Superpage OS support

Initial huge page support in Linux was through hugetlbfs
[35]; users were able to use huge pages by explicitly request-
ing them in their application either via the mmap system
call with the MAP_HUGETLB flag or the shmget system call
with the SHM_HUGETLB flag [21] [22]. However, this policy
burdens the developer who must explicitly state how and
when huge pages must be used, and also does not cope well
with non-database workloads [10]. Despite these disadvan-
tages, this approach is currently followed by the macOS and
Windows operating systems. Specifically, in macOS, the user
asks for a huge page by using the VM_FLAGS_SUPERPAGE_*
flag in the mmap system call [23]. Likewise, in Windows, the
1Also, from the Ancient Greek word µέγα, which means large

user must use the MEM_LARGE_PAGES as allocation type in the
VirtualAlloc function [8], to allocate non-pageable mem-
ory, using large pages [30].

To avoid the drawbacks of hugetlbfs, the Transparent
Huge Pages (THP) feature was developed in Linux 2.6.38
[28], released in March 2011. With THP, the handling of
huge pages is done transparently by the kernel, without user
involvement; however, users can force the kernel to use huge
pages by using mmap with the MAP_POPULATE flag. Initially,
the kernel uses base pages, i.e. 4KB pages, to satisfy memory
requests from the user level. We say the kernel promotes a
sequence of 512 properly aligned base pages to a huge page
(and demotes a huge page into 512 base pages). Currently,
Linux’s policy is to promote even a single base page, that
was faulted, to a huge page. Correspondingly, it demotes a
huge page immediately, if any portion of its memory is freed.

FreeBSD also uses a transparent model to handle su-
perpages, which is based on reservation-based allocations
with variable sized superpages and incremental promo-
tions/demotions [19].

2.2 Memory compaction

Linux divides physical memory into four memory zones
[6]; we briefly introduce how they are used and which
subset of memory they occupy in the x86_64 architecture.
ZONE_DMA: It is used for Direct Memory Access (DMA),
primarily by Industry Standard Architecture (ISA) devices
which are limited to 24-bit addresses, and contains the first
16MB of memory. ZONE_DMA32: It exists only in the
x86_64 architecture and is primarily used by hardware that
uses 32-bit DMA, and contains physical pages that lie in
[16MB, 4GB]. ZONE_NORMAL: It contains normal address-
able pages and, in the 64-bit kernel, it contains addresses that
lie in [4GB, end of memory]. In x86_64, the kernel tries to
satisfy user-level memory requests from ZONE_NORMAL,
and if there is no available memory, it tries to allocate mem-
ory from ZONE_DMA32.

Memory compaction is the process that the kernel fol-
lows to defragment the memory. The current kernel memory
compaction algorithm [12] performs the following steps in
each zone:

• Initially, two scanners are used; the first one (themi-

gration scanner) starts from the beginning of the zone
and keeps track of allocated pages, while the second
(the free scanner) starts from the end of the zone and
keeps track of free pages. The scanners continue until
they meet.

• After the scanners meet, the page migration algorithm
is invoked. Initially, for each group of pages that will be
migrated, a corresponding chunk of free pages should
be found. After that, the kernel isolates both the pages

122

MEGA: Overcoming Traditional Problems with OS Huge Page Management SYSTOR ’19, June 3–5, 2019, Haifa, Israel

that will be migrated and the free pages. This isolation
involves acquiring heavily contended locks and insert-
ing the pages to be moved and the free pages into two
distinct lists. Right after, the algorithm checks if the
former are movable and removes from the list the ones
that are not.

• Finally, the kernel migrates the pages to the corre-
sponding available space.

The goal of this compaction algorithm is to separate free
and allocated memory by grouping free pages at the start of
the adress space, while organizing allocated pages close to
the end of the address space.

The Linux kernel 4.6 release introduced a set of back-
ground kernel threads, kcompactd. There is one kernel
thread per CPU and their purpose is to compact memory
when it is needed. Specifically, kcompactd starts compact-
ing when one of the following happens: (1) a multipage, i.e.
a batch of multiple contiguous pages, allocation fails, (2) a
set of base pages is going to be promoted to a huge page
and there is no 2MB of contiguous memory available, (3)
khugepaged tries to compact memory asynchronously, to
satisfy future THP page faults, (4) it is triggered manually
by writing a value in /proc/sys/vm/compact_memory.

Linux uses a daemon thread, kswapd [27], which is re-
sponsible for swapping out modified pages to the swap file,
to increase the number of free available pages. kcompactd
is called after kswapd has woken up and tried to reclaim
memory. Whether kcompactd will skip the compaction or
not, depends on the value of the fragmentation index [9],
an index that represents how fragmented the memory is.
The index is based on the total available memory and the
available number of contiguous 2MB chunks of memory. It
skips compaction if the fragmentation index is not -1 and
lower than 500; in the former case, the requested allocation
can be satisfied, in the latter, the problem is that there is
no sufficient amount of memory. Finally, the kernel tracks
and provides some statistics about compaction. (1)#pages
scanned for migration, (2)#pages scanned in search of free
pages, (3)#isolated pages, i.e. both free and movable base
pages that were isolated for migration, (4)#successfully mi-
grated pages, and (5)#failed migrated pages.

2.3 Why use Huge Pages

Huge pages can provide a number of benefits. First, studies
have shown that TLB misses account for up to 50% of the
total execution time [13]. By grouping multiple 4KB pages
into one 2MB page, TLB misses are reduced, thus reducing
this performance overhead. Second, in Linux, an address
translation requires traversing 5-level page tables [16]. With
the use of huge pages, TLB misses are less expensive, since
address translations stop at the 4th level.

To demonstrate this effect empirically, we use Redis v4.0.11
[14], an in-memory key-value database, and the Linux perf
tool [26], to monitor how THP affect a workload’s execution.
Specifically, we make 2 million set requests with 4KB objects
in a fresh Redis server instance. We use Linux kernel 4.16.8
both with and without huge pages enabled and measure the
number of (1) data and instruction TLB misses, (2) data and
instruction cycles due to page walking caused by TLB misses,
(3) main memory reads needed for these page walks and (4)
total cycles and total execution time (Table 1).

Counter THP disabled THP enabled

TLB data loads 15,172,995,558 12,162,832,618
TLB data load misses 70,996,819 315,154
TLB instruction load misses 36,694,469 87,874
TLB data store misses 9,496,490 40,932
Page walking data cycles 1,358,301,181 18,422,086
Page walking instruction cycles 656,749,586 3,645,584
DTLB page walker loads from memory 227,534,040 421,743
ITLB page walker loads from memory 120,997,735 465,317
Total cycles 30,369,768,113 14,871,159,636
Total execution time 11.72s 7.06s
Table 1: Profiling counters associated with TLB

TLBmisses cause page walks, a costly operation that reads
processes’ page tables, which involves reading data frommul-
tiple memory locations. In Table 1, we present the numbers
associated with TLB misses, the memory loads and cycles
due to page walking, and the total cycles and execution time.
With THP disabled, TLB data load misses account for 0.47%
of all data TLB loads, while with THP enabled, they account
for only 0.0025% of total data TLB loads. Consequently, the
reduction in TLB misses leads to fewer cycles and main
memory accesses due to page walking, and results in a 1.66×
speedup of the workload’s execution.

2.4 Challenges

The use of huge pages is associated with a number of nega-
tive side effects which we present here.
Increased page fault latency:When a base page fault oc-
curs, the Linux kernel’s page fault handler tries to allocate a
huge page instead. This increases the page fault latency for
two reasons. First, the kernel has to find 2MB of contiguous
physical memory to allocate and map a huge page. If the
memory is highly fragmented during the request, the page
fault handler tries to compact memory synchronously, to
generate this amount of contiguous memory, which results
in increased latency. The worst case scenario is when the
page fault handler is not able to find 2MB of contiguous phys-
ical memory, even after the compaction is done, resulting in
just allocating a base page with increased latency. Second,
due to security reasons, the kernel has to zero out every page
before giving them to processes, and a huge page needs more
time to be zeroed.

123

SYSTOR ’19, June 3–5, 2019, Haifa, Israel T. Michailidis et al.

We make 2 million set requests with 4KB objects in a
fresh Redis-server instance. We run this experiment twice,
once with the use of huge pages and once with base pages
only, and present the results in Table 2. We use the ftrace
tool [7] to trace the __do_page_fault() kernel function, to
record the page fault latency in µs and number of page faults.

Linux base pages only Linux with huge pages

#page faults 2,731,657 291,098
Average 0.888µs 2.851µs
90th 1.501µs 1.744µs
99th 2.805µs 118.232µs
99.9th 4.201µs 123.78µs

Table 2: Number and latency of page faults

When huge pages are used, the number of page faults are
decreased by approximately 90%, while the page fault latency
increases compared with using base pages only. We observe
that the 99th and 99.9th percentile of latency when huge
pages are used are 42× and 29× the corresponding latency
of using base pages only. This is a critical problem, since
maintaining low tail latency is of utmost priority, particu-
larly in data centers with hundreds to thousands of servers
[17, 31], each with memory sizes that range from tens to
hundreds of GBs. Thus, using Linux THP in its current form,
is a double-edged sword. On the one hand, huge pages dra-
matically reduce the number of page faults incurred; on the
other, it is unworkable for environments with vast memory.
Memory Bloating: The Linux kernel allocates a huge page
on every base page fault. This aggressive policy causes mem-
ory bloating. Memory bloating occurs when a process re-
serves more memory than it uses, resulting in having an
increased memory footprint. In our work, we define memory
bloating as (1) having more allocated memory than the appli-
cation actually requested and (2) keeping recently unutilized
huge pages. To demonstrate this, in a system with 16GB of
memory, we use Redis to make 2 million hset (hash set) re-
quests with a 4KB object each, remove randomly 6GB, and
then retrieve the remaining objects by triggering a hgetall
(hash get all) command. When only base pages are used,
this workload uses 7.6GB of memory; when huge pages are
used, it consumes 11.1GB of memory. This bloat (46% more
memory) distributes free pages all over physical memory,
significantly reducing available contiguous memory. This
directly impacts system performance because it increases
huge page fault latency.
Fragmentation: The use of huge pages causes both internal
and external fragmentation. Internal fragmentation is caused
when a chunk of memory is not fully utilized. In the case
of using huge pages, any process that needs only few pages,
might end up reserving a greater amount of memory than
it actually needs. External fragmentation occurs when free
physical memory is divided in smalls chunks interleaved

with allocated memory. Extensive memory fragmentation
causes the most problems when transparent huge pages are
used, since it leads to memory bloating and increased page
fault latency.
Huge pages are not swappable or migratable: The cur-
rent kernel implementation does not support huge-page
swapping2. This means that a huge page has to be demoted
to base pages, before swapping out these pages. This process
degrades performance by delaying swapping and invalidat-
ing the corresponding TLB entry.

The Linux kernel’s compaction algorithm migrates only
base pages during compaction, while huge pages are not
movable. This exacerbates the fragmentation problem, as it
makes it difficult to maintain contiguous free memory.

2.5 Ingens

Ingens [15] is currently the state-of-the-art framework for
huge page support on the Linux kernel. We briefly present
how huge pages and memory compaction are handled in
Ingens: First, if the number of base pages mapped in a huge
page region is at least 90% of this region, then it promotes
them to a huge page. This allows the promotion to occur
asynchronously to avoid the costs of promoting during page
faults. Second, Ingens provides fair sharing of huge pages
using a metric based on the frequency of process accesses
to both base and huge pages. Using this metric, it prioritizes
promotions of processes that frequently access their allo-
cated pages or that handle fewer huge pages. Third, Ingens
periodically uses Linux’smemory compaction algorithm to
proactively compact memory to avoid fragmentation.

3 MEGA’S DESIGN

In this section, we provide a detailed description of the algo-
rithms and mechanisms of our MEGA memory management
framework. Our approach aims to maintain huge pages that
are recently highly utilized and have most of their memory
mapped. That is, we want to promote only huge pages that
will offer a long-term performance gain; short-lived huge
pages not only fail to provide benefits, but also hurt work-
load performance due to the cost of promotion and demotion.
We refer to a 2MB block of memory as huge page region

(HPR). Each huge page region in our system can be in one
of the following states:
(1) One or more base pages that aremapped-tracked

but not utilized-tracked. In this state, we just hold
information about how many base pages are mapped
in each huge page region. When the number of base
pages mapped exceeds a given threshold, then we start
tracking their utilization too and this huge page region
proceeds to the next state.

2https://lwn.net/Articles/758677/

124

MEGA: Overcoming Traditional Problems with OS Huge Page Management SYSTOR ’19, June 3–5, 2019, Haifa, Israel

(2) One or more base pages that aremapped-tracked
and utilized-tracked. In this state, we hold informa-
tion about how many base pages are mapped and their
utilization for a specific time interval. If the number
of base pages mapped is below a specific threshold,
then we stop tracking the utilization of this huge page
region, falling back to the previous state. When the
number of base pages mapped exceeds a given thresh-
old and their accumulated utilization exceeds another
threshold, then we promote this huge page region,
which proceeds to the next state. We refer to a huge
page region in this state as huge page candidate.

(3) A huge page that is both mapped-tracked and

utilized-tracked. In this state, we hold information
about the fraction of the memory that is allocated
within this huge page and the huge page’s utilization.
When the amount of memory freed exceeds a given
threshold or the utilization is below another threshold,
then we demote this huge page, which falls back to
the previous state.

3.1 Page mapping tracking

We now summarize the page mapping tracking process when
a page fault occurs. To track which base pages are mapped
in each huge page region, we use a bitmap of 512 bits, where
each bit represents a base page in the huge page region. This
bitmap is updated every time a base page is mapped by set-
ting the corresponding bit of the huge page region to which
it belongs. Similarly, when a base page is unmapped, we un-
set the corresponding bit. If a huge page region has at least
StartUTracking threshold (50%, in our implementation)
of its base pages mapped, we consider it to be a huge page
candidate, and track its utilization, using the mechanism we
describe in the next section. Similarly, we stop tracking its uti-
lization if the percentage of base pages mapped drops below
StopUTracking threshold (25%, in our implementation).

3.2 Huge page region utilization tracking

To track how much each huge page region is utilized, we
use the Idle Page Tracking feature [36] introduced in Linux
kernel 4.3. This feature allows us to track which memory
pages were accessed in a certain amount of time via the Idle
flag. We use the Idle flag in a three-step approach for the
pages that we want to track: 1. Set the flag. 2.Wait for some
time for these pages to be accessed. 3. Check the flag.
In our implementation, we use a thread to periodically

scan the utilization of huge page candidates and huge pages,
to identify which of the former should be promoted and
which of the latter should be demoted. After careful experi-
mentation we chose this scan to occur every 5 seconds; our
goal is to have a fresh snapshot of huge page candidates’

utilization, while minimizing the cost of frequent TLB in-
validations. Each huge page region that has its utilization
tracked, is associated with a utilization history buffer, where
we store the percentage of base pages that were accessed in
each of the last N scans, where N=10 in our implementation.
At the end of each scan, we average these percentages from
the last N scans.

3.3 Promotion - demotion

Algorithm 1 presents the main reasoning behind our HPR
utilization scan and promotion/demotion policies. Our
promotion-demotion algorithm focuses on maintaining huge
pages that are both heavily mapped and utilized. This is done
by tracking which base pages are mapped in every huge
page region, and periodically checking how much each huge
page region is utilized. In particular, a huge page candidate
is promoted only if its number of base pages mapped are
over the MProm threshold (in our implementation, 90%
of the base pages that a huge page region contains) and
its accumulated utilization is over the UProm threshold

(50% in our implementation) (Line 13-15). We chose these
thresholds to reduce the drawbacks of using THP; by hav-
ing over 90% of base pages mapped in a region, we restrict
memory bloating, while requiring at least 50% utilization in
the last 10 scans leads to the reduction of the overhead re-
sulting from frequent promotions and demotions. Similarly,
to avoid demotion, a huge page must have at least MDem

threshold (50% in our implementation) base pages mapped
and its accumulated utilization be at least UDem threshold

(25% in our utilization). This means that if a huge page has
fewer than 256 base pages mapped or its accumulated uti-
lization drops below the UDem threshold, then we demote
it (Lines 19-21). Promotion/demotion of huge page regions
are costly, mainly due to TLB invalidations, and result in
high CPU utilization. We select the aforementioned thresh-
olds, after extended experimentation, to ensure that huge
page regions are not frequently promoted/demoted. Our pro-
motion/demotion mechanism allows us to asynchronously
promote/demote huge page candidates, due to the fact that
these operations are decoupled from the page fault process.
This decoupling leads to improved page fault latency, since
pages are faulted immediately.

3.4 Compaction

The problem with the approach Linux’s kcompactd follows,
is that it compacts memory when it is too late; even if there
is plenty of free memory, it might be highly fragmented,
preventing allocations. This problem is exacerbated when
the kernel uses huge pages, because compaction causes in-
creased page fault latency and negates the benefits of using

125

SYSTOR ’19, June 3–5, 2019, Haifa, Israel T. Michailidis et al.

Algorithm 1

Periodic huge page region (HPR) utilization scan and promo-
tion/demotion
1: for all hpr ∈ util_tracked_hpr do
2: hpr_util = 0
3: if hpr is not huge_page then
4: if #bpages_mapped < StopUTracking then
5: Remove hpr from util_tracked_hpr
6: return
7: end if

8: for all bpage ∈ hpr do
9: if bpage not idle then
10: hpr_util += 1
11: end if

12: end for

13: if hpr_util ⩾ UProm and #bpages_mapped ⩾
MProm then

14: Promote hpr
15: end if

16: else

17: if hpr not idle then
18: hpr_util += 512
19: if hpr_util < UDem or #bpages_mapped <MDem

then

20: Demote hpr
21: end if

22: end if

23: end if

24: end for

huge pages. To illustrate why Linux’s current memory com-
paction algorithm is inadequate, we use a workload to contin-
uously allocate and free 10GB of memory in a machine with
16GB of memory. We run this experiment multiple times
with different object sizes; we start with 8KB objects and
for each different run we double the objects’ size. In the last
run, we use 128MB objects. We allocate 10GB to observe if
ZONE_NORMAL (12GB of memory) can meet our requests. At
the end of each run (after we have freed the allocated mem-
ory), we record the total available memory resulting from
2MB and 4MB blocks of contiguous available memory. We
monitor blocks of these two sizes, because they can satisfy
a request for a 2MB allocation, which is the size of a huge
page. Additionally, we run concurrently a different workload
that manipulates 420MB of sparsely allocated memory, to
observe how it will affect the compaction. In Figure 1, we
present the total combined available memory in MB as a
combination of these blocks of contiguous available memory
versus the object size.

We notice that from the first iteration, the available con-
tiguous memory has dropped from approximately 10.9GB to

11
20

4

85
68

78
04

77
36

77
34

77
12

76
66

76
40

76
16

75
58

75
62

77
00

77
18

77
16

77
20

77
38

In
iti

al
8K

B
16

K
B

32
K

B
64

K
B

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

M
B

32
M

B
64

M
B

12
8M

B

0

5000

10000

15000

Object size

M
em

or
y

in
 M

B

2MB blocks

4MB blocks

Figure 1: Total contiguous available memory after a

series of allocations/deallocations.

approximately 8.3GB, despite the fact that we are performing
multiple 8KB allocations and then free the allocated memory
entirely. This amount of free available memory is fixed after
every compaction; the memory cannot be completely com-
pacted by the current compaction algorithm, despite the fact
that every allocated object was freed. In the iteration where
we allocate memory using 8MB objects, we notice that there
is no sufficient contiguous memory to satisfy our requests;
thus, some memory is allocated in ZONE_DMA32. Additionally,
when ⩾ 32MB objects are used, there are no available 2MB or
4MB blocks inboth zones, requiring kcompactd to wake up to
compact memory and make such blocks available. However,
even after this compaction, only half of the requested huge
pages could be allocated, due to memory fragmentation.

We propose a preemptive compaction algorithm that runs
periodically (every 5s in our implementation) and each time
tries to compact a small amount of memory (200MB in our
implementation), to avoid the drawbacks of on-demand com-
paction. Our compaction algorithm aims both to proactively
compact memory as well as to separate physical pages by
their utilization and age of mapping.We seek tomove, during
compaction, pages that are less utilized, to avoid interfering
with “hot” pages, which would lead to additional overhead.
Additionally, we move older, in terms of mapping, pages
based on the assumption that newly created data (memory)
is more likely to “die” (be freed) in the near future.

Our compaction algorithm assumes that physical mem-
ory is divided into 2MB blocks, each one associated with a
huge page frame number (HPFN), and for each one of them
we keep track of (1) the time of the last base page mapping
in the block, (2) the percentage of base pages mapped in
the block in the interval between two iterations, and (3) the
percentage of base pages accessed in the interval between

126

MEGA: Overcoming Traditional Problems with OS Huge Page Management SYSTOR ’19, June 3–5, 2019, Haifa, Israel

two iterations. Inspired by the cost-benefit approach used
for segment cleaning in LFS [29], we calculate at the end of
each pass a cost-benefit ratio for every block, as follows:

benef it
cost =

aдe ∗ (1 − %bpaдesMapped) ∗ (1 − %bpaдesAccessed)
(2 ∗ %bpaдesMapped)

where age is the time of the last base page mapped, 1-
bpagesMapped is the percentage of base pages not mapped in
the current scan, 1-bpagesAccessed is the percentage of base
pages not accessed in the current scan, and 2*bpagesMapped
is the cost of migrating this block (bpagesMapped to read and
bpagesMapped to write). Becausememory allocations happen
primarily in ZONE_NORMAL, we perform this process for
ZONE_NORMAL on every compaction run. ZONE_DMA32
is used mostly by hardware that can only do DMA using
32-bit addresses. For this zone, we only compact memory if
the number of contiguous blocks that can satisfy a 2MB allo-
cation is less than 33% of this zone’s available free memory.
Our rationale behind this is to minimize the interference and
memory compaction cost as much as possible.

4 EVALUATION

In this section, we evaluate MEGA by comparing it with the
Linux 4.16.8 kernel and Ingens, which is the state-of-the-art
in huge page management, implemented in Linux kernel 4.3.
We use the Ingens’ code that is available on github [5]. We
run most of our experiments on a system (Intel i7 @ 2,3GHz,
16GB DDR3 RAM, 500GB SSD), unless explicitly stated. Our
work consists of 1.4 KLoC and is available in [38]. KPTI [37]
is enabled on the default Linux kernel 4.16.8 and MEGA.

Our goal is to answer the following questions:
• What effect on page latency does MEGA have com-
pared with Linux THP and Ingens?

• How do frequent promotions/demotions in close tem-
poral proximity affect workload performance, and why
should we avoid them?

• In which cases does MEGA underperform compared
with Ingens?

• How efficiently does MEGA’s memory compaction
algorithm tackle memory fragmentation and preserve
contiguity?

4.1 Page fault latency

We repeat the experiment of Section 2.4 to measure page
fault latency with the use of the ftrace tool. We compare
(1) Linux 4.16.8 with base pages only, (2) Linux 4.16.8 with
huge pages enabled, (3) Ingens and (4) our MEGA imple-
mentation. Table 3 shows the average page fault latency
incurred for each system as well as the 90th, 99th, and 99.9th
latency percentiles. The numbers in parentheses indicate
the slowdown (i.e., the factor by which page fault latency
increases) with respect to Linux when it uses base pages

only. We observe that MEGA incurs a 2.06-3.59X slowdown
when compared with Linux using base pages only. This is to
be expected given the extra bookkeeping MEGA must per-
form to track page mappings, utilization, and information
required for memory compaction. On the other hand, Linux
with huge pages sees a dramatic performance degradation
with a 1.2-42.21X slowdown. Similarly, while Ingens has the
lowest slowdown for average, 90th and 99th percentiles for
latency, its 99.9th percentile latency is drastically higher, suf-
fering a 95X slowdown. Given the importance of low tail
latencies [17, 31], we believe MEGA is preferable as it keeps
slowdown to a moderate level, even for its tail latencies (0.05-
0.12X when compared with Linux using huge pages). This is
the result of decoupling huge page promotion from the page
fault handling procedure.

Linux

base pages only

Linux

Huge Pages

Ingens MEGA

Average 0.9 2.9 (x3.22) 1.6 (x1.78) 2.5 (x2.78)
90th 1.5 1.8 (x1.2) 1.7 (x1.13) 3.1 (x2.06)
99th 2.8 118.2 (x42.21) 4.5 (x1.60) 6.1 (x2.17)
99.9th 4.2 123.8 (x29.46) 400.8 (x95.42) 15.1 (x3.59)
Table 3: Page fault latency in µs. In the parentheses,

the slowdown is shown with respect to Linux when it

uses base pages only.

4.2 Utilization based promotion -

demotion

To demonstrate the efficiency of MEGA’s utilization-based
promotion and demotion approach, we run two different
workloads on MEGA and on Ingens. In the first workload,
we allocate 6 GB of memory in chunks of 32MB and use only
one sixth of it (1GB); we run two instances of this workload
concurrently to put pressure on the system. In Table 4 we
record (1) how many huge pages are used by the workloads
during the execution, and (2) how many 2MB blocks are
available before and after one minute of execution.

Metric Ingens MEGA

#THP used 2,447 1,024
#2MB blocks before execution 6,710 6,733
#2MB blocks after 1 min. of execution 50 282

Table 4: Number of THP used and number of contigu-

ous free 2MB blocks

We notice the following. First, Ingens uses 2447 huge
pages, while MEGA needs less than half (1024) the number
of huge pages to fully exploit the benefits of their use. Ingens’
high number of huge pages puts pressure on the system, for
two reasons: (1) It forces the system to find and allocate mul-
tiple 2MB blocks to satisfy the requests, and (2) It reduces the
number of available 2MB blocks, preventing other workloads

127

SYSTOR ’19, June 3–5, 2019, Haifa, Israel T. Michailidis et al.

from potentially utilizing them more effectively. Second, ac-
cording to the Ingens promotion policy, the number of huge
pages used should be approximately 6144 (2 workloads * 6GB
allocated/2MB per huge page). This significant deviation is
the result of two things. First, the memory is extremely frag-
mented, thus, it is not possible to allocate additional huge
pages. Second, when it is time for Ingens to promote a huge
page candidate, it makes the appropriate kernel calls and a
flag is set in Ingens code, denoting that this region is a huge
page, to avoid false future calls for promotion. The same
code path happens for demotion. However, there is no check
over whether the promotion/demotion failed, resulting in
incorrect handling of pages. On the other hand, in our case,
the workloads allocate only base pages. When the utilization
is over the threshold, MEGA tries to allocate 1024 huge pages,
however due to fragmentation, it allocates only a fraction
of them. After some time, the kernel retries and succeeds
in allocating the rest of the needed huge pages. Note that
Ingens manages to allocate a large number of huge pages
from the start, due to the fact that it requests them before
the whole amount of memory needed by the workloads is
allocated. Finally, although not shown in Table 4 due to lack
of space, in Ingens, the number of 2MB blocks continues to
be only 50 (100MB) even after several minutes beyond the
end of the 1 minute experimentation period; this is because
memory has become extremely fragmented. In MEGA, the
number of 2MB blocks continuously increases. We evaluate
this behavior further in Section 4.3.

Next, we evaluate the performance overhead of frequent
promotions/demotions. We allocate 8GB of memory, iter-
ate over it briefly and then free the whole allocated mem-
ory. We do this 50 times in Ingens and MEGA and report
total execution time in Table 5. Due to its continuous pro-
motions and demotions, Ingens has an execution time that
is 1.58× greater than MEGA’s execution time. In contrast,
MEGA’s utilization-based approach benefits workloads that
use chunks of memory even for a short amount of time.

Total execution time in seconds

Ingens 47.6s
MEGA 30s

Table 5: Overhead due to frequent promotions - demo-

tions

Finally, we demonstrate an extreme case, where MEGA
displays suboptimal performance compared with Ingens. We
allocate 6GB and visit the data in steps of 32 * 1024, i.e. the
data in memory location 0, 32 * 1024, 64 * 1024 etc, then the
data in memory location 8, 32 * 1024 + 8, 64 * 1024 + 8 etc.
We choose this step deliberately because it is equal to the L1
data cache size. We run this workload 10 times and display
the total execution time in Table 6.

Total execution time in seconds

Ingens 158.8s
MEGA 324.1s

Table 6: Extreme case of not using THP in MEGA

MEGA’s execution time is approximately twice Ingens’ ex-
ecution time due to the fact that the former does not use huge
pages. This is expected because in MEGA, this access pattern
does not allow any huge page region to exceed the utilization
threshold. However, we consider these erratic patterns to be
improbable, and we expect that most workloads will allow
huge page regions to build up considerable utilization levels,
allowing them to be promoted to huge pages.

4.3 Compaction

As mentioned earlier, fragmentation is the major cause of
overhead when huge pages are used. Ingens uses proactive
compaction to maintain free contiguous memory at all times
and reduce fragmentation as much as possible. Specifically, it
does a periodic scanning every 5 seconds and tries to compact
up to 100MB per zone (for ZONE_DMA32 and ZONE_NORMAL).
We compare the Ingens compaction algorithm with MEGA’s
compaction algorithm using the default parameters of run-
ning every 5 seconds and trying to compact up to 200MB.
We allocate 12GB of memory for our workload, while the
kernel uses 1.5GB of memory, leaving 2.5GB available for use.
We iterate through the data, then free 50% of the allocated
memory in chunks of 1MB and continue iterating the re-
maining memory. We execute this experiment for 3 minutes
and record how many 2MB blocks are available. In the first
two minutes we observe how the compaction algorithms
behave under memory pressure, while in the last minute we
stop the program’s execution and record how fast the system
restores 2MB blocks. In both cases, the system initially has
approximately 6800 2MB blocks available. Additionally, we
record the values of the major compaction parameters the
kernel tracks (mentioned in Section 2.2) to monitor how well
the algorithms perform internally.
Figure 2 shows the number of available 2MB blocks in

memory as a function of time for Ingens and MEGA. We
observe that Ingens’ compaction algorithm is not able to
restore 2MB contiguous blocks as fast as they are needed,
neither under pressure nor when nearly all available memory
is free. Additionally, there is a small decline of available
blocks 40 seconds after the start of the experiment. This
behavior can be explained by the fact that Ingens prioritizes
each time the blocks that are closer to the start of the address
space, regardless of their utilization. On the contrary, in
both cases, MEGA correctly identifies blocks that are less
frequently utilized and/or old and compacts them, nearly
doubling the available 2MB contiguous blocks throughout
the duration of the experiment.

128

MEGA: Overcoming Traditional Problems with OS Huge Page Management SYSTOR ’19, June 3–5, 2019, Haifa, Israel

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

Time (s)

#2
M

B
 b

lo
ck

s

Ingens

MEGA

Figure 2: Total contiguous free blocks 2MB blocks dur-

ing the experiment

Statistics

Ingens

per scan

MEGA

per scan

Pages scanned for migration 55,256 7,537
Free pages scanned 149,993 350,702
Isolated pages 2,918 14,906
Successfully migrated pages 1,432 7,352
Failed migrated pages 1.16 0.94

Table 7: Memory compaction statistics

Table 7 shows the average compaction’s statistics per scan.
The lower number of pages scanned for migration and higher
number of free pages scanned is expected, since our MEGA
algorithm scans only specific blocks of memory for com-
paction, restricting the page migration scanner and expand-
ing the chunk of memory the free page scanner searches. In
conclusion, we observe that for the same targeted amount
of memory, MEGA achieves approximately 5x the number
of successfully migrated pages and 0.8x number of failed
migrated pages, compared to Ingens.

4.4 Compute-Intensive Workloads

We use the PARSEC 3.0 benchmark suite to measure the
performance impact that MEGA and Ingens have on typical
compute intensive workloads that do not benefit from the
use of huge pages. Figure 3 shows the normalized execution
time of MEGA and Ingens compared with Linux with huge
pages enabled. In spite of the extra bookkeeping effort that
MEGA entails, we observe that MEGA achieves in all, but
one, workloads an execution time speedup of up to 9.5% over
Linux, while Ingens mostly displays an additional overhead.

We also measure the performance and latency of MySQL
[18] using the sysbench benchmark suite [32]. We run for
1 minute a read-only workload on a table with 30 million
rows, executed by 8 threads, and record min, average, max

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

blackscholes

bodytrack

canneal

dedup

facesim

ferret

Fluidanim
ate

freqm
ine

R
aytrace

sw
aptions

vips
x264

Ingens
MEGA

Figure 3: Execution time of MEGA and Ingens normal-

ized w.r.t Linux (lower is better)

and 95th latency, and the number of transactions per second
for MEGA, Ingens, and Linux kernel 4.16.8 both with base
pages only and with huge pages.

MEGA Ingens

Linux

base

Linux

huge

Min 0.76µs 0.68µs 0.74µs 0.85µs
Average 1.44µs 1.71µs 1.63µs 1.32µs
Max 54.01µs 108.12µs 11.66µs 64.94µs
95th percentile 2.18µs 3.62µs 3.07µs 1.76µs
Transactions per sec 5556.29 4661.36 4895.21 6056.84

Table 8: Sysbench results for MEGA, Ingens and the

default Linux kernel with/without THP enabled

We observe that Ingens experiences the biggest average,
max and 95th latency and the lowest transaction throughput
(in transactions per second). On the contrary, MEGA com-
bines the benefits of both using huge pages and base pages
only; the number of transactions per second is close to the
number of transactions per second that Linux with huge
pages achieves, while keeping the latency at low levels.

4.5 Big-Memory Workloads

In this experiment, we evaluate how MEGA behaves with
big-memory workloads on a much larger machine (Intel
Xeon Processor E5-2650 v4 @2,2GHz, 256GB DDR4 RAM,
2.8TB of SATA 3 SSD). Initially, we run, on a freshly booted
machine, a simple workload that allocates 200GB, iterates
briefly over the allocated memory and then frees half of it
(100GB) in chunks of 1MB. We then run 5 iterations where
we allocate 100GB and then free the memory allocated in
the previous iteration (i.e., the first iteration frees the initial
100GB that remained, the second iteration frees the 100GB
allocated in the first iteration, etc). This process simulates
cloud systems whose memories quickly become fragmented
as a result of running real client workloads [1]. After the last

129

SYSTOR ’19, June 3–5, 2019, Haifa, Israel T. Michailidis et al.

iteration, the memory has 100 GB allocated, which leaves
approximately 156GB of sparsely available memory. We then
run, in a fresh Redis server instance, the redis-benchmark [3]
with 40000 set operations with 12-byte sized keys that are
chosen randomly from a 7536640-sized key space, values of
2MB and 50 parallel clients. The purpose of this experiment
is to test under a real-life scenario: (1) how Redis throughput
and latency are affected, and (2) what happens to the 2MB
and 4MB blocks. Note, we choose this value size to investigate
how easily the system can find 2MB of contiguous available
memory, while we deliberately create "holes" that are half the
size of the payload. We run this experiment on both MEGA
and Ingens and show the results in Table 9. We observe that
Redis over Ingens experiences a 27% slowdown in execution
time compared with Redis over MEGA . This is because
Ingens more aggressively promotes/demotes huge pages in
the first workload and extensively fragments the available
memory, while its compaction algorithm is unable to restore
the desired amount of contiguous available memory in time.

Stats Ingens MEGA

Throughput (req/s) 501.54 638.05
99th latency 278ms 104ms
99.9th latency 421ms 260ms
99.99th latency 505ms 266ms
Execution Time 79.75s 62.69s

Table 9: Redis over Ingens andMEGA under a real-life

scenario

Moreover, Table 10, shows the number of available 2MB
and 4MB blocks. We continue to monitor these numbers
for 5 minutes after the redis-benchmark has ended, and we
confirm again that Ingens cannot keep up with MEGA’s
block restoration rates; Ingens’ numbers of 2MB and 4MB
blocks remain the same, while MEGA continues to increase
these numbers. Finally, even though there was more than
enough available memory, both for Redis’ internal structures
and the key-values to be stored, increasing the number of set
operations in Ingens causes the first workload to be killed due
to extreme memory starvation, while this does not happen
in MEGA.

Memory block size Ingens MEGA

#2MB 42 14
#4MB 58 1146
Total available 2MB blocks 158 2306

Table 10: Number of available 2MB/4MB blocks at the

end of the experiment

RELATEDWORK

Navarro et al. [19] introduced superpage management in
FreeBSD, using reservation-based allocations and contiguity-
aware page replacements. Panwar et al. [25] focus on mem-
ory fragmentation control, show that unmovable pages are
a major fragmentation issue, and introduce a memory man-
ager that provides an unmovable page tracker and a modified
page allocator. Ingens [15] is the state-of-the-art framework
for huge page support in Linux and has served as the inspi-
ration for our work. From Ingens, MEGA borrows the use of
percentage of based pages mapped as a criterion for promo-
tion, however, MEGA also takes into account the utilization
of huge page regions. We have found that using both of these
criteria, in combination, is effective, and thus, an important
missing element from modern memory management. More-
over, for memory compaction, Ingens simply uses the default
Linux kernel mechanism, i.e., it periodically compacts the
100MB lowest megabytes of memory. In contrast, MEGA
uses a completely different algorithm that tracks informa-
tion about physical memory and uses a cost-benefit approach
to decide which physical 2MB regions to compact. This new
algorithm allows MEGA to alleviate the memory fragmenta-
tion problem, while minimizing the cost of compaction and
the interference amongst workloads that use the compacted
regions.

Overall, prior techniques aim to solve only a subset of
the problems of huge page use. Our work aims to provide a
general solution by combining monitoring of memory and ef-
fective fragmentation handling through a novel compaction
algorithm to tackle these problems. Additionally, to the best
of our knowledge, we are the first to examine and tackle the
problem of huge page promotions and demotions in close
temporal contiguity.

CONCLUSION

Effective huge page management is crucial as applications
become exponentially more demanding in their memory
needs over time. We believe MEGA is an important step in
this direction. Our plans for future work include extending,
with the MEGA framework, other major operating systems
that have primitive huge page management. Additionally, we
will extend our memory compaction algorithm, by making
it aware of non-movable areas of memory. Specifically, our
goal is to distinguish movable and non movable pages, to
reduce the compaction cost and improve the fragmentation
problem.

ACKNOWLEDGMENTS

We would like to thank our paper shepherd, Michael Swift
and the anonymous reviewers for their insightful feedback.

130

MEGA: Overcoming Traditional Problems with OS Huge Page Management SYSTOR ’19, June 3–5, 2019, Haifa, Israel

REFERENCES

[1] Jean Araujo, Rubens Matos, Paulo Maciel, RivalinoMatias, and Ibrahim
Beicker. 2011. Experimental Evaluation of Software Aging Effects on
the Eucalyptus Cloud Computing Infrastructure. In Proceedings of the
Middleware 2011 Industry Track Workshop (Middleware ’11). ACM, New
York, NY, USA, Article 4, 7 pages. https://doi.org/10.1145/2090181.
2090185

[2] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and
Michael M. Swift. 2013. Efficient Virtual Memory for Big Memory
Servers. In Proceedings of the 40th Annual International Symposium on
Computer Architecture (ISCA ’13). ACM, New York, NY, USA, 237–248.
https://doi.org/10.1145/2485922.2485943

[3] Redis benchmark utility. Accessed 2019. https://redis.io/topics/
benchmarks

[4] Abhishek Bhattacharjee. 2013. Large-reach Memory Management
Unit Caches. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-46). ACM, New York, NY,
USA, 383–394. https://doi.org/10.1145/2540708.2540741

[5] Coordinated and Efficient Huge Page Management system. Accessed
2019. https://github.com/ut-osa/ingens

[6] A detailed description about physical memory’s zones. Accessed 2019.
https://notes.shichao.io/lkd/ch12/#zones

[7] ftrace. Accessed 2019. https://elinux.org/Ftrace
[8] Windows’ VirtualAlloc function. Accessed 2019. https:

//docs.microsoft.com/en-us/windows/desktop/api/memoryapi/
nf-memoryapi-virtualalloc

[9] Mel Gorman and Andy Whitcroft. 2006. The what, the why and the
where to of anti-fragmentation. (01 2006).

[10] Transparent huge pages in 2.6.38. Accessed 2019. https://lwn.net/
Articles/423584

[11] Oracle: Disabling Transparent HugePages. Accessed2019.
https://docs.oracle.com/en/database/oracle/oracle-database/
12.2/ladbi/disabling-transparent-hugepages.html#
GUID-02E9147D-D565-4AF8-B12A-8E6E9F74BEEA

[12] An introduction to Linux memory compaction. Accessed 2019. https:
//lwn.net/Articles/368869

[13] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal,
Mark D. Hill, Kathryn S. McKinley, Mario Nemirovsky, Michael M.
Swift, and Osman Ünsal. 2015. Redundant Memory Mappings for
Fast Access to Large Memories. In Proceedings of the 42Nd Annual
International Symposium on Computer Architecture (ISCA ’15). ACM,
New York, NY, USA, 66–78. https://doi.org/10.1145/2749469.2749471

[14] Redis key-value store. Accessed 2019. http://redis.io
[15] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,

and Emmett Witchel. 2016. Coordinated and Efficient Huge Page
Management with Ingens. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (OSDI’16). USENIX
Association, Berkeley, CA, USA, 705–721. http://dl.acm.org/citation.
cfm?id=3026877.3026931

[16] Five level page tables. Accessed 2019. https://lwn.net/Articles/717293
[17] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble.

2014. Tales of the Tail: Hardware, OS, and Application-level Sources of
Tail Latency. In Proceedings of the ACM Symposium on Cloud Computing
(SOCC ’14). ACM, New York, NY, USA, Article 9, 14 pages. https:
//doi.org/10.1145/2670979.2670988

[18] MySQL. Accessed 2019. https://en.wikipedia.org/wiki/MySQL
[19] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan Cox. 2002. Prac-

tical, Transparent Operating System Support for Superpages. In Pro-
ceedings of the 5th Symposium on Operating Systems Design and imple-
mentation (OSDI ’02). USENIX Association, Berkeley, CA, USA, 89–104.
http://dl.acm.org/citation.cfm?id=1060289.1060299

[20] Summary of hugetlbpage support in the Linux kernel. Accessed 2019.
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages

[21] Man page for Linux mmap. Accessed 2019. http://man7.org/linux/
man-pages/man2/mmap.2.html

[22] Man page for Linux shmget. Accessed 2019. http://man7.org/linux/
man-pages/man2/shmget.2.html

[23] Man page for OSX mmap. Accessed 2019. https://www.unix.com/
man-page/osx/2/mmap

[24] Redhat: Huge Pages and Transparent Huge Pages. Accessed 2019.
https://access.redhat.com/documentation/en-us/red_hat_enterprise_
linux/6/html/performance_tuning_guide/s-memory-transhuge

[25] Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making Huge
Pages Actually Useful. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’18). ACM, New York, NY, USA, 679–692.
https://doi.org/10.1145/3173162.3173203

[26] perf. Accessed 2019. https://en.wikipedia.org/wiki/Perf_(Linux)
[27] Page Frame Reclamation. Accessed 2019. https://www.kernel.org/

doc/gorman/html/understand/understand013.html
[28] Linux release 2.6.38. Accessed 2019. https://kernelnewbies.org/Linux_

2_6_38
[29] Mendel Rosenblum and John K. Ousterhout. 1991. The Design and

Implementation of a Log-structured File System. In Proceedings of the
Thirteenth ACM Symposium on Operating Systems Principles (SOSP
’91). ACM, New York, NY, USA, 1–15. https://doi.org/10.1145/121132.
121137

[30] Windows’ Large-Page Support. Accessed 2019. https://docs.microsoft.
com/en-us/windows/desktop/memory/large-page-support

[31] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 2015.
C3: Cutting Tail Latency in Cloud Data Stores via Adaptive Replica Se-
lection. In Proceedings of the 12th USENIX Conference on Networked Sys-
tems Design and Implementation (NSDI’15). USENIX Association, Berke-
ley, CA, USA, 513–527. http://dl.acm.org/citation.cfm?id=2789770.
2789806

[32] sysbench benchmark suite. Accessed 2019. https://github.com/
akopytov/sysbench

[33] Cloudera: Disabling Transparent Hugepages (THP). Accessed 2019.
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/
cdh_admin_performance.html#cdh_performance__section_hw3_
sdf_jq

[34] Couchbase: Disabling Transparent Huge Pages (THP). Accessed 2019.
https://docs.couchbase.com/server/6.0/install/thp-disable.html

[35] MongoDB: Disable Transparent Huge Pages (THP). Accessed 2019.
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

[36] Idle Page Tracking. Accessed 2019. https://www.kernel.org/doc/html/
latest/admin-guide/mm/idle_page_tracking.html

[37] Wikipedia. 2019. https://en.wikipedia.org/wiki/Kernel_page-table_
isolation

[38] MEGA: Overcoming Traditional Problems with OS Huge Page Man-
agement. Accessed 2019. https://github.com/Tmichailidis/MEGA

131

https://doi.org/10.1145/2090181.2090185
https://doi.org/10.1145/2090181.2090185
https://doi.org/10.1145/2485922.2485943
https://redis.io/topics/benchmarks
https://redis.io/topics/benchmarks
https://doi.org/10.1145/2540708.2540741
https://github.com/ut-osa/ingens
https://notes.shichao.io/lkd/ch12/#zones
https://elinux.org/Ftrace
https://docs.microsoft.com/en-us/windows/desktop/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/desktop/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/desktop/api/memoryapi/nf-memoryapi-virtualalloc
https://lwn.net/Articles/423584
https://lwn.net/Articles/423584
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/ladbi/disabling-transparent-hugepages.html#GUID-02E9147D-D565-4AF8-B12A-8E6E9F74BEEA
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/ladbi/disabling-transparent-hugepages.html#GUID-02E9147D-D565-4AF8-B12A-8E6E9F74BEEA
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/ladbi/disabling-transparent-hugepages.html#GUID-02E9147D-D565-4AF8-B12A-8E6E9F74BEEA
https://lwn.net/Articles/368869
https://lwn.net/Articles/368869
https://doi.org/10.1145/2749469.2749471
http://redis.io
http://dl.acm.org/citation.cfm?id=3026877.3026931
http://dl.acm.org/citation.cfm?id=3026877.3026931
https://lwn.net/Articles/717293
https://doi.org/10.1145/2670979.2670988
https://doi.org/10.1145/2670979.2670988
https://en.wikipedia.org/wiki/MySQL
http://dl.acm.org/citation.cfm?id=1060289.1060299
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/shmget.2.html
http://man7.org/linux/man-pages/man2/shmget.2.html
https://www.unix.com/man-page/osx/2/mmap
https://www.unix.com/man-page/osx/2/mmap
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-memory-transhuge
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/s-memory-transhuge
https://doi.org/10.1145/3173162.3173203
https://en.wikipedia.org/wiki/Perf_(Linux)
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://kernelnewbies.org/Linux_2_6_38
https://kernelnewbies.org/Linux_2_6_38
https://doi.org/10.1145/121132.121137
https://doi.org/10.1145/121132.121137
https://docs.microsoft.com/en-us/windows/desktop/memory/large-page-support
https://docs.microsoft.com/en-us/windows/desktop/memory/large-page-support
http://dl.acm.org/citation.cfm?id=2789770.2789806
http://dl.acm.org/citation.cfm?id=2789770.2789806
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/cdh_admin_performance.html#cdh_performance__section_hw3_sdf_jq
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/cdh_admin_performance.html#cdh_performance__section_hw3_sdf_jq
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/cdh_admin_performance.html#cdh_performance__section_hw3_sdf_jq
https://docs.couchbase.com/server/6.0/install/thp-disable.html
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/html/latest/admin-guide/mm/idle_page_tracking.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/idle_page_tracking.html
https://en.wikipedia.org/wiki/Kernel_page-table_isolation
https://en.wikipedia.org/wiki/Kernel_page-table_isolation
https://github.com/Tmichailidis/MEGA

	Abstract
	1 Introduction
	2 Background
	2.1 Hugepage/Superpage OS support
	2.2 Memory compaction
	2.3 Why use Huge Pages
	2.4 Challenges
	2.5 Ingens

	3 MEGA's Design
	3.1 Page mapping tracking
	3.2 Huge page region utilization tracking
	3.3 Promotion - demotion
	3.4 Compaction

	4 Evaluation
	4.1 Page fault latency
	4.2 Utilization based promotion - demotion
	4.3 Compaction
	4.4 Compute-Intensive Workloads
	4.5 Big-Memory Workloads

	References

