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ABSTRACT
Sensor networks are increasingly applied for monitoring diverse
environments and applications. Due to their unsupervised nature
of operation and inexpensive hardware used, sensor nodes may fur-
nish readings of rather poor quality. We thus need to devise tech-
niques that can withstand “dirty” data during query processing. In
this paper we introduce a robust aggregation framework that can
detect and isolate spurious measurements from computed aggre-
gate values. Such readings are not injected in the reported aggre-
gate, in order not to obscure the outcome, but are still maintained
and returned to the user/application, which may investigate them
further and take appropriate decisions. In addition, our framework
provides a form of positive feedback to the user by enhancing the
result with a set of nodes that contain the most characteristic val-
ues out of those included in the aggregation process. We perform
an extensive experimental evaluation of our framework using real
traces of sensory data and demonstrate its utility to the monitoring
of applications.

1. INTRODUCTION

Sensor networks are increasingly being introduced in monitoring
applications and/or conditions in diverse physical environments.
These networks typically consist of primitive wireless nodes that
are able to “sense” their environment, produce readings, perform
simple operations and, if needed, relay their results to other sen-
sors nearby. Such exchanges are possible through the selective use
of radio frequency. A flurry of recent papers has tackled the prob-
lem of efficiently answering declarative queries in such networks.
The majority of these efforts focus on answering aggregate queries
that are of great importance to surveillance applications [19, 26].
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By and large, these efforts try to exploit in-network processing by
combining individual sensor readings as they are communicated
towards a base station. This results in orders of magnitude fewer
transmissions and, thus, prolonged network lifetime compared to a
naive execution that collects all readings at a central point where
aggregation is performed. A shorter, but equally important, line of
research deals with the realization that sensor readings are inher-
ently dirty [14, 15, 23]. A measurement obtained by a node is only
an approximation of a physical quantity observed by the applica-
tion and is constrained in accuracy by the limited hardware that
often implements the sensing function. Moreover, due to the unat-
tended nature of many applications and the inexpensive hardware
used in the construction of the nodes, sensor nodes often provide
imprecise individual readings after a failure, i.e., they tend to be fail
dirty [14]. Thus, we are faced with the daunting challenge to build
applications on top of an architecture that is, at times, unreliable
and unpredictable.

In this paper, we take a step towards providing a resilient query
processing platform over a network consisting of cheap, wireless
devices that are prone to failures. We argue that one cannot simply
accept all readings taken from the nodes, because many of them
are of very poor quality. For instance, after examining real traces
of sensory data from Intel Labs [9] we observed that simple aggre-
gation queries like “find the maximum temperate by all sensors in
the room” can deviate by as much 400% from the real values be-
cause of dirty readings. Thus, a naive implementation of a query
processor that ignores such issues renders the network infrastruc-
ture practically ineffectual. On the other hand, it is very ineffi-
cient to gather all readings outside the network in order to identify
suspicious measurements. Even if this is done only periodically,
it would still require a lot of messages and would cancel out the
benefits of in-network data aggregation. Moreover, we should not
forget that sensor networks find their cause when they are called
to observe interesting phenomena. Therefore, we should be very
careful when characterizing their observations, because what may
look like a spurious reading may as well be the prelude to an inter-
esting phenomenon. For example, a surprisingly high temperature
reading in the execution of the previous query may in-fact indicate
a possible fire. Thus, it would be unwise to reject measurements
simply because they look suspicious.

We aim at extending the notion of in-network aggregation as our
proposal offers the effective means for dealing with dirty and/or
unexpected measurements. We introduce a query execution model



that, on par with the aggregates, also recognizes and reports to the
user a concise set of readings that are believed to be outliers. We
introduce a novel notion of an outlier node, motivated by real ap-
plications of sensor networks, that is not based on individual read-
ings. Instead our framework looks for correlations between sets of
readings from multiple sensors in order to properly classify them.
Readings from outlier nodes are not injected in the computed ag-
gregate, in order not to distort the outcome, but are still maintained
and returned to the user/application. Users may investigate outliers
further and take appropriate decisions. For instance, if a single sen-
sor is continuously reported as an outlier, the network administrator
may investigate it and determine that it has in fact failed and needs
to be removed from further consideration during query processing
or repaired, if possible. Our execution model, in addition to the
list of outliers, further enhances the result with a set of nodes that
contain the most characteristic values out of those included in the
aggregation process. These nodes are called witnesses and provide
a form of positive feedback to the user that may help him better
comprehend the set of measurements that shape the result to its ag-
gregate query.

Our contributions are as follows:

• We present a new resilient execution paradigm for comput-
ing aggregate queries in sensor networks. Our techniques dy-
namically separate outliers from the outcome of the aggrega-
tion. These unexpected readings are preserved and reported
to the user that issued the query along with the estimate of
the aggregate. Our enhancement of the aggregate computa-
tion allow us to return more trustworthy results to the users.

• In addition to the list of outliers, our framework may also
return a set of characteristic values that have been used to
derive the requested aggregates. This form of positive feed-
back allows the user to better comprehend observations made
by the nodes that may otherwise be blurred during the aggre-
gation process.

• We perform an extensive experimental evaluation of our frame-
work using real traces of sensory data. Our experiments
demonstrate the utility of our aggregation framework enhanced
with outlier detection to the monitoring applications.

The identification of outliers could be of tremendous value in a
number of real-life situations, such as the monitoring and detection
of:

1. faulty home sensing devices: as home automation strives to
offer a highly controlled and adaptable environment, the timely
identification of isolated faulty devices plays a key role in
both saving energy and reducing costs.

2. tremors following earthquakes: it is often the case that the
follow-up activity of major earthquakes proves more devas-
tating in terms of lives and property lost. Detecting and accu-
rately reporting deviations in measurements taken from large
extends of land after the occurrence of severe physical phe-
nomena, may help authorities better understand their nature
and deploy their rescue resources more effectively.

3. resurgence of bush-fires: recurring severe weather conditions
frequently assist in the re-establishment of fires taking place
in large extends of land. Continual monitor and reporting of
further activity is a must after such a catastrophic event.

Figure 1: Sample Aggregation Tree

4. breaches computing systems security: organization and com-
panies routinely monitor their key infrastructure including
servers, desktops, routers, bridges, and incident detection de-
vices. Operators often make the final decision on whether a
spurious activity takes place once they review operational ag-
gregated data reported by the individual elements of infras-
tructure.

This paper proceeds as follows: In Section 2 we present a moti-
vational example for our problem and briefly describe the intuition
of our techniques. In Section 3 we formally introduce our frame-
work. Section 4 provides additional details on our algorithms and
potential extensions. Section 5 includes our experimental evalua-
tion. Section 6 presents related work, while cocluding remarks are
presented in Section 7.

2. MOTIVATING EXAMPLE

Consider a query that computes the average temperature in the
area covered by the sensornet depicted in Figure 1. For simplic-
ity we assume that the aggregate is collected at node S1, which
acts as the base station in our example. We use xi to denote the
temperature readings provided by node Si. The aggregation tree
is also depicted in the Figure. A typical way of computing the
average value from the temperature readings is for each node to
compute the sum() and count() functions in its subtree and propa-
gate these values to its own parent [19, 26]. For instance, node S1

receives two pairs of aggregates from its direct children (sum2, 6)
and (sum8, 1) where sum2 is the summation of the temperature
readings from nodes S2,S3,. . . , S7, while sum8 only contains
value x8 from sensor node S8. Node S1 can easily compute the
requested average value from these statistics.

We notice that nodes S6 and S7 can both observe an open fire
and, therefore, their readings are expected to be a lot higher (and
fluctuate more) than for example those of node S2. Since node S6

is a lot closer to the fire than node S7 we further assume that its
temperature readings x6 will be larger than those of node S7. We
also observe that nodes S6 and S7 do not directly communicate
because of an obstacle in their path. Because of that, the readings
of node S6 are propagated to node S2 through intermediate node
S3. When node S3 receives the values of its children nodes, the
readings x6 of node S6 appear to be suspicious, since no other node
in that subtree is aware of the fire. If one is to reject that reading (for
instance using a voting protocol [3]), the monitoring application
will lose a crucial observation. Techniques based on smoothing [14,



15] will also obscure the outcome, especially if a lot more nodes are
rooted at node S3.

Our solution to this impasse is to tentatively put the reading of
node S6 in a special list of outliers. There are many ways to define
the notion of an outlier. While we defer the discussion of outlier
detection to the next section, we briefly note here that our frame-
work seeks correlations among sensor readings in order to classify
(or not) a particular node as an outlier. This list of outliers will be
communicated from children nodes to their parents, but the read-
ings that it contains will not participate in the computation of the
aggregate.

Now let us concentrate on node S2. This node will receive from
the left subtree a pair of values (x3 +x4 +x5, 3) from node S3 and
the list of outliers containing only the value x6. The right-subtree
contains a single node S7 that reports the pair (x7, 1). In absolute
terms the value of x7 is smaller than that of node x6. However,
an oracle could ague that both readings refer to the same physical
event. Thus, node S7 acts as a witness to node S6 and vise versa.
Therefore, neither of their readings should be considered as outliers
and both values can be included in the aggregate computation. In
addition, it would be beneficial to retain the readings from one of
these two nodes into a list of witnesses that will play a role that is
symmetrical to role of outliers: If there exists another node higher
in the aggregation tree that also reports a fire, then we need to be
careful as to not to characterize its readings as outliers. This could
be achieved by testing its recent values against the nodes found in
the list of witnesses.

In addition to values that were initially deemed outliers, but for
which that decision was later overturned, the witnesses list also
contains characteristic values that participate in the aggregation
process. For instance when the readings from nodes S4 and S5

are consolidated, one of them is retained as a witness. This witness
will be utilized in order to judge the readings of nodes S3 and S2

when the partial aggregates are computed. Thus, the list of wit-
nesses provides supporting evidence for the aggregate as the latter
is compiled at the intermediate nodes of the aggregation tree.

Back to our example, sensor node S8 demonstrates the case of a
node that fails dirty. The node starts reporting abnormal high read-
ings that cannot be justified by any of its neighbors or the values
that are provided in the witness list. Thus, the values of x5 should
be kept out of the computation of the average temperature at node
S1 but still need to be reported in order to alert the user/application.

Compared to a conventional computation of the query aggregate,
one could see that in our alternative framework three main pieces of
information are propagated upwards in the aggregation tree. First,
the requested aggregate. Second, a list (actually a set) of witnesses
that helps us properly decide whether the readings of a new node
should be part of the aggregation. Last, a list of outliers, which are
re-evaluated as they are forwarded upwards in the tree.

The above example raises several interesting questions:

• How may one rightfully characterize the readings of a node
as outliers? As we have indicated above, local voting schemes
may not return correct results if the node does not agree with
the majority in its neighborhood.

• Sensor readings may look different simply because of the
nature of the observations. Node S6 that is closer to the fire
reports higher temperature than node S7. In another example
of acoustic readings, the values will also depend on the dis-
tance of each node from the source. Thus, we need to devise
more intuitive solutions than, for example, relying on simple

Symbol Description
Root The node that initiates a query and which collects

the relevant data of the sensor nodes
Si The i-th sensor node
xi The current reading of the i-th sensor node
Wi The set of witnesses that node Si transmits to its

parent node
Oi The set of outliers that node Si transmits to its

parent node
Ti The set of nodes contained in the subtree routed

at node Si, including Si

ai The partial aggregate from subtree Ti excluding
the outliers in Oi

Table 1: Symbols Used in our Algorithm

norm computation like |xi − xj | ≥ ε [23].

• The judgment on the readings returned by the nodes may
change as more knowledge is accumulated at the higher lev-
els of the aggregation tree. In the previous example, the read-
ing of node S6 was initially regarded as abnormal but that
decision was later retracted.

• It is crucial that detection and bookkeeping of the lists of wit-
nesses and outliers should not impose significant overhead on
the participating nodes and that these lists remain compact,
so as not to increase communication cost.

3. FRAMEWORK DESCRIPTION

We now present more details on our query execution model. The
notation used is described in Table 1. The queries we consider are
aggregation queries of the form:

SELECT AggrFun(s.value)
FROM Sensors s
WHERE cond
SAMPLE PERIOD e FOR t

As in [19], the aggregate functions that we consider are distribu-
tive or algebraic functions such as MAX,MIN,COUNT,SUM,AVG.
The period (e) in the above query determines the frequency at which
data is acquired from the sensors. This is often referred to as the
epoch duration. Parameter (t) specifies the life span of the query.
Unless it is explicitly terminated by the user, the query will run
for t time units. We assume that the aggregation tree has been es-
tablished using techniques already presented in the literature [12].
During the query execution, each node Si in the tree receives, using
a protocol like TAG [19], partial aggregates from its children nodes.
These values are combined with its own reading (if the node con-
tributes to the query) and result in a new partial aggregate that is
communicated to its own parent. This is a paradigm of in-network
computation and has been well established by prior work [7, 19,
26].

In this paper, we extend the in-network computation framework
as follows. In addition to the partial aggregate ai computed over its
subtree, node Si also transmits two sets:

Wi: This is a set of witnesses taken from nodes that provide mea-
surements for the query. These nodes must belong to the
subtree rooted at node Si.



Oi: This set contains nodes that provide measurements for the
query and are deemed to be outliers or faulty. These nodes
must belong to the subtree rooted at node Si.

Both Wi and Oi are subsets of Ti (the set of nodes under the
subtree containing node Si) and their intersection is the empty set.
For instance, in our running example of Figure 1, set W3 contains
only one of the nodes S3, S4 and S5, while the set O3 contains
node S6.

Our definition of an outlier is that of a node whose readings are
not like any other node that participates in the query. More for-
mally, let S be the set of nodes that provide their measurements
for the query and let P (Sk, Sl) be a predicate that evaluates to true
when the readings from nodes Sk and Sl are similar. We define
node Sk as an outlier when P (Sk, Sl)=false, ∀Sl∈(S − {Sk}).
Details on predicate P will be given in Section 4.1. As it will be
explained shortly, predicate P requires a few readings from nodes
Sk and Sl. These readings are communicated along with the id of
nodes in sets Wi and Oi.

Let us assume that node Sj is a child node of Si in the aggre-
gation tree. In our proposed framework, Sj will process readings
from children nodes (and its own) and communicate to its parent
node Si a triplet (aj , Wj , Oj). We distinguish the following cases:

• Node Sj is a leaf node. In this case, it needs to reports its own
measurement as an outlier since there is no evidence of other
nodes with similar readings. Of course, this selection may
change later by nodes along its path to the root. There is no
partial aggregate aj or witnesses Wj to report at this stage.
Thus, the node transmits a triplet containing (null,∅,{Si}) to
its parent node Si.

• Node Sj is an intermediate node in the aggregation tree. In
that case, it transmits a triplet (aj ,Wj ,Oj) to node Si where
aj is the partial aggregate for the subtree rooted at Sj , ex-
cluding nodes in Oj that are believed to be outliers.

Upon receiving all triplets (aj ,Wj ,Oj) from its children, node Si

first initializes Wi to ∪j(Wj), the union of all witnesses received
by its children nodes. Then, the node needs to decide which of
the readings in ∪j(Oj) are outliers or not, considering its whole
subtree, and appropriately compute the aggregate value ai. First,
for each child node Sj , it examines the set of nodes contained in
Oj . Let Sk be a node in Oj . If there exist Sl in

{Si} ∪ (∪m6=j(Wm)) ∪ (∪m6=j(Om))

such that P (Sk, Sl)=true, then node Sk is inserted to set Wi, oth-
erwise, the node remains an outlier and is included in Oi. This
means that a node that was originally deemed as an outlier by Sj

(or its descendants) may be added in the aggregate if it is similar to
at least one node in Ti. We do not need to check the nodes in Tj

because this check has already been performed by Sj when Sk was
inserted in the set Oj . A similar test is performed by Si for its own
measurement: it checks whether there is at least one other node in
∪j(Wj) that is similar to Si.

The partial aggregate ai that is computed by Si needs to con-
tain1:

• All partial aggregates aj that have been reported by its chil-
dren. Null values are ignored.

1In case of AVG or more complex aggregates, ai may be a struct,
not a single scalar value.

• The values of nodes Sk∈Oj that have been decided that are
not outliers by the previous process.

• Its own measurement, if Si contributes to the query and there
exists at least another node with a similar behavior in its mea-
surements.

In the end of this process, node Si transmits (ai, Wi, Oi) to its
own parent and this process continues towards the Root node. It is
easy to see that if a node Sk does not belong to the list of outliers
Oi then its measurement has been included in the partial aggregate
ai by a node Sm that is either Si or some other node in Ti. In either
case, Sk was among the lists of outliers received by the children of
Sm (or Sk=Sm) and was found similar to a node in Tm. Thus, if a
node contributes to the aggregate ai then it is not an outlier in Ti.

In the previous discussion we assumed that the set Wi is initially
compiled from the union of the nodes in sets Wj , where node Sj

is a child of node Si in the aggregation tree. This simplification
introduces some redundancy as it is quite possible that two nodes
Sk, Sm that belong to sets Wj1 and Wj2, respectively, are in-fact
similar (P (Sk, Sm)=true). In that case, we do not need both nodes
as witnesses and it is sufficient to include only one of them in Wi.
Thus, when inserting a node to set Wi we make a test whether there
is another similar node. If this is true then no action is taken. Note
that this is not required when inserting nodes to the set of outliers
Oi, since by definition two outlier nodes cannot be similar. Further-
more, when a node is moved from a set of outliers Oj because of a
successful similarity test with a node in Wi, then this node should
not be added to the set Wi, since another similar node already exists
there.

4. OPERATIONAL ISSUES

4.1 Detection of Outliers

One can provide several definitions of an outlier, depending of
the application. For example in [23], an outlier is defined as an
observation that is sufficiently far from most other observations in
the data set. We already saw that such a definition is inappropriate
for physical measurements whose absolute values depend on the
distance of the sensor from the source of the event that triggers the
measurements. In our framework, we have separated the logic used
for detecting an outlier from the mechanisms of our query evalua-
tion protocol. This separation may allow one to consider different
principles for detecting outliers with only minor modifications in
our framework.

In this paper we take note of several recent publications that
have shown that many of the physical quantities observed by sen-
sor nodes in monitoring applications are naturally correlated. This
observation has been exploited in order to reduce energy drain dur-
ing data gathering by either compressing the readings taken from
each node [5] or reducing the need to access many of the nodes
in the network by exploiting model-based retrieval techniques [9,
18]. Motivated by this observation, we propose here a simple yet
powerful technique based on the correlation coefficient among the
readings of two sensor nodes. If we consider the readings xk, xl of
sensor nodes Sk, Sl respectively as random variables, the correla-
tion coefficient rk,l is defined as

rk,l =
cov(xk, xl)

σxkσxl

=
E(xkxl)− E(xk)E(xl)p

E(x2
k)− E2(xk)

p
E(x2

l )− E2(xl)
(1)



where cov(), σ and E() stand for the covariance, standard devi-
ation and expected value respectively. If xk and xl are indepen-
dent then the correlation coefficient rk,l is zero. The closer rk,l

is to 1, the stronger the positive correlation between the two read-
ings. Since, in our framework, the nodes observe the same physical
quantity, is it natural to expect that the values should not be inde-
pendent, unless an unusual event is observed by one of the nodes
or one of them is faulty. Given a threshold θ provided by the appli-
cation and communicated to the nodes during query initialization,
we define predicate P that is used to separate outliers from normal
readings as

P (Sk, Sl) = (rk,l ≥ θ) (2)

4.2 Implementation Aspects

In order to compute coefficient rk,l, we need to have available
recent measurements from nodes Sk and Sl. The most recent mea-
surement of a node in sets Wj and Oj is communicated along with
the id of the node in each epoch. Node Si that receives these sets,
needs to store these measurements in its memory while the query
is running. We note that one would not want to use the complete
history of measurements from both nodes in order to compute the
correlation coefficient, since we tend to focus more on recent read-
ings than older observations. In our implementation, we use the
last M readings from each of the nodes in order to determine the
value of the coefficient. Parameter M depends on the sensors used.
Since memory capacity in modern sensors tends to increase rapidly,
it is reasonable to assume that for small values of M (i.e., 8, as in
our experiments) this approach is feasible even in todays low-end
sensors.

Furthermore, one would want to have a limit on the size of sets
Wj and Oj , not only to reduce memory usage, but also in order to
reduce communication cost. In most radio models used in todays
sensors, the energy drain during transmission/reception of a mes-
sage is proportional to the number of bits included [25]. Thus, we
can limit the communication cost by allowing each set to contain up
to k pairs of the form (Sid,xid). A natural question is how to handle
situations when more that k witnesses/outliers are needed. A naive
solution is to only report the first-k nodes in each set and ignore the
remaining ones. The drawback of this approach it that we may lose
important observations. A workaround is to transmit these “over-
flow” values in subsequent epochs. Recall that aggregate queries
in sensor networks do not seek an one-time result. On the contrary
they are continuous queries that run for predefined periods or until
they are explicitly terminated. Thus, if the size of say set Wj ex-
ceeds k we can transmit the first k values in the current epoch, and
opportunistically patch the remaining values in subsequent epochs
in which fewer than k values need to be transmitted. In order to
properly correlate aggregates with witnesses and outliers we may
want to include epoch-ids along with transmitted values that are de-
layed. Furthermore, “overflow” nodes in both sets that appear both
in the current epoch and previous ones may only be reported once
in order to reduce the number of bits transmitted.

4.3 Extensions

Detecting faulty patterns: Thus far, we have made the implicit
assumption that measurements from sensor nodes that have failed
dirty follow a random pattern and, thus, are expected to behave as
white noise. The consequence is that readings from two or more
sensors that fail dirty are statistically independent and will, thus,

correctly be included in the list of outliers. Depending on the hard-
ware used in implementing the sensing element of a node, this as-
sumption may not hold in practice. For instance, the temperature
sensor used in the MICA2 motes shows a predictable pattern of fail-
ure: its temperature readings increase until they reach a maximum
value and then stay there (see node S8 in Figure 1). In such cases,
our model may incorrectly characterize two or more faulty sensors
as statistically correlated and include their values in the computed
aggregate. In order to avoid such issues, we propose the following
extension to our framework. Each node is instructed with a special
predicate that will be used to detect readings from faulty sensors;
this is orthogonal to the predicate used in detecting outliers. The
new predicate may test the latest readings from a node against a
predefined pattern, such as the one described above for temperature
sensors. It may also perform simple sanity checks such as asserting
that a reading is above or below predefined thresholds such as min-
imum and maximum expected temperature. Nodes that fail these
tests are immediately put in the set of outliers and flagged appro-
priately so that they cannot be removed from the set by other nodes
in the path to the root.
Limiting Scope of a Witness. A possible extension to our frame-
work is to restrict the set of candidate nodes that can play the role
of a witness to sensor node Si. For instance, assuming that sensor
nodes are used in a tower building to measure temperature we may
want to consider a node Sj as a witness to node Si only if both
nodes are in the same floor or in adjacent rooms etc. These exten-
sions can be easily handled in our framework without changing the
core of our algorithms.
Using MinSupport for Outlier Detection: Based on our definition
of an outlier a node needs a single witness so at not to be considered
an outlier. Depending on the application we may want to control the
number of witnesses required through a MinSupport parameter and
extend the definition of an outlier to that of a node that has fewer
than MinSupport witnesses (our previous definition is equivalent to
using MinSupport with a value of 1). This extension only requires
a simple modification to our framework. Along with the id Sk of a
sensor node in Oi, we also include the number of nodes nk that are
currently witnessing Sk. When nk reaches or exceeds MinSupport
the node is removed from the list of outliers.

5. EXPERIMENTS

We have developed a simulator for testing various types of ag-
gregate queries [6]. For the experiments that we present in this
paper, we fed the simulator with a trace of readings from sensors
in the Intel Research, Berkeley lab, collecting light, humidity and
temperature readings [9].2 We used trace data from 48 sensors for
a period of 7 hours. For setting up the aggregation tree, we used
the aggregate connectivity data available with this trace. Unless
specified otherwise, in all of our experiments we used a threshold
value of 0.9 for the correlation coefficient and a buffer of 8 readings
for computing this coefficient (i.e., a sensor could witness another
node if the correlation coefficient of their last 8 readings was at
least 0.9). The size of the buffer needs to be of moderate size. A
small buffer size (i.e., 2) does not include enough history about the
sensor’s past measurements and would often cause many sensors to
exhibit a constant value within the buffer. On the other hand, a very
large buffer size would result in increased memory and processing

2We would like to thank the authors for making their data publicly
available.



Figure 2: Reported Max Temperature over Time

Figure 3: Reported Avg Temperature over Time

cost. By performing a sensitivity analysis, we discovered that us-
ing a buffer size between 4 and 10 provided qualitatively similar
results.

In all experiments we report the reported aggregate value for
three algorithms. The Naive algorithm denotes the typical in-network
aggregation performed by protocols like TAG [19]. The Robust
algorithm denotes our technique for computing and reporting the
aggregate value along with a set of witnesses and outliers. Finally,
the Robust-perfect knowledge algorithm denotes an ideal version of
our algorithm that is performed on the base station and which has
perfect knowledge of all the current and previous readings from all
the sensor nodes.

In Figures 2 and 3 we depict the reported maximum and average
temperature readings collected by the sensor nodes for all algo-
rithms. As it is evident from these figures, our algorithms managed
to identify and eliminate from the computation of the aggregate
sensors with unique patterns, such as a faulty sensor node that in-
creased its reading up to a maximum value of about 122 degrees
Celsius. What is more important is that the identification of such
nodes is performed inside the network without any application spe-
cific knowledge of the normal range (which is not always easy to
define - i.e., consider the case when a fire may erupt inside a lab or
a machinery part overheats) of values for the readings of the sensor
nodes. In Figure 4 we plot the corresponding minimum humidity
reading collected by the sensor nodes for all algorithms. Results

Figure 4: Reported Min Humidity over Time

Threshold Value
Measure 0.60 0.65 0.70 0.75 0.80 0.85 0.90

MAX Temperature 3 1 1 1 0 0 0
MIN Humidity 8 8 5 3 2 2 2

Table 2: Epoch lag to Eliminate Faulty Sensor Readings from
Aggregate Varying the Threshold for the Correlation Coeffi-
cient

for the average readings are similar as before and are omitted due
to space constraints. Again, our algorithms managed to detect and
eliminate from the computation of the aggregate abnormal humid-
ity readings, in all but a few epochs.

A question that naturally arises is how does our method perform
when the threshold used for the correlation coefficient is lowered.
As expected, the lower the value of the threshold, the more likely
that a node can witness some other sensor and, thus, the lower the
number of identified outliers. If a sensor starts generating a unique
pattern of behavior, it may take a few epochs for our techniques
to identify it as outlier, as a single reading may not be sufficient
for the witness test with other nodes to fail. The lower the value
of the threshold, the larger the number of readings involving the
new unique pattern that are required for the algorithm to identify
and eliminate the readings of the node. In Table 2 we present the
number of epochs that our algorithms required in order to eliminate
the apparently wrong readings, depicted by the sudden shifts in the
reported aggregate by the Naive algorithm in Figures 2 and 4, for
different values of the threshold for the correlation coefficient. The
presented results are easily explained based on our above discus-
sion. We can clearly observe from Table 2 that a threshold value
of 0.75 to O.8 results in a rapid elimination from the computed ag-
gregate of the abnormal sensor readings. Please observe that the
number of wrong reported aggregates does not exceed the required
number of measurements for computing the correlation coefficient
amongst the readings of two sensor nodes.

In Table 3 we present the number of transmitted bytes per sensor
node at each epoch for the calculation of the average temperature.
For our algorithm we report four values, based on the limit that we
imposed, in each case, on the maximum number (1, 2 ,3 or ∞)
of transmitted outliers and witnesses by each node. The header of
each packet was set to 8 bytes, while the size of each node identi-
fier and of each quantity (count, sum) required for the calculation
of the aggregate was set to 4 bytes. We can observe that even in



Algorithm
Robust Aggregation NAIVE SELECT *

Threshold 1 2 3 Infinite
0.60 22.0 23.2 23.8 24.1 16 35.2
0.65 22.4 23.6 24.1 24.5 16 35.2
0.70 22.9 24.0 24.5 24.9 16 35.2
0.75 23.4 24.3 24.8 25.1 16 35.2
0.80 23.9 24.9 25.4 25.7 16 35.2
0.85 24.9 25.8 26.2 26.4 16 35.2
0.90 25.9 26.7 27.1 27.4 16 35.2

Table 3: Bandwidth Consumption in Bytes per Sensor and
Epoch by our Algorithms

Figure 5: Reported Max Temperature Varying the Maximum
Number of Transmitted Witnesses/Outliers

this small number of sensor nodes, where the SELECT * query
imposed only a small increase in the bandwidth consumption over
the NAIVE aggregation, our algorithms achieved significant gains
in the bandwidth consumption. In Figure 5 we depict the reported
max aggregate for the same four versions of our algorithm. In this
small sensor network, using a limit of 3 transmitted witnesses and
outliers per node yields about the same results as using an infinite
limit. For a limit of 1 or 2, a few additional spikes in the reported
aggregate are observed.

A final note involves the positive feedback that witnesses pro-
vide to the base station. In Figure 6 we depict the humidity read-
ings of the two sensor that were most often reported as witnesses.
We first notice that their behavior differs significantly. When the
readings of one sensor rise, the readings of the other sensor often
decline. The user thus becomes aware of these different behaviors,
something which could have been missed by simply looking at the
overall aggregate value. Please note that amongst nodes with simi-
lar behavior only one can be picked as a witness, so this dissimilar
behavior by the two most common witnesses is expected.

6. RELATED WORK
Recent work has demonstrated the feasibility of using an em-

bedded database management system for data acquisition in sensor
networks [26, 19]. Using a declarative SQL-like query language
for posing monitoring queries in such sensor networks provides far
greater flexibility than injecting hand-coded programs at each sen-
sor node [20]. Among the various types of queries that have been
discussed in the literature, aggregate queries have received the bulk
of attention [7, 19, 21, 26]. In [19] the nodes are first organized

Figure 6: Humidity Readings by Sensors that are Often Wit-
nesses

in a tree topology, termed the aggregation tree. During the query
execution, each epoch is subdivided into intervals and parent nodes
in the aggregation tree listen for messages containing partial aggre-
gates from their children nodes during pre-defined time-slots. The
rest of the time the nodes may power-down their radios in order to
reduce their energy and bandwidth consumption. Another notable
method for synchronizing the transmission periods of nodes is the
recently proposed wave scheduling approach of [8]. Alternative
techniques do not utilize an aggregation tree, but rather compute
aggregation queries using decentralized algorithms [1, 16].

In the networking community there is substantial effort in resolv-
ing the networking aspects of wireless sensor networks that need to
operate unattended for long periods of time. Thus, nodes must be
able to self-configure [2], discover their surrounding nodes [10, 11]
and compute energy-efficient data routing paths (such as the aggre-
gation tree [12]) [22, 24]. All these techniques are complementary
to our work, as they provide the necessary network primitives that
we need to build our messaging scheme. In [4], a novel framework
that uses sketching techniques for compensating for packet loss and
node failures during query evaluation is proposed. Complementing
our framework in order to take advantage of the work in [4] is an
interesting future direction.

Recently, techniques that use either global [9] or local [18] data
models in order to avoid gathering all readings from nodes that par-
ticipate in a posed query have been proposed. Such techniques can
dramatically decrease the cost of running a continuous aggregate
query in large networks. Our techniques can benefit from data mod-
eling. For instance one can implement our framework directly over
the network snapshot proposed in [18]. The work in data model-
ing has demonstrated that many of the physical quantities observed
by sensor nodes in monitoring applications are naturally correlated.
This observation has been exploited in compression schemes that
encode such correlations using linear regression [5]. In our work
we capitalize on these observations and propose a novel technique
for capturing outliers based on the correlation coefficient amongst
the readings of sensor nodes.

Many recent publications have pointed out that current sensor
nodes are prone to failures and often tend to transmit unreliable
readings due to environmental interference and other local distur-
bances. In [13] the authors propose a fuzzy approach to define
the correlation among sensor readings, assign a confidence value
to each of them, and perform a fused weighted average. In [14]



the authors present ESP, a data cleaning framework in support of
pervasive applications. ESP allows programmers to specify five
pipelined cleaning stages using high-level declarative queries over
data streams produced by the sensors. In [15] a probabilistic tech-
nique for cleaning RFID data streams is presented. The work in [17]
discusses a framework for correcting input data errors using in-
tegrity constraints. Our methods differ from these techniques in
that we do not try to “mask” abnormal readings, but instead pro-
mote them into first class citizens, on par with the requested ag-
gregates, and make them available to the monitoring application.
The work in [3] addresses the problem of identifying faulty sen-
sors using a localized voting protocol. In section 2 we saw that
local voting schemes are prone to errors when nodes that observe
interesting events are not in direct communication. Furthermore,
while [3] requires a separate costly process that needs to run pe-
riodically in order to evaluate the network, our framework allows
us to capture faulty as well as outlier nodes in real time during
query evaluation and piggyback this information on messages used
in query processing. Similarly, the work in [23] computes outliers
in sensor networks in a manner that is decoupled from query pro-
cessing and can thus lead to significant energy drain on the nodes.

7. CONCLUSIONS

In this paper we introduced a robust aggregation framework that
can tolerate outlier readings that often arise in sensor network ap-
plications. Unlike prior work, our techniques do not attempt to
hide or clean outliers, which can often be the prelude to an inter-
esting phenomenon, but rather maintain and present them to the
user, along with a set of witnesses that take part in the computed
aggregate result. What is important is that the identification of such
readings is performed inside the network, without any application
specific knowledge of what constitutes normal behavior. Our ex-
periments with real traces from sensor nodes demonstrate that our
method is very effective in detecting outlier nodes which, if left
untreated, would significantly blur the outcome of the aggregation
process.
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