
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2000;00:1–7 Prepared usingspeauth.cls [Version: 2002/09/23 v2.2]

Catching Remote
Administration Trojans (RATs)

Zhongqiang Chen1 Peter Wei2 and Alex Delis3

1 Yahoo! Inc., Santa Clara, CA 95054, E-mail: zqchen@yahoo-inc.com
2 Fortinet Inc., Sunnyvale, CA 94085, E-mail: pwei@fortinet.com
3 University of Athens, Athens 15771, Greece, E-mail: ad@di.uoa.gr

SUMMARY

A Remote Administration Trojan (RAT) allows an attacker to remotely control a computing
system and typically consists of a server invisibly runningand listening to specificTCP/UDP
ports on a victim machine as well as a client acting as the interface between the server and
the attacker. The accuracy of host and/or network-based methods often employed to identify
RATshighly depends on the quality of Trojan signatures derived from static patterns appearing
in RAT programs and/or their communications. Attackers may also obfuscate such patterns by
having RATsuse dynamic ports, encrypted messages, and even changing Trojan banners. In this
paper, we propose a comprehensive framework termedRAT Catcher, that reliably detects and
ultimately blocks RAT malicious activities even when Trojans use multiple evasion techniques.
Employing network-based methods and functioning ininline mode to inspect passing packets
in real time, our RAT Catchercollects and maintains status information for every connection
and conducts session correlation to greatly improve detection accuracy. The RAT Catcher
re-assembles packets in each data stream and dissects the resulting aggregation according
to known Trojan communication protocols, further enhancing its traffic classification. By
scanning not only protocol headers but also payloads,RAT Catcheris a truly application layer
inspector that performs a range of corrective actions on identified traffic including alerting,
packet dropping, and connection termination. We show the effectiveness and efficiency ofRAT
Catcherwith experimentation in both laboratory and real-world settings.
Indexing Terms: Remote Administration Trojans, Trojan detection accuracy, session and event
correlation, application layer inspection.

1. Introduction

Remote Administration Trojans (RATs) are malicious pieces of code often embedded in
legitimate programs throughRAT-ification procedures [31, 55, 43]. They are stealthily
planted and help gain access of victim machines, through patches, games, E-mail
attachments, or even in legitimate-looking binaries [31, 6]. Once installed,RATs perform
their unexpected or even unauthorized operations [57] and use an array of techniques
to hide their traces to remain invisible and stay on victim systems for the long haul.
For instance,RAT-ified versions of programsUnix ps and Windowstaskmgr.exe keep
RATs from appearing in the list of active processes; moreover, bymodifying system
configurations including the boot-scripts and theRegistrydatabase,RAT-binaries often
survive system reboots or crashes. A typicalRAT consists of a server component running

∗Correspondence to: Zhongqiang Chen
Contract/grant sponsor: European Social Funds and National Resources Pythagoras Grant & Univ. of Athens
Research Foundation; contract/grant number: 04-7410

2 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS

on a victim machine and a client program acting as the interface between the server and the
attacker [28]. The client establishes communications with its corresponding server as soon
as theIP address and port of the latter become available through feedback channels such
as Email, Instant Messaging and/or Web access [43]. While interacting with aRAT server,
an attacker can record keystrokes, intercept passwords, manipulate file systems, and usurp
resources of victim systems [43].

By continually changing their name, location, size, and behavior, or employing
information encryption, port hopping and message tunneling for its communications,
RATs may elude the detection of security protection systems suchas firewalls, anti-virus
systems (AVs), and intrusion detection/prevention systems (IDSs/IPSs) [42, 16]. Once
bound to legitimate programs,RATs in execution inherit a victim’s privileges and raise
havoc; moreover, they launch attacks against other systemspurporting themselves to be
superusers [53, 43]. RATsprovide the ideal mechanism for propagating malware including
viruses, worms, backdoors, and spyware [13, 31, 21, 54]. The number ofRATs has been
steadily increasing from 1,359 in 2002 to 20,355 in 2004 and their update rates are also
impressive; justSubSeven delivered 12 versions in 2002 alone [43]. The number ofRAT-
infected machines is staggering: in 2000, 35% of security incidents in Korea were Trojan-
inflicted mostly byBack Orifice (BO) [3] and in 2001, 10% of intrusions in Israel were due
to NetBus andBO [41]. PestPatrolreports that roughly 2% of all incidents are attributed to
RATs [43]. Compromised machines are often used as spring-boards fordistributed denial
of service attacks, further exacerbating the problem [28].

The best option for avoidingRATs is to verify every piece of software before installation
using a-priori known program signatures [19, 7]. This, however, becomes impractical
as a comprehensive database of known program signatures is unavailable andRATs are
frequently delivered via multiple channels such as patches, attachments, file sharing, or
simply Web-site accessing. The polymorphic nature and parasitic mechanisms ofRATs
render their identification a challenge even if we seek specific and known types of
Trojans [11, 12, 2, 43]. Host- and network-based techniques have been widely employed
by firewalls, AVs and IDSs/IPSs to detect and blockRATs [55, 7]. Static fingerprinting
is the predominant method in host-basedRAT detection where unique facets of Trojans
are extracted to establish aTrojan Database, which entails file names, sizes, locations,
checksums, and special patterns inRATs [35, 5, 14, 38]. By periodically scanning every file
in a system and matching fingerprints against those in the established database,RATs can
be revealed. In addition, monitoring the access of files in the startup folder, registries, auto-
start files, and configuration scripts of a system is another popular host-based technique
that helps identify suspicious activities [40, 38]. Network-based methods follow a different
philosophy as they examine both the status and activity onTCP/UDPports to determine
any deviation from expected network usage [33, 49]. Abnormal behavior and/or malformed
network messages can be detected by monitoring port access patterns and/or analyzing
protocol headers of packets exchanged among systems [51]. Similar to host-based methods,
unique RAT-manifested telltale patterns in network communications are exploited as
signatures to distinguish malicious traffic [44, 51]. Clearly, theRAT detection accuracy
of host- and network-based methods depends on the quality ofthe Trojan database and
signatures used; the latter can be easily obfuscated by attackers using an array of evasion
techniques.

In this paper, we propose a comprehensive framework for detecting and dealing with
knownRATswhich employs network-based detection methods and operates in inline mode
to inspect and manipulate every passing packet in real-time. Our objective is to enhance the
reliability and accuracy of the detection process in comparison with existing anti-Trojan
options. To track suspiciousRAT activities, our framework monitors network sessions
established by both potential Trojans and normal applications, records and maintains state
information for their entire lifetime; furthermore, this information is archived even after a
session has terminated in order to conduct stateful inspection, intra-session data fusion,
and inter-session correlation. By performing packet re-assembly and interpreting the

CATCHING REMOTE ADMINISTRATION TROJANS 3

resulting aggregations against protocols followed by Trojans, ourRAT Catchermorphs data
streams into sequences of Trojan messages, facilitating the application-layer inspection
and classification of malicious traffic. A number of options are available to manipulate
identifiedRAT sessions ranging from simple alert and log generation to packet dropping
and pro-active session blocking/termination. Experimentation with theRAT Catchershows
its effectiveness as well as its efficiency in a range of laboratory and real-world application
settings. We organize our paper as follows: Section2 outlines related work and Section3
discusses the working mechanisms ofRATs. Section4 presents our proposed framework
and Section5 outlines the findings of our prototyping effort and experimental evaluation.
Concluding remarks and future work can be found in Section6.

2. Related Work

Upon activation, aRAT inherits privileges of its program-carrier and complies with the
program’s expected behavior most of the times, making it challenging to distinguish
legitimate activities from malicious ones solely based on program ownership and user
profiling [31, 27]. Verifying that a program is virus-infected is known to be computationally
impossible [12]; even searching an executable for knownRATs is challenging. The “least
privilege principle” is considered an effective way to limit the potential access-scope
of Trojanized programs in mulit-user systems [45, 24, 22] even though it is routinely
violated [24, 26]. Techniques such as “partitioned protection domains” and“multi-level
security models” are also used as means for protection against Trojans [4]; in the former,
system partitions provide discretionary access control and in the latter each system entity is
statically assigned a security classification [37, 10]. In this context, a Trojan may only
obtain information either within the same partition or fromentities tagged withlower
security classification, thereby limiting its potential damage. Preventing users in different
protection domains from sharing programs can work togetherwith integrity models† that
compute and store checksums for all files in the systems, and periodically re-calculate these
statistics to detect possible file modifications [35, 58]. Such security procedures often affect
the flexibility of a system and are deemed as burden to users.

Fault-tolerance methods have been used to detect unexpected behavior of program
segments by treating such deviations as errors [34]. Changes in size, frequency of
modification, and ignition rates of programs in conjunctionwith user profiles [20, 39, 56]
have been used by AVs to detect viruses andRATs [18, 14]. To survive system reboots
or crashes,RATs modify system files such aswin.ini, system.ini, and/orregistry entries
in Windowsand boot-scripts inUnix systems. To help detect and prevent such system-
level modifications, a number of host-based security systems allow users to directly
enable/disable startup items [38]. Unfortunately, this helps little as it is difficult for users
to distinguish legitimate from illegal items andRATs often resort to renaming themselves.
ParasiticRATs inject their malicious codes into running processes on-the-fly, effectively
shielding themselves from detection [43]. For instance, TrojanBeast inserts itself into
active processes such aswinlogon and Explorer and becomes a background thread in
these programs [47]. Most security systems fail to deal with parasiticRATs as in their
effort to curb suspicious activities, they kill legitimateprocesses as well [47]. A group
of RATs can disable firewalls and AVs by killing processes or removing files needed
by such security systems [47]. Clearly, the above host-based detection methods may be
ineffective as contemporaryRATscan readily defy their access control, integrity checking,
and behavior profiling.

†such asTripwire

4 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS

RAT servers typically listen on specific ports waiting for instructions from attackers [15].
Utilities such asnetstat, FportandTCPView Proare designed to monitor active ports for
suspicious network activities [15, 33, 49]. A number of firewalls also detect Trojans by
searching for applications inducing unauthorized communications. This general approach
however may yield false negatives asRATs may bind to legitimate programs and use
standard ports [38]. Overall, the effectiveness of techniques based on “static” Trojan
characteristics is questioned as soon asRATs commence using non-default ports, hijack
ports from other applications, and/or occasionally changecommunication ports.

By inspecting network traffic and searching for possible Trojan patterns, IDSs/IPSs can
establish the intention and/or behavior of data streams [44, 51]. The telltale patterns of
Trojans are typically obtained via reverse engineering anddata mining techniques [52].
Most IDSs/IPSs heavily base their Trojan-detections on fixed ports and/or simple pattern
matching mechanisms, inevitably generating significant false positive or negative rates.
Also, this pattern matching is typically conducted only within individual transport-layer
TCP/UDP packets rendering IDSs/IPSs vulnerable to evasion attacks[50]. To mitigate
evasive attacks, some IDSs/IPSs includingSnortand protocol analyzerEtherealoffer traffic
stream-reassembly functionality. Unfortunately, this re-assembly feature is only available
for pre-specified ports reducing the defense capabilities of such systems significantly [44,
23]. Etherealis mainly designed as a protocol analyzer that passively collects network
traffic without generating any alert for ongoing traffic making it impossible to deliver
counter measures in real time [23]. Furthermore, most network-based anti-Trojan systems
identify only RAT control channels and do not deal with the content of data channels
producing elevated false negative rates [7]. In summary, conventionalRATs detection
techniques demonstrate limitations and may fail to identify Trojans that resort to a range of
advanced evasion techniques.

3. Characteristics ofRATs

As RATscan essentially capture every screen and keystroke, intruders may obtain account
information, passwords, and sensitive computing system data. RATs can also spawn
arbitrary numbers of processes on specificTCP/UDPports, impersonate victims, redirect
traffic for specific services to other systems, and launch distributed denial of service (DDoS)
attacks. In this section, we examine the salient features ofRATs and briefly analyze their
capabilities.

3.1. Frequently Observed Functionalities ofRATs

RATs typically provide attackers with comprehensive command repertoires for
file management, process scheduling, and system configuration manipulation. File
management features include potentially destructive operations such asdelete/movea file or
directory on victim systems. The process scheduling component in aRAT permits intruders
to create, view, and/or terminate running processes at will. The configuration manipulation
element allowsRATs to alter the behavior of the victim system by for instance disabling
its security features after modifying theWindows Registry. RATs can often operate as
device controllers being able to open/close CD-ROMs, disable the mouse and network
cards, intercept keystrokes and/or screen snapshots, flip the victim’s screen or change
its resolution, monitor password dialog boxes and clipboards, capture audio/video of the
victim’s environment, and finally, crash the victim [43]. The re-direct feature ofRATs
allows an attacker to chain various services together and ultimately forward the results
to a specified destination, making it trivial for intruders to hijack network connections,
intercept private data, and inject fake messages. By functioning as packet sniffers,RATs
can also monitor a victim’s network activities and determine its topology. Furthermore, by
scanning the entire system of the victim machine, includingits garbage bin, a number of

CATCHING REMOTE ADMINISTRATION TROJANS 5

RATs can collect personal information such as user accounts, passwords, credit cards, and
Email addresses.

MostRATs integrate all the above functionalities and therefore act as a swiss army knife
for intruders. In this spirit,Back Orifice (BO), SubSeven, andDeepThroat provide around
60, 100, and 120 commands, respectively. TableI depicts a few commands available in
SubSeven andBack Orifice (BO). Here, theSubSeven commandIRG can be used to add,
remove, or modify system configurations from Registry, command FFN retrieves files
from the victim system, andCOM can help execute a specific program. CommandsGMI,
OCD, andPWDare pertinent to information collection andTKSlogs all keystrokes. Screen
snapshots can be captured withCSSand audio/video can be recorded with the help ofRSF
andIN7. Similar actions are achieved through the repertoire ofBack Orifice (BO) as well.

ID command description ID command description

Some commands provided bySubSeven
1 GMI get remote machine info 2 PWD get server password
3 RAS retrieve RAS passwords 4 GIP get ICQ passwords
5 RSH file manager 6 NTF download file
7 FFN find files (e.g., wildcard) in given directory 8 TKS key logger
9 IN7 open web cam 10 OCD open CD-ROM
11 RWN shutdown/restart Windows 12 FTP start or stop FTP server
13 IRG registry editor 14 COM execute a command

Some commands provided byBack Orifice
01 PING ping the current host 02 REBOOT reboot the remote host
04 PASSES display remote cached passwords 06 INFO Display remote system info
07 KEYLOG log keystrokes to file 09 DIALOG display a dialog box
0E APPADD spawn a console application on a TCP port 14 HTTPON enable the HTTP server
19 PLUGINEXEC execute a plugin 20 PROCKILL kill process given byPROCLIST
23 REGMAKEKEY create a key in the registry 28 CAPAVI obtain video stream from device
2A SOUND play a WAV file 3D MD make a directory

Table I. A few commands provided bySubSeven andBack Orifice (BO)

A number ofRATsoffer the proxy functionality that turns a victim machine into a server
for services includingTelnet, FTP, HTTP, ICQ, andIRC, offering free storage and complete
anonymity for attackers. The TrojanEclypse for instance can be instructed to act as a
FTP server; this is depicted by the sample traffic of TableII , which establishes separate
channels on differentTCP ports for its control and data transmissions much in the spirit
of FTP. The apparent protocol similarities in both syntax and semantics betweenEclypse
andFTP make it difficult to distinguish normalFTP-flows from Trojan-generated traffic.
The traffic of TableII shows that the data channel is constructed dynamically (in row 9)
once the client submits commandNLST to obtain a list of files from the compromised
machine (row 8). Clearly, the data channel is server-initiated although the request is client-
originated and the data port of the client is specified with commandPORTdynamically
(row 6). Similarly,SubSeven can be configured to act as a proxy server with the help of
commandsFTP, URL andCOM (TableI). RATs can be also used asDDoSattack tools

dir payload description
protocol: TCP; attacker (denoted as A): 192.168.5.143; victim (denoted as V): 192.168.5.141

1 V:3791−→A:1074 220 EclYpse ’s FTP Server is happy to ... banner in FTP format; telltale: “EclYpse”
2 A:1074−→V:3791 USER(none) intruder logins with name “(none)”
3 V:3791−→A:1074 331 Password required for (none). require password for login
4 A:1074−→V:3791 PASS xxxxxx password for account name
5 V:3791−→A:1074 230 User (none) logged in. attacker logins successfully
6 A:1074−→V:3791 PORT192,168,5,143,4,51 specify port for data channel (i.e., 4*256 + 51 = 1075)
7 V:3791−→A:1074 200 Port command successful. server stores data port number
8 A:1074−→V:3791 NLST request “send host info”
9 V:1030−→A:1075 (SYN) establish data channel with port 1075
10 V:3791−→A:1074 150 Opening data connection for ... data channel has been established
11 A:1074−→V:3791 QUIT disconnect from the server
12 V:3791−→A:1074 221 Goodbye. server closes the session

Table II. Traffic generated by theEclypse (v.1.0) Trojan

provided that enough victims are harvested and instructed to simultaneously flood specific
machines. Finally, someRATs can disable, mis-configure, or even kill firewalls, AVs, and
IPSs/IDSs incapacitating surveillance.

6 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS

Attacker

(RAT Client)

Victim

(RAT Server)

Data Channels (0..N)

Control Channel

IP Sweeper (Scanner)

IM/P2P Networks (IRC...)

Web Server (Apache...)

Email Server (IMAP, POP...)

RAT Feedback Channel

Figure 1. Working mechanisms of aRAT

3.2. Working Mechanisms ofRATs

Before their installation,RAT-servers can be customized viaRAT-provided configuration
packages termedbinders. This customization includes the setting of the defaultTCP/UDP
ports utilized byRAT servers, definition of auto-start methods, encryption algorithms
and designation of initial login passwords. For instance,EditServer andbo2kcfg are the
binders for SubSeven v2.2 and Back Orifice 2000 (BO2K) respectively [43, 42]. Prior
to being delivered,RAT-servers may be named as software patches or games with the
correspondingbinders, tricking users into downloading, un-bundling, and finally, executing
such malicious programs. Once the servers are configured, they are shipped to victims via
a number of delivery channels as described in Figures1 and2. During their installation,
RAT-servers may piggyback themselves to other legitimate programs, termedhosts, so that
they are executed every time their hosts are invoked. In thisway, aBO2K-server can install
itself as a thread to the host programIEXPLORE.EXE [42]. RAT-servers typically run in the
background and listen on designated network ports waiting for attacker-issued instructions,
leaving victims unaware of their damaging activity.

There is a multitude of avenues to spread Trojans to victim machines as Figure2
depicts; the most notable for the time being areInstant Messengers (IM)and peer-
to-peer (P2P)systems. With the help of eitherMSN-messenger orKaZaA, an attacker
may freely visit chat-rooms, scan buddy-lists, or even randomly select candidate victims
among encountered active users, and subsequently deliverRATs to victims. Additional
delivery options includeHTTPservers especially created to disseminate Trojans along with
regular web-pages, openingEmailattachments, execution of malware and distributions for
software patches, freewares, and/or games. Hence, anti-Trojan systems are easily defeated
if their RAT-detection methods cover only a small portion of such propagation channels.

The IP addresses,TCP/UDPports, access passwords, and other information ofRAT-
servers can be obtained by intruders through feedback channels shown in Figure1. IM/P2P
systems,Email services, and shared folders can even provide auto-notifications between
RAT-servers and clients. InGuptachar [43] for example, an attacker may set up anIRC-
server via itsIRCBOT‡ function by providing a login accountnickname; every time a
compromised system is activated, it connects to the aboveIRC-server usingnicknameto
upload the victim’sIP-address and port number. Furthermore, mostRATs resort to multiple
methods to outlive system crashes or reboots and evade AVs/IPSs/IDSs [43]. By editing

‡Internet Relay Chat Robot

CATCHING REMOTE ADMINISTRATION TROJANS 7

(e.g., Virus cleaner)

(games, updates, patches, ...)

Legitimate
Program

binder RAT−Server

Attacker

Web Server (Apache...)

Email Server (IMAP, POP...)

Victim

(BO2K, NetBus, ..)
Trojan Program

Software Distribution

IM/P2P Networks (IRC...)

RAT Delivery Channel

Figure 2.RAT delivery procedure

Registryentries, modifying system files such aswin.ini, system.iniand autoexec.batas
well as inserting items on the startup folders,RATs can easily “hide” and be transparently
triggered on every reboot. In this regard, host-based detection methods are inferior to their
network-based counterparts as far asRAT detection ic concerned.

3.3. EncryptedRAT Traffic

RATssuch asBack Orifice (BO), BO2K andNetBus v2.0 encrypt their traffic flows to defeat
security systems that base theirRAT detection on pattern matching techniques. The first
half of TableIII shows portion of encrypted traffic generated byBack Orifice (BO). The
scrambled content of encryptedRAT communications forces many anti-Trojan systems to
predominantly use fixed network ports (e.g., theUDP-port for BO is configurable with
default 31337), inevitably leading to false positives/negatives. InBO, the encrypted traffic
is generated by applying anXORoperation on the original data and a random stream created
with the help of a four-byte encryptionkeyderived from the intruder-specified password§.
At the receiver side, theseed(i.e., key) can be guessed via an exhaustive search due to
its short range; this seed can then be used to recover the original traffic [42]. Obviously,
theXORoperation neither changes the length of the original message nor destroys string
patterns; this fact may help identify theBO even if its encrypted traffic is only available.

dir size payload description
protocol: UDP; attacker (denoted as A): 192.168.5.143:1034; victim (denoted as V): 192.168.5.141:31337

Encrypted messages byBack Orifice
1 A−→V 19 |9E F4 C2 EB 87 89 A2 04 4E 42 E8 69 3B B9 98 55 C3 80 66| encrypted msg
2 V−→A 37 |9E F4 C2 EB 87 89 A2 04 78 42 E8 69 3A B9 98 55 C3 A0 46...| encrypted msg sharing pattern with msg 1
3 A−→V 19 |9E F4 C2 EB 87 89 A2 04 4E 42 E8 69 38 B9 98 55 E2 80 66| encrypted msg very similar to msg 1
4 V−→A 41 |9E F4 C2 EB 87 89 A2 04 74 42 E8 69 3B B9 98 55 62 A0 46...| encrypted msg very similar to msg 2
5 A−→V 19 |9E F4 C2 EB 87 89 A2 04 4E 42 E8 69 39 B9 98 55 C4 80 66| encrypted msg very similar to msg 1
6 V−→A 49 |9E F4 C2 EB 87 89 A2 04 6C 42 E8 69 37 B9 98 55 44 D3 1F...| encrypted msg very similar to msg 2

DecryptedBack Orifice traffic
1 A−→V 19 |2A 21 2A 51 57 54 59 3F 13 00 00 00 01 00 00 00 01 00 00| msg PING starts with string “*!*QWTY?”
2 V−→A 37 |2A 21 2A 51 57 54 59 3F 25 00 00 00 00 00 00 00 01 20 20 21 50...| reply to “PING” (i.e., “PONG”);
3 A−→V 19 |2A 21 2A 51 57 54 59 3F 13 00 00 00 02 00 00 00 20 00 00| cmd PROCESSLIST (0x20) from client
4 V−→A 41 |2A 21 2A 51 57 54 59 3F 29 00 00 00 01 00 00 00 A0 20 20...| reply to “PROCESSLIST” (partial)
5 A−→V 19 |2A 21 2A 51 57 54 59 3F 13 00 00 00 03 00 00 00 06 00 00| cmd INFO (0x06) from client
6 V−→A 49 |2A 21 2A 51 57 54 59 3F 31 00 00 00 0D 00 00 00 86 53 79...| reply to “INFO”

Table III. Back Orifice generated traffic in both encrypted and decrypted formats

§its default value is 31337, the same as its defaultUDP port.

8 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS

Through exhaustive search, we can recover the seed2160used in theBO-server/client
traffic of TableIII . The decrypted traffic demonstrates that eachBO message commences
with the 8-byte magic-string of*!*QWTY? followed by the 4-bytepacket length, 4-byte
packet ID, 1-bytemessage type, the variable lengthmessage dataand the 2-bytechecksum
field. The packet lengthspecifies the size of the entire message; for example, the first
client message (row 1) is 19-bytes in length. Initially, theBO-client probes the server with
commandPING (0x01 in the 1-bytemessage typeat index 16) to check the availability
of the server. The active server responds with commandPONG along with its version
number in row 2. In rows 3 and 5, the client requests information from the victim (i.e., the
BO server) with commandsPROCESSLIST(0x20) andINFO (0x06). TableIII shows that
decryptedBO traffic possesses strong message structure and clear semantics. This structure
in conjunction with the commands of TableI help attain improved traffic identification
based on decrypted content, which is the main techniques used in our RAT Catcherto
detectBO; a similar approach was also employed bySnort.

TheXOR-based encryption algorithm used by the international version of BO2K can be
also reverse-engineered and the original traffic can be recovered, makingBO2K detection
feasible. Nevertheless, the use of plugin modules inBO2K complicates matters. To this end,
the pluginsenc aes, enc cast andenc idea encryptBO2K traffic with theAES, CAST, and
IDEA encryption algorithms respectively [46]. It has been shown that such algorithms are
resistant to sophisticated differential and linear cryptanalysis techniques [1, 30]. Hence, it is
impossible to recover original form from encrypted traffic without the requisite encryption
keys. For this type of Trojans, the only pragmatic approach for detection has to be based
on theRAT external behavior which involves monitoring of message sizes, handshake
procedure, and traffic correlation between the two traffic streams within eachRAT session.

dir payload description
protocol: TCP; attacker (denoted as A): 192.168.5.143:1026; victim (denoted as V): 192.168.5.141:20034

1 A−→V BN |20 00 02 00 08 08 05 00 41 0C 69 1F 5D 28 5B BC ...| msg starts withBN; size: 0x20; ver: 0x02; cmd: 0x05;
2 V−→A BN |10 00 02 00 08 08 05 00 41 0C 6B 1F 5D 28| reply msg; size: 0x10; ver: 0x02; cmd: 0x05;
3 A−→V BN |0B 00 02 00 DC 33 30 00 41| client msg; size: 0x0B; cmd: 0x30
4 V−→A BN |0C 00 02 00 DC 33 30 00 41 0C| server msg; size: 0x0C; cmd: 0x30
5 V−→A BN |34 00 02 00 F0 AB 30 00 41 0D 3E F4 56 DC ...| multiple messages packed into one TCP packet;

BN |18 00 02 00 6B 29 30 00 41 0D ...| msg 1 is cmd 0x30 with size 0x34;
BN |2F 00 02 00 8B 79 30 00 41 0D ...| msg 2 is 0x30 with size 0x18 ...

6 A−→V BN |1E 00 02 00 F0 AB 50 00 41 C9 57 ...| client msg; size: 0x1E; cmd: 0x50
7 V−→A BN |15 00 02 00 8C 05 50 00 41 0C 35 ...| msg size: 0x15; ver: 0x02; cmd: 0x50;

Table IV. Portion ofNetBus Pro (v.2.0)-generated traffic

NetBus Pro [29] is a noteworthy Trojan in that it uses proprietary encryption algorithms
but still offers opportunities for detection based on traffic correlation; it listens to default
but reconfigurableTCP-port 20034 and supports plugins enabling the integration of new
functionalities [36]. EachNetBus Pro message has a fixed-length header (i.e., 10 bytes)
consisting of string “BN” followed by four 2-byte fields namely,message-size, version-
number(typical value 0x0002),unknown(often a random number), andcommand-code
fields. The variable-sized data section follows the header and its size is specified in the
message-sizefield of the header. TableIV shows a portion ofNetBus Pro(v2.0)-generated
traffic. Apparently, the beginning of every message is readily determined by string “BN”;
correspondingly, the end of the message can be resolved fromthe message-sizefield
of its header. Multiple messages may be packed in a singleTCP packet as is the case
with row 5, each of which can be identified through payload content inspection and
message structure analysis. Stream-based inspection can also correctly interpretNetBus
Pro messages spanning multipleTCPpackets. Also, inspection on both streams of a session
to ensure their conformance withNetBus Pro protocol specification further improves the
detection accuracy. Despite the fact that decryption ofRAT traffic is not always feasible,
techniques derived from dissecting protocol syntax ofRATs combined with analysis of
patterns found in message exchanges can be exploited to detect Trojans. TheNetBus Pro
protocol analyzer outlined by Algorithm4 of Section4 functions on this premise.

CATCHING REMOTE ADMINISTRATION TROJANS 9

3.4. Diversified Use of Protocols byRATs

By and large, the proliferation ofRATscan be attributed to the fact that existingRATsserve
diverse constituencies and deliver substantially differentiated services using a multitude
of transport protocols. For instance,NetBus, Socket de Troie and SubSeven use TCP
while Back Orifice, DeepThroat and DeltaSource areUDP-based. AsRATs evolve they
also use different protocols. In this regard,BO2K uses bothTCP andUDP even though
its ancestorBO was exclusivelyUDP-based. The syntax and semantics of client-server
messages also demonstrate diverse characteristics.RATs includingBack Orifice, SubSeven
and BO2K maintain well-formed binary message structures; on the other hand, Trojans
such asDolly andFrenzy follow text-based message formats. Last, someRATs including
Eclypse, WanRemote andDrat uses syntax and semantics similar, if not identical, to the
standardFTP, HTTP, andTelnetprotocols.

In TableII , we show portion of the traffic generated byEclypse, anFTP-based Trojan
and TableV presents traffic generated byWanRemote [43] that clearly follows theHTTP
specification in both directions [25]. For brevity, we do not show theHTTP headers
of all messages from the server but only the first one in row 2. Server responses are
embedded in the data sections ofHTTPmessages. TableV indicates that the client supports

dir payload description
protocol: TCP; attacker (denoted as A): 192.168.5.143; victim (denoted as V): 192.168.5.141

1 A:1071−→V:80 GET / HTTP/1.1 standard HTTP msg, implying login
2 V:80−→A:1071 HTTP/1.0 200 OK Content-Type:text/html response with “main menu” to attacker

<title>WANRemote 3.0 - Main Menu</title>

3 A:1089−→V:80 GET /fm?cd=C:/ HTTP/1.1 change directory
4 V:80−→A:1089 <title>WANRemote 3.0 - File Manager</title> enter “file manager”
5 A:1105−→V:80 GET /fm?get=C:/autoexec.bat HTTP/1.1 get file “autoexec.bat”
6 V:80−→A:1105 WANRemote 3.0 - File Manager: c:/autoexec.bat file transferred successfully
7 A:1142−→V:80 GET /process HTTP/1.1 get process list
8 V:80−→A:1105 <title>WANRemote 3.0 - Task List</title> return process list
9 A:1164−→V:80 GET /process?kill=800 HTTP/1.1 kill specified process
10 V:80−→A:1164 <title>WANRemote 3.0 - Task List</title> processed killed
11 A:1175−→V:80 GET /x-logout HTTP/1.1 logout from server
12 V:80−→A:1175 <title>WANRemote 3.0 - Log Out</title> session end

Table V.WanRemote(v.3.0)-generated traffic

HTTP(v.1.1)and the server usesHTTP(v.1.0)forcing each command to be transported
using a separateTCP connection. For example, the packet of row 1 hasTCP-source
port 1071 while the corresponding source ports for messagesin rows 3 and 5 are 1089
and 1105, respectively. By placing different commands inHTTP requests, the client can
perform various operations on the victim’s machine via the Trojan server. To this effect,
the attacker can traverse directories in victim’s file system with request “cd=C:/” (row 3)
and obtain designated files with command “get=C:/” (row 5). Through “kill= ” of row 9,
the attacker calls for the termination of a process at the server that reciprocates with
status information in row 10. The apparent pattern “WANRemote 3.0” definitely helps
detect individualWanRemote(v.3.0) sessions; moreover, the correlation between different
sessions (i.e., inter-session correlation) can further improve the detection accuracy.

Drat is a representative of theTelnet-based Trojans in which the server echoes back
any attacker input and respective pieces of output as TableVI shows. Acting effectively
as a command interpreter, theDrat-server displays the promptD:/temp> waiting for
instructions from the attacker as row 3 indicates. Rows 5, 7 and 9 depict the echoes
of the three characters in commanddir entered by the attacker in rows 4, 6 and 8; the
character-by-character transmission and echo-back mechanism are typical of theTelnet
protocol and together provide a reliable way to identify such traffic. We combine together
all packets that convey the client’s command “run c:/windows/notepad.exe” and show them
in the row marked 13-41; the 42-70 line depicts the respective echo activity. Clearly, the
attacker mistakenly typesran for the desiredrun command and later uses “backspace”
(0x08) to correct the mistake. By making available editing functionalities,Drat provides a
true interactive environment. However, it poses a challenge for security devices that detect

10 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS

RATsbased on patterns as the latter can be readily evaded by inserting an arbitrary number
of edition keys such asbackspace, delete, and/or empty spaces. An anti-Trojan system

dir payload description
protocol: TCP; attacker (denoted as A): 192.168.5.143; victim (denoted as V): 192.168.5.141

1 A:1085−→V:48 |0D 0A| attacker just enter “RETURN”.
2 V:48−→A:1085 Welcome to DaRat’z Telnet Rat. server responses with banner
3 V:48−→A:1085 DRat Version 1.3.0 ... DRat : D:/temp> server displays prompt
4 A:1085−→V:48 d attacker enters cmd (one char at a time)
5 V:48−→A:1085 d server echoes back input
6 A:1085−→V:48 i attacker enters next char
7 V:48−→A:1085 i server echoes back
8 A:1085−→V:48 r attacker enters next char
9 V:48−→A:1085 r server echoes back
10 A:1085−→V:48 |0D 0A| with “RETURN”, cmd “dir” is formed
11 V:48−→A:1085 |0D 0A| server echoes back
12 V:48−→A:1085 DRat The Worlds Ultimate Virtual SPY. doc = 46592 DRAT.exe ... cmd executed, return file list
13-41 A:1085−→V:48 ra|08|un c:/windows/notepad.exe|0D 0A| attacker runs an app; “08” is backspace
42-70 V:48−→A:1085 ra|08|un c:/windows/notepad.exe|0D 0A| server echoes back all inputs
71 V:48−→A:1085 ShellExecute (2 Being a Error) Returned app is executed; server replies

Table VI.Drat(v.1.0)-generated traffic

has to simulate shell functionality and act as a command interpreter, should it successfully
identify Telnet-basedRATs.

3.5. Presence of Multiple Evasion Techniques inRATs

A straightforward approach forRATs to evade detection is to continually change both
message structures and banner information as such artifacts are exploited as signatures
by firewalls, AVs, and IDSs/IPSs. In this regard,DeepThroat(v1.0) flushes the name of
the victim machine (e.g.,SHEEP) at the very end of its banner “–Ahhhhhhhhhh My
Mouth Is Open SHEEP” while in other versions, the name of the victim machine appears
first as demonstrated by the banner ‘SHEEP - Ahhhhh My Mouth Is Open (v2)” of
DeepThroat(v2.0). Telltale patterns used inDeepThroat change slightly in different versions
as well. For instance the patternAhhhhhhhhhhin v.1.0 has been shortened toAhhhhhin
versionsv.2.0 andv.3.0 and ultimately becameAhhhhin v.3.1. Such banner adaptations
make it more difficult for security systems to detect with a single fixed signature the traffic
generated by various versions ofDeepThroat operating simultaneously.

Sending decoy messages is another popular evasion technique. By doing so, Trojans such
asDoly attempt to induce security systems to generate large numbers of false positives [43],
forcing the security officers to spend considerable periodsof time examining logs. The
latter produces a good chance for the intruders to go undetected. A Doly client attempts
to establish aTCP connection with a victim by trying ports 3456, 4567, 5678, 6789 ¶,
7890, 9182, 8374, 2345, 7654, and 27559 in sequence four times regardless if aRAT is
present. This activity resembles to port scanning which is typically graded as a low-severity
surveillance activity by AVs/IDSs/IPSs and is frequently ignored by security officers.
Although RATs often operate on their default ports, they can be configured to use ports
in either the privileged or non-privileged range. While experimenting with real traffic, we
observed thatRATsmostly employ port hopping techniques and servers use arbitrary ports
selected on the fly readily defeating port-based detection approaches. Hence, a content-
based approach would be by far more fruitful in detecting Trojans using decoy messages,
dynamic port hopping, and other evasion techniques.

¶Doly’s server default port.

CATCHING REMOTE ADMINISTRATION TROJANS 11

4. A Framework for Apprehending RATs

Conventional security systems use add-on modules and/or specially-crafted signatures to
identify maliciousRAT activities and are unaware ofRATs unique characteristics. To
address these shortcomings, we propose an extensible framework namedRAT Catcher
that employs network-based detection methods, operatesin-line, and manipulatesRAT-
traffic in real-time. We base our design on the following constraints: i) RAT-servers are
implanted on victim machines through the channels discussed in Section3.2. Through
its real-time operation, our framework puts emphasis on detectingRAT communications
as opposed to conventional AVs and host-based security systems that mainly focus on
the Trojan installation process [14]; and ii) features of soughtRATs including format of
messages, handshake procedures, and functionalities are available typically via reverse
engineering, behavior analysis, and data mining techniques [53, 2]. By tracking the
progress of all established connections initiated by either normal applications or Trojans,
our framework conducts data correlation between differentsessions or traffic streams,
performs stateful inspection, and identifies abnormal and/or deviating behavior in real-
time. OurRAT Catcherstores packets in every data stream, re-assembles them together
and the resulting aggregations are subjected to protocol dissection according to standard
TCP/IP specifications as well as the syntax and semantics of individual Trojans. In this
way, our framework performs layer-7 or application-level inspection and can effectively
combat evasive mechanisms used byRATs. As soon as a session is verified as Trojan,
our framework can immediately take corrective steps by logging, blocking, terminating the
connection or simply taking over the session.

4.1. Design Rationale and Architecture for theRAT Catcher

To remotely control a computing system, an attacker should first set up either aTCP or
UDP channel with theRAT server implanted on the victim machine. ATCP session is
defined by its distinct connection and disconnection processes [15]. The former is a three-
way handshake procedure where the initiator (or client) starts a connection with aTCP
SYNpacket and the recipient (or server) replies with aTCP SYN-ACKpacket which in turn
incurs anACK packet from the initiator. The disconnection procedure typically involves a
four-message exchange with each side dispatching aTCP FIN packet and corresponding
acknowledgments from the two ends. Evidently, a specificTCPconnection can be uniquely
identified by the tuple<client-IP, client-port, server-IP, server-port>. Similarly, a specific
UDP session is also identified by a similar four-element tuple with its termination often
designated with a time-out mechanism. Any change in the above tuple implies a new
TCP/UDP session. Overall, a connection can be represented with the extended tuple
<client-IP, client-port, server-IP, server-port, protocol> whereprotocolcan be eitherTCP
or UDP. Within each session, two data streams exist, one from originator (or client) to
recipient (or server) and the second in the opposite direction. Each data stream within a
session can be identified with a four element tuple< IPs, PORTs, IPd, PORTd>, where
IPs andPORTs are the IP address and network port of the source andIPd andPORTd

are their destination counterparts.
Messages exchanged between a Trojan server and client are generated in accordance

to the RAT’s own syntax rules and semantics and are shipped following the constraints
of TCP/UDP transport protocols. The latter may not respect the Trojan’s message
boundaries, therefore, inconsistencies between Trojan message borders and transport
packet demarcations are unavoidable. The transport layer may also deliver packets in an
arbitrary order and the original data stream can be only recovered via reassembly by its

12 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS

recipient. For instance, theTCP packet of row 5 in TableIV consists of threeNetBus
Pro messages. Similarly, in theSubSeven-generated traffic of TableVII , multiple Trojan
commands are contained in a singleTCPpacket as row 12 shows. In this, commandsIN7
andCL7 open the Webcam of the victim,IN2 andCL2 attempt to open the screen preview
andPSSobtains cached passwords. On the other hand, commanddir<CF><LF> entered

timestamp dir payload description
protocol: TCP; attacker (denoted as A): 192.168.5.143; victim (denoted as V): 192.168.5.141

1 0.002077 V:55555−→A:3689 connected. 21:17 ..., ver: Legends 2.1 banner from server, access time and version
2 20.819971 A:3689−→V:55555 URLhttp://www.fortinet.com/ instruct victim to goto given “URL”
3 20.820263 A:3388−→F:80 (SYN) connect to server F (i.e., www.fortinet.com)
4 21.675816 V:55555−→A:3689 web browser has been opened. server successfully launches browser
5 72.771562 A:3689−→V:55555 FFNF05*.exeC:/ try to find files “*.exe” under “C:/”
6 72.912758 V:55555−→A:3689 C:/EXPLORER.EXE C:/putty.exe ... a list of specified files is returned
7 108.402655 A:3689−→V:55555 FTPenable!@@@21:::1$$$C:/ enable FTP server by cmd “FTP”
8 118.066511 A:3689−→V:55555 FTPdisable try to disable FTP server
9 118.068258 V:55555−→A:3689 FTP server disabled remote FTP server is disabled
10 129.070129 A:3689−→V:55555 IRG access registry editor
11 129.131769 V:55555−→A:3689 Console Control Panel Environment ... menu of registry editor is returned
12 139.577822 A:3689−→V:55555 IN7CL7IN2CL2PSS open Webcam (IN7CL7), get passwords (PSS)
13 139.579805 V:55555−→A:3689 PSS cached passwords: [www.fort...] return network addr, login name, password
14 208.272307 A:3689−→V:55555 CLG close registry editor

Table VII. SubSeven (v.2.1)-generated traffic

by theDrat attacker in TableVI is split into fourTCPpackets; the payload of each packet
contains only one or two characters.

There are often multiple concurrent sessions between aRAT client and its server
coexisting with sessions created by other applications. For instance in theSubSeven
traffic of TableVII , two sessions coexist after the packet in row 3. The first is identified
by tuple<A,3689,V,55555,TCP> whereA stands for the attacker located atIP address
192.168.5.143 andV is the victim with IP address 192.168.5.141. The second session
is identified as<A, 3388, F, 80, TCP> whereF is the IP address of the Web server
www.fortinet.com. In a similar fashion, theDeepThroat traffic of TableVIII creates two
sessions, the control session identified as<A,60000,V,2140,UDP> and the data session
commencing at row 4 and identified as<A,60000,V,3150,UDP>.Most anti-Trojan systems
detectRAT control-sessions only and they are completely blind to respective data-sessions
simply because the latter lack unique telltale patterns.

dir payload description
protocol: UDP; attacker (denoted as A): 192.168.5.143; victim (denoted as V): 192.168.5.141

1 A:60000−→V:2140 00 a “ping” message
2 V:2140−→A:60000 host - Ahhhh My Mouth Is Open (v3.1) a “pong” message
3 A:60000−→V:2140 39 a request to “create directory”
4 A:60000−→V:3150 c:/temp/host parameter to “create directory” command
5 V:2140−→A:60000 Directory Created reply to command “create directory” (39)
6 A:60000−→V:2140 35 command “freeze mouse”
7 V:2140−→A:60000 Mouse frozen reply to command “freeze mouse” (i.e., 35)
8 A:60000−→V:2140 12 command “send host info”
9 A:60000−→V:3150 http://www.fortinet.com parameter to “send host info” command
10 V:2140−→A:60000 Host Sent To URL reply to command “send host info” (12)

Table VIII. DeepThroat(v.3.1)-generated traffic

For all established connections originated by either normal applications and/or
suspected-Trojans,RAT Catcher maintains session records, including information of
connection initiator and recipient, messages exchanged, and application type of the session.
Such session information is not only maintained during the lifetime of a session but also
remains accessible beyond its lifetime as part of a history repository. The capability of
tracking the state of each active session facilitates stateful inspection, intra-session data
fusion, and inter-session correlation for Trojan-generated traffic. With the help of stored
information, we can also determine the progress of a session. For instance, information
on connection status can indicate whether aTCP session is in the three-way handshake
procedure, has established connection, or is at its termination phase. By correlating the
data of streams within the same session,RAT Catchercan rapidly determine whether an

CATCHING REMOTE ADMINISTRATION TROJANS 13

Active Sessions

Zombie Sessions

Session Pool

Data Pool

Message Sequencer (MS)

Session Correlator (SC)

Traffic Distinguisher (TD)

Trojan Terminator (TT)

Incoming Packet P Outgoing Packet

RAT Catcher

Figure 3.RAT Catcherarchitecture

attacker’s operations are successful. In addition, by correlating the information from prior
sessions with an ongoing connection, aRAT data channel could be readily associated with
its control channel, thereby prompting the same preventive/punitive action by theRAT
Catcher. Furthermore, we use the information of defunct sessions stored in the history
repository for carrying out session correlation computations that help determine the traffic
type of currently active sessions.

The storage of all transport packets facilitates their remapping to Trojan messages by the
packet re-assembly procedure that takes place with the helpof the syntax and semantics
of known Trojan protocols. The objective of this aggregation also known asMessage
Sequencing, is to conceal the packet demarcation imposed by the transport layer and
restore the boundaries of Trojan messages. Without sequencing, Trojan sessions may go
undetected if their constituent messages happen to span multiple transport packets. Given
the large number of existingRATsand the variety of protocols used, it becomes challenging
to identify a RAT session effectively and efficiently. To classify data streams, theRAT
Catcherresorts to multiple techniques that include traffic correlation, application protocol
analysis, and stateful inspections in addition to fine-tuned signatures. Once a session is
confirmed as Trojan, our framework may immediately block, terminate or take over the
session besides log generation. Figure3 shows the architecture of our framework that
entails the following modules:Session Correlator (SC), Message Sequencer (MS), Traffic
Distinguisher (TD), andTrojan Terminator (TT).

Once a packetP arrives at theRAT Catcher, the Session Correlator (SC)module
determines whether there exists a sessionS in whichP belongs to; if there is none, a new
sessionS is created forP . Based on information aboutS or correlation with other active
or defunct sessions, it may be possible to immediately determine whetherP is part of a
RAT such asBack Orifice, SubSeven, NetBus, or DeepThroat. P is then handed over to the
Message Sequencer (MS)along with its session informationS, whereP is re-assembled
with other existing packets of the same stream to form a sequence of application messages.
In turn, this message sequence is transferred to theTraffic Distinguisher (TD)to determine
the specific application type of the session. Finally,P arrives at theTrojan Terminator (TT)
where information onS is appropriately updated,P is stored inS to help forthcoming
re-assembly efforts and a corrective action may be taken ifRAT traffic has been found.

4.2. Session Correlator (SC)

To maintain information for each session, we use thesessiondata structure whose key fields
are shown in first part of TableIX. Each connection is assigned asessionstructure and is
uniquely identified by its first five fields: source and destination IP addresses (SIP, DIP),

14 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS

source and destination port numbers (SPORT, DPORT) and protocol (PROTO). FieldTYPE
indicates the application type of the session such asDeepThroat, NetBus, WanRemote etc.;
this field can assume the valuebypass, should the application type cannot be determined
after a certain amount of traffic in the session has been inspected or the session is generated
by a normal application. The fieldCONFIRM indicates whether the value inTYPE has
been derived from correlating streams in both directions ofthe same session, obtained
by association with other sessions (active or zombie), or simply drawn based on different
messages in a uni-directional traffic. Clearly, should a session application type be drawn
using multiple criteria –data streams, sessions, and correlations– the classification accuracy
is improved. The two data streams in a session, the one from client to server and its reverse
counterpart are stored in fieldsCLIENT andSERVERrespectively; these pointers tostream
structures are discussed in Section4.3.

field name size (bytes) description

Key fields of thesessiondata structure
SIP 4 IP address of the host at one end of the connection
DIP 4 IP address of the host at the other end of the connection
SPORT 4 port number of the host withIP addressSIP; may assume special value ofunknown
DPORT 4 port number of the host withIP addressDIP; may assume special value ofunknown
PROTO 1 protocol utilized by the session (TCPor UDP)
TYPE 4 identify traffic type, such asDeepThroat, NetBus, SubSeven; can beunknown
CONFIRM 4 TYPE is drawn from uni-or bi-directional streams, intra- or inter-session correlations
SERVER 4 pointer to serverstreamdata structure
CLIENT 4 pointer to clientstreamdata structure

Key fields of thestreamdata structure
state 4 state of the stream (TCPonly) such asCLOSED, LISTEN, SYNSENT, SYNRCVD, ESTABLISHED
next-seq 4 next sequence number expected (TCPonly), computed based on information of sender
ISN 4 initial sequence number of the current stream (TCPonly)
data 4 pointer to the root ofinterval-treestoring all packets of the stream
total-size 4 total size of data transferred in the stream so far (UDP only)
data-size 4 number of bytes stored in “data” buffer (UDP only)

Table IX. Key fields in data structuressessionandstream

Figure 4 shows an hierarchical structure termedactive sessions tablethat we use to
organize session pertinent information; it provides efficient session insertions, retrievals,
deletions, and facilitates intra-session and inter-session correlations. We first use a hash-
table to group sessions with hash functionH(SIP,DIP,PROTO)=((h>>16)xor (h>> 8))
mod h sizewhere auxiliary functionh is defined ash=(SIP xor DIP xor PROTO), “>>”
is the right shift operation, andh size is the size of the hash table. In computing the
hash value,SIP, DIP, andPROTOare treated as integers with protocolsTCP andUDP
assuming values0x06and0x11respectively. Although simple, functionH has exhibited
near-uniform distribution in our experiments. Next, each hash-table entry points to asplay
tree T that complies with the binary search tree property and attains an amortized time
by moving a tree node closer to the root every time it is accessed [48]. Clearly, frequently
accessed elements are more likely to be closer to the root.

A splay treeT anchored off each entry of the hash table helps organize all sessions that
present the same hash value. In our framework, each node inT represents all connections
established between a source/destination pair described by fieldsSIP, DIPandPROTOof
the structuresession(of TableIX). More specifically, every node ofT is associated with
a port mapperconsisting of two tables; one organizes the ports (SPORT) used bySIPand
the other stores ports (DPORT) used byDIP. If a port number is active and occupied by a
session, the appropriate record for the session is stored inthe corresponding slot of theport
mapper. Multiple connections sharing the same port number are organized with a linked-list
under the slot indicated by the port number. Finally, all session specific data are maintained
in the session pool of Figure4 and are organized as linked-lists as well.

To facilitate session retrieval, we designed functionsession-find(P , wildcard) whose
goal is to locate the sessionS that packetP belongs to. This function initially searches the
active session tablewith the help of data in tuple<SIP, SPORT, DIP, DPORT, PROTO>

available throughP . If the outcome is an existing sessionS, P is client-initiated andS
is marked bySCas having forward direction “DIR: forward”; otherwise,SClooks up the

CATCHING REMOTE ADMINISTRATION TROJANS 15

SIP: 192.168.5.143
2140

PROTO: UDP

SPORT
Hash

Table

Code I

Address Manager

DIR: forward

DIP:192.168.5.141
PROTO: UDP
SPORT: 60000
DPORT: 2140
TYPE: deepthroat
ROLE: client

DIP:192.168.5.141

DPORT

Session Pool

SIP: 192.168.5.14360000

(Splay Tree)

Port MapperTable
Active Sessions

Figure 4. Session information before data channel is established for traffic in TableVIII

SIP: 192.168.5.143

60000
SIP: 192.168.5.143

SIP: 192.168.5.143
DIP:192.168.5.141
PROTO: UDP

2140 3150

DIP:192.168.5.141
PROTO: UDP
SPORT: 60000
DPORT: 3150
TYPE: deepthroat

SPORT: 60000

TYPE: deepthroat
ROLE: client

DPORT: 2140

ROLE: client

PROTO: UDP

DIP:192.168.5.141

Port Mapper

SPORT

DPORT

Table

Code I

DIR: forward

Hash

Address Manager
(Splay Tree)

Session Pool
Active Sessions
Table

Figure 5. Session information after data channel is established for traffic in TableVIII

active session table again with a new tuple<DIP, DPORT, SIP, SPORT, PROTO> formed
by exchanging the roles of source and destination ends. A non-empty resultS in this second
attempt indicates thatP is part of a server-originated stream tagged with direction“DIR:
reverse”. The wildcard argument ofsession-find()specifies whether wildcard matching is
conducted in the session lookup. By assuming value “source-port” or “ destination-port”
for parameterwildcard, session-find()considers any active source or destination port to be
a match. Shouldwildcardbe designated as “none”, an exact port match is performed.

Algorithm 1 outlines the three-step operationSC carries out. First, the function call
session-find(P ,none) is used to extract the sessionS corresponding to packetP by
traversing the active session table; a non-nullS indicates thatP belongs to an existing
session andSCsimply exits by returningS. Next, SCverifies whetherP initiates a new
session that acts as a data channel associated with an existent RAT control channel. Finally,
the application type of the newly created sessionS for packetP is set by correlatingS with
active/defunct session tables.

We use theDeepThroat traffic of TableVIII as an example to describe the procedure
followed by SC. The traffic segment indicates that the attacker establishes two UDP
sessions with2140 and 3150 as their corresponding destination ports; the former acts
as the command channel and the latter as the data channel. By routing the traffic of
TableVIII to ourRAT Catcher, SCcreates session<A,60000,V,2140,UDP> immediately
after packet at row 1 is encountered. WhenSCdeals with packetP of row 2, the invocation
of session-find(P , none) yields session<A,60000,V,2140,UDP> whose mark “DIR:
reverse” indicatesP to be a server-originating packet. We assume that after processing
the first two packets, theSC records information on session<A,60000,V,2140,UDP>,

16 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS

Algorithm 1 Procedure followed bySession Correlator (SC)
1: P is a newly arriving packet;SIPandDIP are the source/destinationIP addresses ofP ; sportanddport are

the source/destination ports ofP ; PROTOis the protocol ofP ;
2: findS associated withP in active session table by calling functionsession-find(P , none)
3: if (S is not null) then
4: returnS andexit;
5: end if
6: find sessionT in theactive sessions tablewith function callsession-find(P , destination-port);
7: if (T is not null) then
8: if dportof sessionT is any, replace it with that ofP , returnT andexit; otherwise, create a new sessionS

for P with tuple<SIP,sport,DIP,dport,PROTO>; fieldsTYPEandCONFIRMof S are set to the same as
T ; returnS andexit;

9: end if
10: create a new sessionS for P with tuple<SIP,sport,DIP,dport,prot>;
11: find sessionT in the defunct session table with tuple<DIP,dport,PROTO>;
12: if (T is not null) then
13: setTYPEof S to that ofT and returnS;
14: end if

constructs the session table of Figure4 and tentatively marks the session asDeepThroat.
When the packet in row 4 is encountered, theRAT Catcherestablishes that no session
<A,60000,V,3150,UDP> exists as evidenced by Figure4. Before creating a new session
<A,60000,V,3150,UDP>,SClooks up in theactive sessions tablefor any session matching
<A,60000,V,any,UDP> with the help of the callsession-find(P , destination-port). By
checking the type of the session in the lookup result,<A,60000,V,2140,UDP>, theRAT
Catcherestablishes that aDeepThroat control channel indeed exists and therefore marks
the newly created session asDeepThroat (Figure5). Algorithm 1 carries out this session
correlation betweenRAT control and data channels in lines 6 to 9.

Information about terminated orzombiesessions, especially those recently torn down,
may be helpful to determine the application type of currently active sessions. For example,
if a service provided on a specific network port of a host identified with the tuple
<DIP,DPORT,PROTO>has been determined as a Trojan server by some previous sessions,
its application type is not expected to change abruptly. Based on the above observation, our
RAT Catcherkeeps information aboutzombiesessions of Trojan servers accessible for a
period of time –configurable but set to 5 minutes by default– and such zombie sessions
are organized in the defunct session table with key of<DIP,DPORT,PROTO> and value
of TYPE. Any time a new session<SIP,SPORT,DIP,DPORT,PROTO>, is generated by
theSC, the defunct session table is consulted with query<DIP,DPORT,PROTO>, and the
application type of the returned session, if any, is assigned to the newly created session.
For instance, by the timeRAT Catcherprocesses the connection beginning at row 3 of
TableV, session<A,1071,V,80,TCP> has become zombie and therefore, it is stored in
the defunct session table. By simply searching for<V,80,TCP> in the defunct session
table, the application type of the session established by row 3 of TableV can be quickly
determined asWanRemote. Such a correlation between ongoing connections and already-
known zombiescan establish relevant temporal session associations and rapidly identify
the application types of ongoing sessions.

4.3. Message Sequencer (MS)

We design thestreamstructure –key elements of which appear in the lower part of
Table IX– so that packet re-assembly and state tracking for a data stream can be
easily carried out. Different types of information are stored for connection-oriented and
connectionless channels. ForTCP streams, fieldstatetracks the connection state of its
originator and can beSYN-SENT, SYN-RCVD, ESTABLISHED, or CLOSE; fields ISN and
next-seqmaintain the initial sequence number and the next expected sequence number,
respectively. Last,datais a pointer to aninterval-tree[17] used to organize all encountered

CATCHING REMOTE ADMINISTRATION TROJANS 17

stream packets according to a search key [n1,n2] wheren1, n2 represent start and end
sequence numbers; the value of every interval-tree node is asingle packet of the stream
in question. In aUDP stream, thedatapoints to a buffer that stores data received but
unprocessed for the stream in question thus far, whose size is indicated by fielddata-size.
The fieldtotal-sizeindicates the number of bytes transmitted helping track thevolume of
data encountered by the session. We define function callstream-find(S, P) to retrieve the
streamI corresponding to packetP within sessionS.

TheMessage Sequenceruses an interval-treeI, implemented as a red-black tree to store
stream-pertinent data. The key [Vs, Ve] of a specific nodeV in I represents the start and
end sequence numbers (SSNandESN) of the corresponding packetP ; Vs can be directly
obtained from fieldsequence numberof P ’s TCP header whileVe can be derived with
the help of the fieldstotal length, IP header lengthas well asTCP header sizeof the
packet. ForUDP streams, we simply assign the current value intotal-sizeof the stream
as the start sequence number (SSN) of the incoming packet and itsESNcan be derived
from SSNand the packet size. For any two packetsP andQ of the same stream, we define
different relationships based on their sequence intervals. By denotingPs andPe as the
start and end sequence numbers forP as well asQs andQe for Q respectively, we can
determine that:a) Q is a duplicate ofP if Ps=Qs andPe=Qe; b) P andQ overlap if
Ps<Qs andQs<Pe < Qe or Qs<Ps andPs< Qe<Pe; c) P containsQ if Qs>Ps and
Qe<Pe or Q containsP if Ps>Qs andPe<Qe; andd) P precedes or followsQ if Pe<Qs

or Ps>Qe, respectively. With the help of these interval relations, we design functions to
manipulate the interval tree:interval-insert(I, P) inserts a node representing packetP into
I, interval-delete(I, P) removes the node of packetP from I, andinterval-retrieve(I, P)
returns a pointer to a nodeQ of the treeI provided that a duplicate, overlap, or containment
relationship betweenQ and P can be established; otherwise, the outcome is aNULL.
Evidently, these operations maintain complexityO(log(n)) wheren is the number of nodes
in I. In addition, the functionpacket-build(I, SSN, ESN) creates and returns a new packet
Q with interval indicated by [SSN, ESN]. Finally, functioninterval-traversal(I) performs an
in-order tree walk ofI and lists all intervals (i.e., packets) in sorted order by their SSN; this
function is useful for logging packets into permanent storage.

The stream re-assembly process used byMS is presented in Algorithm2 and works as
follows: for an arriving packetP , MS obtains the sessionS of P and functionstream-
find(S, P) is invoked to fetch its streamI. Next,MSchecks the freshness ofP by calling

Algorithm 2 The procedure followed byMessage Sequencer (MS)
1: P ← incoming packet;S← session ofP returned bySession Correlator (SC); I ← stream-find(S, P);
2: if (TYPEandCONFIRMof S are set)then
3: P is part of aRAT or normal session; hand it over to the protocol analyzer indicated byTYPEor Traffic

Terminator (TT); exit;
4: end if
5: Q← interval-retrieve(I, P);
6: if (Q is empty)then
7: P is a brand new packet and functioninterval-insert(I, P) is used to addP into I;
8: else
9: check whether the overlapping parts ofP and any packet inQ have the identical contents; if not, generate

alerts andexit;
10: end if
11: ts← initial sequence number (ISN) of I; te← (sequence number ofQ)+(payload size ofQ), whereQ is the

packet with largest sequence number inI

12: if ((te - ts) is larger thanMAX SIZE (defaultMAX SIZE=5 KB)) then
13: TYPEandCONFIRMof S are set to bebypass; andexit;
14: end if
15: O← packet-build(I, ts, te) and is handed over toTraffic Distinguisher (TD)

function interval-retrieve(I, P), which returns a pointer to nodeQ of tree I. A NULL
Q implies thatP is a new packet and can be inserted intoI with the help of function
interval-insert(I, P). If P andQ are duplicates, their payloads are compared to ensure that

18 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS

Traffic Classifier (TC)

Back Orifice

DeepThroat

SubSeven

Ultors Trojan

Tini Telnet Server

Eclypse

HellDriver

Infector

Drat Trojan

WanRemote

WebServect

to Trojan Terminatorfrom Message Sequencer

Setiri Trojan

Traffic Distinguisher (TD)

HTTP Dissector FTP Dissector
Dissector

MiscelleneaTelnet Dissector

Figure 6.Traffic Distinguisher (TD)components

they have identical content beforeP is inserted intoI with a different timestamp. In a
similar manner, for cases whereP andQ overlap and eitherP containsQ or Q contains
P , their contents on the common sequence interval are compared; if they share the same
content for the overlapping part,P is inserted intoI sinceP is a normal overlap packet or
retransmission ofQ; otherwise,P is suspicious as it may have been crafted with evasive
tools ‖ and administrator-specified counter measures such as dropping can be applied.
Finally, functionpacket-build(I, SSN , ESN) is called, withSSN the initial sequence
number of the streamI andESN the largest sequence number thus far inI, to re-assemble
the data stream and the resulting aggregation, termedsuper-packetO, is handed to the
Traffic Distinguisher (TD)module.

4.4. Traffic Distinguisher (TD)

As every Trojan follows its own protocol, it would be unrealistic to use a monolithic
mechanism for detecting all possibleRATs. The Traffic Distinguisher (TD)module
addresses this challenge by using a multi-phase traffic classification scheme. First, all
incoming traffic is categorized by theTraffic Classifier (TC)into four general types of
streams:HTTP, FTP, TelnetandMiscellanea. Subsequently, each type is handled by its
own trafficDissector. In theMiscellanea Dissector, we employ specific Trojan analyzers
to detect streams that potentially belong toRATs using proprietary protocols as such
Trojans hardly manifest any commonalities. Figure6 shows theTD components and their
organization.Traffic Classifier (TC)component mainly employs heuristic rules to classify
traffic. For every incoming packetP , along with its sessionS, streamI, and thesuper-
packetO constructed by moduleMessage Sequencer (MS), TC determines the traffic type
of P with the help of the following rules:

1. packetP is client-initiated: Thesuper-packetO is matched against pattern “method
URL HTTP/[0.9|1.0|1.1]”, where methodis any legitimateHTTP-method such as
GET, POST, andPUT [25]; a positive result causes sessionS to be marked asHTTP.
Similarly, S is claimed asFTP-compliant traffic if O follows pattern “command
parameter|0D 0A|”. S is marked asTelnet-compliant traffic if application payload
of P is less than 3 bytes andO follows pattern “command parameter|0D 0A|”.
Otherwise,S is marked asMiscellanea.

‖such asfragroute

CATCHING REMOTE ADMINISTRATION TROJANS 19

2. packetP is server-initiated: IfO follows pattern “HTTP/[0.9|1.0|1.1] 3-digits status-
text”, S is marked asHTTP-compliant traffic.S is deemed asFTP traffic if O

conforms with syntax “text-string|0D 0A|”. In order to identify Telnet-compliant
traffic, O is first split into lines with demarcation symbols|0D 0A|, the first line is
then rewritten by simulating the effects of function-keys “backspace” and “delete”,
and the outcome is compared against the client-dispatched command. If all above
checks fail,S is marked asMiscellanea.

OnceTCdetermines the type ofP , it invokes the correspondingDissector.
TheDissectorsanalyze the header and body of exchanged messages in both directions of

a session and correlate messages within the same session to further improve classification
accuracy. In particular, theHTTP Dissectorinspects the header and body ofHTTP
messages, attempting to identifyRATs that follow theHTTPprotocol such asWANRemote.
TheFTP DissectoridentifiesFTP-based Trojans includingEclypse, HellDriver andInfector
while theTelnet Dissectordetects theDrat, Ultors andTini Telnet Server Trojans that follow
Telnetprotocol specifications. Similarly,RATs including SubSeven andNetBus that use
their own protocol specifications are handled byMiscellanea Dissector; the latter is mostly
based on analyzers that useRAT specifications often obtained through reverse engineering.

By and large,RAT streams that are transported via the same protocol appear tobe very
similar except in their use of ports, banners, and server-replies received. For instance, all
FTP-based Trojans such asEclypse (TableII) andHellDriver useTCP-ports for their control
and data channels and their server use banners that differ only in content. For example, the
Eclypse banner is“220 EclYpse ’s FTP Server is happy to see u !”and that ofHellDriver’s is
“220 ICS FTP Server ready”. AlthoughFTP-compliantRATssupport different command
sets, they overall follow theFTP specification. Based on these observations, ourRAT
CatcherdetectsFTP-compliant RAT types by mainly using their server-banners and
client-command sets. As soon as the banner and command set ofa newly-established
FTP-basedRAT become available,RAT Catchercan successfully identify the Trojan in
question through proper augmentation of theFTP Dissector. This also applied toHTTP
andTelnet-compliantRATs as well. Algorithm3 shows the overall operation of theFTP
Dissector; the dissectors forTelnetand HTTP are laid out similarly. Algorithm3 treats

Algorithm 3 Procedure forFTP Dissector
1: P is the newly arrival packet,S andI are session and data stream thatP belongs toO is the re-assembled

“super-packet”
2: if (I is from server to client of sessionS) then
3: O is split into multiple lines demarcated by|0D 0A|, banner is assigned the first line
4: for (each bannertelltale of FTP-basedRATsidentified byRAT Catcher) do
5: matchbanneragainsttelltale andTYPEof S is set to theRATtype corresponding totelltale if a match

is found
6: end for
7: else
8: O is split into multiple lines demarcated by|0D 0A|, commandis assigned the first token of the first line

separated by empty space
9: if (command is PORT) then

10: calculate port numberpt based on the parameter of thePORTcommand – refer to TableII for calculation
formula;
create a new session with tuple<DIP,any,SIP,pt,TCP>, whereSIP andDIP are the source/destination
IP addresses ofP

11: end if
12: for (each commandinstruction used byFTP-basedRATs) do
13: matchcommand againstinstruction andCONFIRMof S is set if a match is found
14: end for
15: end if
16: P is handed over toTrojan Terminator (TT)

FTP commandPORT in a special way as this command specifies the port used for the
data channel. A pseudo-session<DIP,any,SIP,pt,TCP> is created whereSIP , DIP are
the source/destination IP addresses of the packet in question, andpt is the port number

20 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS

specified in commandPORT. As the network port that would be used by Trojan server data
channel in the near future is yet unknown, a placeholderanyis used instead.

The function ofMiscellanea Dissectoris inherently different from that of its counterparts
in Figure6 as it attempts to detect proprietaryRAT communication protocols that hardly
demonstrate any commonalities. This dissector essentially acts as a scheduler for all
registered analyzers whose objective is to dissect exclusively proprietary protocols. For
each incoming packetP , Miscellanea Dissectorinvokes in sequence allRAT-analyzers
that have been implemented and incorporated in our framework. The process continues
until the application type ofP is either determined or allRAT-analyzers have been used
with no outcome.

Algorithm 4 Protocol Analyzer forNetBus Pro

1: P is the newly arrival packet,S andI are session and data stream thatP belongs toO is the re-assembled
super-packet

2: verify thatO is at least 10 bytes in size and starts with string “BN”, otherwise, exit from the procedure
3: len = O[2, 3], that is, the second and third bytes ofO; version = O[4, 5]; code = O[8,9]
4: check conditions ((size ofO >= len) and (version = 2) and (code < 200)) satisfied; otherwise, exit from

the procedure
5: if (I is from server to client of sessionS) then
6: TYPEof S is set toNetBus Pro
7: else
8: CONFIRMof S is set and aNetBus Pro session is detected
9: end if

10: P is handed over toTrojan Terminator (TT)

Analyzers within theMiscellanea Dissectorshare similar working mechanisms and
Algorithm 4 shows the skeleton of theNetBus Pro analyzer. In brief, Algorithm4 first finds
boundaries ofRAT-messages from the re-assembledsuper-packet Oprovided by module
MS. In particular, Algorithm4 inspects whethersuper-packetO satisfies the minimum
message size of 10 Bytes and starts with telltale “BN” as necessitated byNetBus Pro
specification. It then examines whether the restored messages yieldNetBus Pro traffic.
This is done by extracting well-defined fields includingmessage-size, version-number, and
command-codeand tentatively marking the flow asNetBus Pro. Finally, Algorithm4 uses
the first server-message to confirm the initial marking by thefirst client message and set
the fieldCONFIRM.

4.5. Trojan Terminator (TT)

The Trojan Terminator (TT)module of theRAT Catcherallows for counter measures to
be taken for different types of detectedRATs. The TT module examines the application
type of a received packetP in conjunction with the status of its sessionS and streamI

and take administrator-specified actions for the various types of traffic. If fieldsTYPEand
CONFIRMof sessionS are not set,TT simply forwardsP to the next hop enroute to its
destination. Otherwise,TT uses a number of options including alert generation, logging of
P as well as its data streamI and sessionS, blocking of subsequent messages from the
same session, and/or take-over by acting as aRAT server to the initiator of the session.
Information shown in TableIX for sessionS is also updated based onP to help subsequent
re-assembly operations and improve the accuracy ofRAT Catcher.

In addition,TTcan become more proactive by disabling identifiedRATs. In particular, it
may remove all Trojan-related components from the victim’sfile system. For instance,
NetSphere has a unique feature that allows for the purging of its serverthrough the
client-commandKillServer. The command<KillServer> issued by theNetSphere client
forces the server to disconnect itself from the network; in addition, the server un-installs
itself from the victim system by removing allNetSphere pertinent files. Similarly, Trojan
GateCrasher also provides commands “uninstall;” and “end;” to terminate the execution
of servers and purge from victim machines all pertinent files. By simulating the roles of

CATCHING REMOTE ADMINISTRATION TROJANS 21

RAT-clients, ourTT can take over confirmed Trojan sessions and purgeRATs from victim
machines. In the same manner, ourTTcan play the role of theRAT-servers, helping collect
vital information about attackers without suffering the destructive consequences ofRAT-
servers. In order to take over a detectedRAT session, theTT sends aTCP RESETpacket
or an ICMP destination unreachablemessage to the server. Subsequently,TT crafts fake
replies for all client-generated commands, and record all input from the attackers. Finally,
it is worth pointing out that differentiated actions can be taken according not only on the
RAT types but also on the transport protocols.

5. Experimental Evaluation of theRAT Catcher

We have implemented the proposedRAT Catcherin C as a subsystem in theIPS-module of
FortiGate, a multi-function security protection system and a standalone network device
providing firewall, AV, and IDS/IPS functionalities [32]. The modular architecture of
FortiGateforms the basis for its extensibility and scalability, allowing for the seamless
coupling of all our RAT Catcher-related components. In our experiments we used
FortiGate-300that operates in inline fashion, has 2Gigabytemain memory, can manage
prorated 400Mbpstraffic, and maintains upto one million concurrent network connections.
We subjected theRAT Catcherto a wide range of experiments based on the testbed shown
in Figure7 with a number of test machines undertaking the roles of either RAT-servers or
clients. Test machines run eitherLinux or Windowsas a large number ofRAT-clients and
servers are available for these platforms. All test machines were connected to theFortiGate-
300 via two switches supporting 100/1,000Mbps ports: the first simulates theinternal
network whereRAT-servers are found while the second switch plays the role ofexternal
network where variousRAT-clients are operated by attackers. To verify the behavior of our
RAT Catcher, we installedEtherealtraffic sniffers [23] –denoted asSniffers in Figure7–
to capture data exchanges amongRAT-clients,RAT Catcher and RAT-servers. In what
follows, we report on our laboratory-based effort to establish the accurate operation of the
RAT Catcherand baseline performance characteristics. We also report on the deployment
and performance of the framework in actual networks.

5.1. Accuracy onRAT Detection

Our initial focus was on establishing the accuracy of ourRAT Catcherin detecting Trojans
that use either theHTTP, FTP, Telnetstandard specifications or proprietary protocols with
the help of the test environment of Figure7. We also intended to compare the behavior of
RAT Catcherversus that ofSnort, an open-source IPS that predominantly uses signatures
for RAT detection [44]. In [9], we discuss howSnortcan be used for this purpose and
outline specific rules. Every time we implanted a new Trojan server or client on a test
machine, we re-installed the OS, network and regular applications of the machine in
question to avoid any accidental interference. For all experiments we discuss in this section,
the action taken byRAT Catcheron identified Trojan sessions is configured to bepass,
meaning that theRAT Catcheronly generates alerts for the detectedRAT sessions and
simply forwards all traffic. We proceed with our experimentsin three stages with different
test procedures: manual test, automated test, and tests designed specially for encrypted
RATs.

In the manual testing stage, we initially installed allFTP-based Trojan servers identified
by our RAT Catcher, including Eclypse, HellDriver, and Infector, then manually execute
their corresponding clients and enter randomly selectedRAT commands. OurRAT
Catchersuccessfully identified all such Trojan communications andgenerated appropriate
alerts. Next, we installed a subset ofRAT servers of different types on a single test
machine denoted asA, carefully configured each of them to avoid any conflict on
communication ports, installation locations, clashing file modifications, and activated them

22 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS

...........

Switch−1

Switch−2

Test Machine n

Server

Test Machine 1
Back Orifice Client

Sniffer−2

Sniffer−1

RAT−FortiGate Module

Test Machine 2

Back Orifice
Server

NetBus Server

FortiGate

SubSeven Client DeepThroat Client NetBus Client

SubSeven
Server

DeepThroat

Test Machine n−1

Figure 7. Testbed forRAT Catchersubject to real traffic

Switch 1

Normal Applications
(tester)

Test Machine
Noise Generator

Switch 2

RAT Catcher

Network

Internal External
Netwrok

Figure 8. Testbed forRAT Catchersubject to synthetic traffic

all simultaneously. By executingRAT client programs one at a time to communicate with
their own servers on test machineA, our RAT Catcherrevealed all Trojan activity. We
observed the same accurate detection from theRAT Catcherwhen multipleRAT-clients
were invoked at the same time. TheRAT Catcherstill achieved a perfect detection accuracy
even whenbackgroundor attack-free traffic generated byWU-FTPD co-existed during
the testing. We successfully performed manual tests withRATs based onHTTP, Telnet,
and proprietary protocols by repeating the above test procedure. Using the sniffers of
Figure7, we captured allRAT traffic generated during this manual test stage and used it in
forthcoming tests. Evidently, the large number of commandsavailable in the repertoires of
RATs renders manual testing very tedious and time-consuming.

As every individualRAT command performs a well-defined operation and there is rarely
dependency between different commands, aRAT server may not need to be “aware” of
the sequence of client-issued commands and it is essentially memory-less. We exploit this
memory-less characteristic to automatically generate test cases as follows: for eachRAT
under test, a session template (TCPor UDP) is first selected, then the template is filled with
a sequence of appropriate command/response messages∗∗. The ensued traffic is injected
into ourRAT Catchervia a home-madeIPS testing system [8] termedtesteras shown in
Figure 8. The testercan be configured to manipulate the traffic before it is replayed to
our RAT Catcher; this manipulation includes modification of protocol fieldssuch asIP
addresses, ports, checksums, and sequence numbers, replacement of packet payloads with
arbitrary data, and/or re-shuffling packet orders.

For a TCP-based RAT connection, the session template consists of three parts:
connection establishment, message exchange, and connection termination. The first part
contains the three-way handshake procedure with three packets, client-initiatedSYN,
SYN|ACK from the server, and client’s confirmationACK. The message exchange part

∗∗based on the command set supported by individualRATs.

CATCHING REMOTE ADMINISTRATION TROJANS 23

contains a series of “command/response(c/r)” pairs while the termination part is made up
of two “FIN,ACK” pairs – one originated from the client and the second from the server.
Clearly, packets in both connection establishment and termination have no payload and
are fixed; packets in the message exchange part were generated automatically with the
help of command sets and possible responses for theRAT under test. TheUDP session
template simply consists of a sequence of “command/response (c/r)” pairs specified by
testers or automatically generated. Such sequences of commands are randomly chosen from
the command sets for theRATs under testing. In addition, the number ofRAT sessions to
be created and the appearance frequency of each command in the generated traffic are
configurable. To simulate multiple concurrent sessions, our testercan generate an arbitrary
number of test cases, interleave them together, and shuffle the replay order before feeding
into theRAT Catcher.

We employedSubSeven in the automated testing stage to show the detection accuracy
of bothRAT CatcherandSnort. Overall, we generated 100,000 ofTCP-basedSubSeven
sessions; each session contained a random number –in the range of [1, 20]– of
“command/reply (c/r)” pairs whose sizes and payloads were randomized unless specific
format/parameter requirements are necessitated by the protocol. The generatedRAT
sessions were injected into bothRAT CatcherandSnort. The outcome of the experiment
appears in TableX. Sessions are grouped according to the number of their “command/reply
(c/r)” pairs and columncnt shows the number of Trojan-sessions per group. Columnno-
reply shows the number of sessions from each group that do not trigger any server-reply.
Our RAT Catcherinitially uses one or more messages of a session to determinethe
potentialRAT type of the session which subsequently is confirmed by additional messages
received. The two columnsRAT Catcherdetectand RAT Catcherconfirm indicate the
number of sessions tentatively labeled as Trojan and those confirmed as such by ourRAT
Catcher. TableX also shows respective results obtained withSnort(v.2.2)having all specific
signatures for detectingSubSeven enabled.

“c/r” cnt no-reply reply RAT Catcherdetect (%) RAT Catcherconfirm (%) Snortdetect (%) Snortmiss (%)
1 4865 118 4747 4865 (100.00) 4747 (97.57) 95 (1.95) 4770 (98.05)
2 5062 2 5060 5062 (100.00) 5062 (100.00) 176 (3.48) 4886 (96.52)
3 5069 0 5069 5069 (100.00) 5069 (100.00) 276 (5.44) 4793 (94.56)
4 5318 0 5318 5318 (100.00) 5318(100.00) 349 (6.56) 4969 (93.44)
5 4911 0 4911 4911 (100.00) 4911 (100.00) 410 (0.083) 4501 (91.65)
6 5171 0 5171 5171 (100.00) 5171 (100.00) 556 (10.75) 4615 (89.25)
7 4979 0 4979 4979 (100.00) 4979 (100.00) 570 (11.45) 4409 (88.55)
8 5306 0 5306 5306 (100.00) 5306 (100.00) 683 (12.87) 4623 (87.13)
9 5038 0 5038 5038 (100.00) 5038 (100.00) 761 (15.11) 4277 (84.89)

10 4857 0 4857 4857 (100.00) 4857 (100.00) 723 (14.89) 4134 (85.11)
20 4879 0 4879 4879 (100.00) 4879 (100.00) 1503 (30.81) 3376 (69.19)

Table X. TestingRAT CatcherandSnortusingSubSeven-based test cases

Table X shows that theRAT Catcherdetects allSubSeven sessions and its overall
confirm rate is nearly perfect. Only in the first group, a few instances of unconfirmed
Trojan connections appear as single message-sessions offering no option for confirmation.
Nevertheless, allSubSeven are properly tagged and only 2.43% ofRAT-sessions cannot be
confirmed. On the contrary, the accuracy ofSnortis far from satisfactory with worst 1.95%
detection rate for group 1, best 30.81% for group 20, and average 16.59% for all cases.
This is attributed to the fact theSnortuses only three rules forSubSeven. Clearly, we could
craft signatures inSnortto cover allSubSeven commands but this would greatly burden its
operation and deteriorate its performance to an unacceptable level. We repeated our testing
for traffic generated byFTP, HTTP, andTelnet-based Trojans using synthetic background
noise with the layout of Figure8. We experimented with various intensities of background
noise traffic regulated by the machines making up thenoise generatorand established very
similar results to those shown in TableX.

In the last stage of our baseline experimentation, we dealt with Trojans that use
encryption algorithms. As suchRATs have extra dimensions of freedom–encryption
algorithms and encryption keys–and share little commonality in their encryption processes,

24 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS

RAT Catcher

Switch 2Switch 1

(generators 1,2,...,M)

Noise Generators

(testers 1,2,...,N)
Tester Machines

Network

Internal

Netwrok
External

Figure 9. Testbed with multiple testers to generateRAT traffic and multiple testers for background noise

we designed special testing procedures that we discuss withthe help ofBack Orifice (BO)-
andNetBus Pro-generated traffic. We used the Internet available source-code for theBO-
client and changed its encryption seed for each newly created session. The various streams
of ensued traffic –resembling that of TableIII – were fed into bothRAT Catcherand
Snort. In all instances,RAT CatcherandSnortmaintain the same detection accuracy as
both resort to application-layer protocol dissection. While experimenting withNetBus Pro,
we deployed a synthetic approach asNetBus Pro uses a proprietary encryption algorithm
and its source code is not known. We generated the 10-byte application protocol header
and randomly selected payload for every createdNetBus Pro packet. We generated upto
1,000,000NetBus Pro sessions and injected this synthetic traffic to bothRAT Catcherand
Snort. Our experiments showed that theRAT Catchercreates no false negatives achieving
the perfect detection rate whileSnort fails to recognize most of the generated sessions.
Snortappears to be ineffective as it can detect only thoseNetBus Pro sessions that happen
to have client-initiated and server-originated packets with sizes of0x20and0x10Bytes,
respectively. In contrast, theNetBus Pro protocol analyzer†† of RAT Catchertreats the
message-sizefield as a variable and therefore can recognizeNetBus Pro messages of any
size. Moreover, theRAT Catcherresorts to message structure analysis and correlation of
bi-directional traffic within a session to further improve its detection accuracy. We have
repeated the same approach in experimenting with combinations ofRAT and attack-free
traffic flows and obtained similar results for the performance of RAT CatcherandSnort.
In summary, for Trojans based onHTTP, FTP, Telnet, or proprietary protocols, theRAT
Catchercreates no false positives/negatives.

5.2. Scalability and Performance Under Various Workloads

As most RAT-clients are human-operated, the time gap between two consecutive
commands submitted to the server is often long reflecting theattacker’s thinking time. The
time-stampedSubSeven message exchanges of TableVII indicate that this thinking time
can be as long as60 seconds–between messages 13 and 14– while on average is40 seconds.
This interactive nature of Trojans seems to indicate that processing overheads incurred by
ourRAT Catchershould not be a concern. However, asFortiGateis to be typically deployed
at the edge between internal and external networks, it may often encounter in excess of
half a million concurrent sessions and response times of corresponding sessions may be
noticeably affected.

We evaluate the capabilities of theRAT Catcherunder the above circumstances with the
help of the testbed of Figure9 and the traffic of TableIV. We use the latter as a template
to generate various test cases and we split it into two parts:the first consists of the packets
making up the normalTCP three-way handshake –not shown in the Table for brevity– and

††of Algorithm 4

CATCHING REMOTE ADMINISTRATION TROJANS 25

packet 1; the second part contains the remaining packets 2–7as well as the four packets of
the normal disconnection (also not shown). We configure our system to generate two alerts
for eachNetBus Pro session: the first is created when the session is marked asNetBus Pro
by using data stream from the client to server and the second is raised when the session is
confirmed as a trueNetBus Pro with the help of data stream from the server to client.RAT
Catchergenerates the first alert when packet 1 is encountered and subsequently confirms
the session after it has processed packet 2. In our experimentation, we configure theRAT
Catcherto forward all traffic even if Trojans have been detected and in ourRAT Catcher
implementation, we use theLRU to replace sessions when the memory is full. As the
generation of the second alert depends on the presence of thefirst alert and the availability
of the session information,RAT Catchermay fail to raise this second alert if theRAT
session in question is evicted due to memory congestion.

In all the tests performed in this section,N=20 machines are used astestersto create
foreground trafficas follows: they replay the first half of the trace in TableIV for n

times, therefore generatingn RAT sessions; then pause for1 secondand then replay the
second part of the trace forn times;n assumes values in the range of [10,000, 700,000].
Meanwhile, we useM=2 noise-generator machines whose purpose is to createm sessions
of background trafficusing the attack-freeWU-FTPDapplication –m takes values in the
range [1, 50,000]. We also elect to introduce artificial delays in the replay of background
traffic by splitting eachWU-FTPDsession into two parts and stall the noise-generators for
1 secondin between replaying these two parts. Each time a trace is replayed, thetesters
modify IPs and port numbers of both source and destination of connections to avoid
conflicts among different replayed sessions. Similarly, the noise-generators also change
protocol fields accordingly so that source and destinationIPs and ports do not present
conflicts. To simplify the coordination among different test machines, we assign non-
overlapping IP address ranges to different machines. For every test, we observe the behavior
of RAT Catcherby recording the number of sessions that are correctly marked asNetBus
Pro with both alerts generated, and calculate the ratio of such correctly marked sessions
over the totaln replayedNetBus Pro sessions.

case # ↓ m ; FTP delay n=10,000 n=50,000 n=75,000 n=100,000 n=200,000 n=500,000 n=700,000
1 1; no 100.00 100.00 100.00 100.00 100.00 100.00 100.00
2 1; 1 second 100.00 100.00 100.00 100.00 100.00 100.00 100.00
3 10,000; no 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4 10,000; 1 second 100.00 100.00 100.00 100.00 100.00 100.00 99.99
5 20,000; no 100.00 100.00 100.00 100.00 100.00 100.00 100.00
6 20,000; 1 second 100.00 100.00 100.00 100.00 100.00 100.00 99.99
7 30,000; no 100.00 100.00 100.00 100.00 100.00 100.00 100.00
8 30,000; 1 second 100.00 100.00 100.00 100.00 100.00 100.00 99.98
9 40,000; no 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 40,000; 1 second 100.00 100.00 100.00 100.00 100.00 100.00 99.98
11 50,000; no 100.00 100.00 100.00 100.00 100.00 100.00 100.00
12 50,000; 1 second 100.00 100.00 100.00 100.00 100.00 100.00 99.80

Table XI. Test results of ourRAT Catcherunder various traffic workloads

TableXI shows the results of all our tests conducted under diverse workloads. TheRAT
Catcherdemonstrates the correct behavior when no artificial delaysare introduced by the
noise-generators regardless of the volume ofRAT traffic and intensity of the background
noise. When artificial delays are in place while replayingWU-FTPD packets, theRAT
Catcherfails to generate the second required alert –confirmation marking– for a small
number of Trojan sessions as we increase the volumes of foreground and background
traffic. Nevertheless, even for this small fraction of sessions, RAT Catcherstill carries
out the tentative marking. Overall, there is noRAT session completely missed by our
framework. In addition, we also manually verify that no background traffic is mistakenly
identified asRATs or dropped due toRAT Catchermalfunction. In all cases, the latency
for SubSeven traffic is statistically the same with and withoutRAT Catcherpresent
in FortiGate. By repeating the aforementioned procedure with otherRATs including
SubSeven, DeepThroat, BO2K, andNetSphere we obtain similar results.

26 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS

IPS Testing Center

Threat Analysis Center

FortiNet Data−Center

Suspicious Traffic Logger

RAT Catcher

FortiGate300

Suspicious Traffic Logger

RAT Catcher

FortiGate300

Suspicious Traffic Logger

RAT Catcher

FortiGate300

France P.R. China U.S.A

VPN

Figure 10. Deployment ofRAT Catcherin France, P.R. China and United States

5.3. TheRAT Catcherin the Real World

To evaluate the effectiveness of our approach in a real worldsetting, we have deployed
FortiGate-300devices in three higher education institutions in France, P.R. of China and
the U.S.A. In collecting network-traffic data, we used the layout of Figure10 to store and
forward both confirmed and suspicious traffic streams containing attacks to a corporate
Threat Analysis Center (TAC)for manual processing and verification purposes. In order to
help discover new types of attacks and better ascertain the false-negative rate ofFortiGate-
300, we augmentRAT Catcherwith the Suspicious Traffic Logger (STL)module that
simply logs likely malicious yet not-locally resolved streams/sessions. Regional devices
periodically transfer data on detectedRATs and un-identified but suspect connections to
TAC where sampling and analyses on the traffic are performed. In asimilar fashion, the
collected suspicious traffic bySTL is manually analyzed for new strains of Trojans. Once
the confirmed Trojan traffic is stored, we also useSnort to assess its effectiveness by
computing the false negative rate while portions of confirmed attack-free traffic fromSTL
is replayed toSnortfor gauging its false positive rate. From the forwarded traffic to TAC,
we present all detectedRAT instances forBack Orifice, NetBus andSubSeven during the
period of June 26th, 2006 to July 9th, 2006 in TableXII .

day Back Orifice NetBus SubSeven
US,CN,FR/Total Catcher Snort US,CN,FR/Total Catcher Snort US,CN,FR/Total Catcher Snort

1 204, 115, 46/365 365/0 365/0 55, 25, 17/97 97/0 63/34 32, 15, 4/51 51/0 33/18
2 87, 75, 29/191 191/0 191/0 86, 68, 36/190 190/0 143/47 26, 12, 16/54 54/0 32/22
3 197, 132, 104/433 433/0 433/0 53, 32, 10/95 95/0 64/31 11, 6, 8/25 25/0 16/9
4 168, 64, 40/272 272/0 272/0 108, 47, 32/187 187/0 117/70 46, 34, 11/91 91/0 62/29
5 265, 119, 14/398 398/0 398/0 56, 34, 10/100 100/0 74/26 36, 24, 2/62 62/0 36/26
6 96, 51, 67/214 214/0 214/0 89, 36, 4/129 129/0 84/45 17, 8, 2/27 27/0 19/8
7 230, 95, 14/339 339/0 339/0 51, 28, 17/96 96/0 47/49 33, 25, 7/65 65/0 49/16
8 205, 121, 99/425 425/0 425/0 115, 50, 29/194 194/0 90/104 50, 26, 15/91 91/0 59/32
9 43, 25, 17/85 85/0 85/0 65, 41, 16/122 122/0 56/66 12, 4, 3/19 19/0 15/4
10 218, 107, 18/343 343/0 343/0 66, 29, 11/106 106/0 77/29 28, 20, 14/62 62/0 27/35
11 125, 64, 37/226 226/0 226/0 79, 53, 32/164 164/0 109/55 42, 16, 3/61 61/0 37/24
12 182, 93, 43/318 318/0 318/0 77, 30, 19/126 126/0 67/59 42, 18, 19/79 79/0 45/34
13 246, 123, 51/420 420/0 420/0 104, 53, 24/181 181/0 122/59 49, 27, 13/89 89/0 38/51
14 96, 54, 13/163 163/0 163/0 56, 31, 30/117 117/0 80/37 38, 17, 17/72 72/0 40/32

Table XII. Detection rates byRAT CatcherandSnortin our real-world traffic

TableXII points out mostRAT instances occur in U.S. followed by China and France;
Back Orifice is the most frequently foundRAT in the three regions, followed byNetBus
andSubSeven as shown in columnUS,CN,FR/Total. In TAC, we manually establish that
all RAT sessions shown in TableXII detected and reported by our regionally placedRAT
Catchers have been indeed correctly identified.

TableXII shows the detection/prevention results and false negatives byRAT Catcherand
Snort in ColumnsCatcherandSnort in the format ofcorrect/error, should all identified
RAT sessions atTACbe replayed toRAT CatcherandSnortwhen both are configured to

CATCHING REMOTE ADMINISTRATION TROJANS 27

block all RAT sessions. Clearly,RAT Catcherdoes not create any false positives/negatives
and successfully blocks all identifiedRAT connections. Moreover, it typically determines
the application type of a session after inspecting the first message from each direction
of the session; so, it effectively forwards no attacker-submitted command and minimizes
potential damage to victims. On the other hand,Snortdetects allBack Orifice connections as
it integrates a dedicated protocol dissector which performance-wise is equivalent to that of
ourRAT Catcher. However,Snortmisses a number ofNetBus andSubSeven connections,
generating false negatives since the injected traffic has been manually evaluated to be
malicious. For instance,Snortrule 3009 [9] used to identifyNetBus Pro contains pattern
“BN|20 00 02 00|” where the byte sequence “|20 00|” immediately following string “BN”
designates the size of the message. Obviously,Snortrule 3009 assumes that allNetBus Pro
messages withcommand-code 0x05should be0x20bytes. However, the sizes ofNetBus
Pro messages withcommand-code 0x05can vary in different sessions as demonstrated by
the captured traffic shown in the first part of TableXIII ; this leads to a false negative by
theSnortrules in place as the connection request from theNetBus Pro-client has size of 31
bytes (0x1F) instead of 32 bytes (0x20).

dir payload description

NetBus Pro traffic – protocol:TCP; attacker denoted as A; victim denoted as V
1 A:35821− >V:20034 BN |1F 00 02 00 DC 33 05 00 41 0C 69 1F| msg starts withBN; size: 0x1F; ver:

|5D 28 5B 95 9C AD 95 A8 E6 28 FD...| 0x02; cmd: 0x05 (connection establishment);
2 V:20034− >A:35821 BN |10 00 02 00 DC 33 05 00 41 0C 69 1F 5D 28| reply msg; size: 0x10; ver: 0x02; cmd: 0x05 (con. est.);

NormalFTP-traffic – protocol:TCP; FTP server as S; FTP client denoted as C
1 C:46943− >S:21 PASV|0D 0A| client requests “passive” mode
2 S:21− >C:46943 227 Entering Passive Mode (x, y, z, w, 66, 63) server listens on port 16959 (66 * 256 + 63)
3 C:46944− >S:16959 (SYN) client requests data connection
4 S:16959− >C:46944 (SYN|ACK) server accepts the data connection
5 C:46944− >S:16959 (ACK) client confirms data connection
6 C:46943− >S:21 RETR commands.txt|0D 0A| client requests file ”commands.txt”
7 S:21− >C:46943 150 ASCII data connection for commands.txt response from server
8 S:16959− >C:46944 PWD - print name of current/working directory ... content of file ”commands.txt”

Table XIII. Traffic causingSnortto generate false positives and negatives

By replayingSTL-collected traffic that has been manually verified as legitimate, we
can establish thatSnort also generates false-positives. For example, the second part of
Table XIII shows a normalFTP session and its data connection for a file transfer. In
message 1, theFTP-client requests “passive mode” which is approved by the server in
message 2. At the same time, the server also informs the client of its intent to use the port
16959for the data connection. In messages 3 to 5, a newTCPconnection is established and
subsequently used to deliver the content of the filecommands.txtrequested by the client in
message 6. As the patternPWD is part of the transported content of message 8, it triggers
Snortrule 107 discussed in [9] which is obviously a false alarm. Overall, we have observed
thatRAT Catchercorrectly identifies and subsequently blocks traffic streams known to be
the result ofRATs whereasSnort lags behind due to limited number of specific rules for
each Trojan, yielding both false positives and negatives.

6. Conclusions and Future Work

A Remote Administration Trojan (RAT) is a malicious program that allows an
attacker to remotely control a computing system often creating irrevocable damage.
Existing techniques including fingerprinting, auto-startmonitoring, surveillance of network
activities and packet analysis using static signatures and/or fixed communication ports
are limited in both scope and effectiveness. Today, traffic obfuscation, port hopping, file
renaming and compression, information encryption along with evasion techniques work
counter to the effectiveness and efficiency of anti-Trojan systems. In this paper, we propose
theRAT Catcher, a network-based framework for Trojan detection that operates in inline
fashion at the edge of the network and reliably identifiesRAT activities.

28 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS

TheRAT Catcherinspects every passing packet and maintains information for the entire
lifetime of sessions created by both Trojans and normal applications. This session tracking
improves detection accuracy by providing stateful inspection as well as intra-session and
inter-session data correlation. TheRAT Catcherstores all packets in every data stream, re-
assembles them, and interprets the resulting data aggregations according to known Trojan
protocols. To this end, the framework performs deep inspection on data streams by scanning
protocol fields and whenever feasible message content. TheRAT Catcherdissects both
data streams within a session and correlates them in order toensure that the traffic in
both directions complies with protocol specifications defined by RAT systems in terms
of syntax and semantics. By analyzing the syntax/format of application messages and
inspecting the exchange order of messages between clients and servers, ourRAT Catcher
can defeat evasion techniques. By associatingRAT control and data channels, correlating
active with defunct sessions, and restoring boundaries of application messages through re-
assembly, theRAT Catcherdoes not generate false positives or negatives. Actions imposed
on identified Trojan sessions include alerting, packet blocking, session take-over, and
connection termination.

Experiments showed that the proposed framework is both effective and efficient.
Subjected to comprehensive testing, theRAT Catcherdemonstrated wideRAT coverage,
excellent detection accuracy, and low processing overheads. We plan to further pursue our
work in the area in at least three directions: first, we will keep enhancing ourRAT Catcher
so that it can deal with new types of Trojans as the latter become known; second, develop
advanced techniques to identifyRATs that use strong cryptographic mechanisms and
finally, explore the integration of ourRAT Catcherwith other security systems including
firewalls, anti-virus, and anti-malware programs to more effectively combat aggregate
malicious activities resulting from the mixture ofRAT and popular worms known as
Blended Threats.
Acknowledgments: We are very grateful to the anonymous reviewers for their detailed
comments and suggestions that helped us significantly improve our work. We also thank
Qinghong Yi, Gary Duan, Ping Wu, Joe Zhu, Yelin Guan, and HongHuang for helping
us with various aspects of theRAT Catcherimplementation and testing and Prof. Boris
Aronov for comments on earlier versions of the manuscript.

REFERENCES

1. C. M. Adams and S. E. Tavaris. Designing S-Boxes for Ciphers Resistant To Differential Cryptanalysis.
In Proceedings of the 3rd Symposium on State and Progress of Research in Cryptography, pages 181–190,
Rome, Italy, Feb. 1993.

2. L. Adelman. An Abstract Theory of Computer Viruses. InProceedings of Advances in Cryptology
(CRYPTO’88), pages 354–374, New York, NY, Aug. 1988. Springer-Verlag.

3. Korea Information Security Agency. Security Incident Statistics in Korea.
http://www.kisa.or.kr/english/statistics/hack/, 2000.

4. D. Bell and L. LaPadula. Secure Computer Systems: Unified Exposition and MULTICS Interpretation.
Technical report, MITRE Corporation, Bedford, MA, July 1975. MTR-2997.

5. M. Bishop. A Model of Security Monitoring. InProceedings of the Fifth Annual Computer Security
Applications Conference, pages 46–52, Dec. 1989.

6. CERT. Advisory CA-1999-01: Trojan Horse Version of TCP Wrappers.http://www.cert.org/advisories/CA-
1999-01.html, 1999.

7. CERT. Advisory CA-1999-02: Trojan Horses.http://www.cert.org/advisories/CA-1999-02.html, 1999.
8. Z. Chen, P. Wei, and A. Delis. A Pragmatic Methodology for Testing Intrusion Prevention Systems (IPSs).

Technical report, Deprt. of Informatics & Telecommunications, Univ. of Athens, Athens, Greece, August
2004.

9. Z. Chen, P. Wei, and A. Delis. Catching Remote Administration Trojans. Technical report, Deprt. of
Informatics & Telecommunications, Univ. of Athens, Athens, Greece, May 2007. www.di.uoa.gr/∼ad.

10. D. Clark and D. Wilson. A Comparison of Commercial and Military Computer Security Policies. In
Proceedings of the 1987 Symposium on Security and Privacy, pages 184–194, Apr. 1987.

11. F. Cohen. Computer Viruses: Theory and Experiments.Computers and Security, 6(1):22–35, Feb. 1987.
12. F. Cohen. Computational Aspects of Computer Viruses.Computers and Security, 8(4):325–344, Jun. 1989.
13. F. Cohen. Practical Defenses Against Computer Viruses.Computers and Security, 8(2):149–160, Apr. 1989.
14. Symantec Com. Norton Anti-Virus System.http://www.symantec.com/.
15. D. E. Comer. Internetworking with TCP/IP: Principles, Protocols, and Architecture. Prentice-Hall,

Englewood Cliffs, NJ, 1991.

CATCHING REMOTE ADMINISTRATION TROJANS 29

16. Commodon. Threats to Your Security on the Internet-SubSeven. http://www.commodon.com, 2001.
17. T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. The MIT Press, Boston, MA,

1997.
18. Privacy Software Corporation. Anti-Trojan Program: BOClean. http://www.nsclean.com/trolist.html, 2004.
19. H. DeMaio. Viruses - Management Issue.Computers and Security, 8(5):381–388, Oct. 1989.
20. D. Denning. An Intrusion-Detection Model.IEEE Transactions on Software Engineering, SE-13(2):222–

232, Feb. 1987.
21. D. Denning. The Science of Computing: Computer Viruses.American Scientist, 76(3):236–238, May 1988.
22. T. Duff. Experiences with Viruses on UNIX Systems.Computing Systems, 2(2):155–172, Spring 1989.
23. Ethereal. Ethereal: Powerful Multi-Platform Analysis. http://www.ethereal.com, May 2004.
24. R. Farrow.UNIX System Security. Addison-Wesley Publishing Co., Reading, MA, 1991.
25. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. B. Lee. Hypertext Transfer

Protocol – HTTP/1.1.Internet Engineering Task Force, June 1999.
26. S. Garfinkel and G. Spafford.Practical UNIX Security. O’Reilly and Associates, Sebastopol, CA, 1991.
27. W. Gleissner. A Mathematical Theory for the Spread of Computer Viruses. Computers and Security,

8(1):35–41, Feb. 1989.
28. S. Gordon and D. M. Chess. Attitude Adjustment: Trojans and Malware on the Internet. InProceedings of

the EICAR, pages 183–204, Copenhaguen, Denmark, May 1999.
29. R. Hansen. Moose Test for Windows: NetBus Pro and How it Happened.

http://www.heise.de/ct/english/99/17/088/, 1999.
30. H. M. Heys and S. E. Tavares. On the Security of the CAST Encryption Algorithm. InProc. of Canadian

Conf. on El. & Comp. Eng., Halifax, Canada, Sep. 1994.
31. L. Hoffman. Rogue Programs: Viruses, Worms, and Trojan Horses. Van Nostrand Reinhold, New York

City, NY, 1990.
32. Fortinet Inc. Intrusion Prevention System.Web Site: www.fortinet.com, Oct. 2004.
33. Foundstone Inc. FPort: Intrusion Detection Tool.http://www.foundstone.com/.
34. M. Joseph and A. Avizienis. A Fault Tolerant Approach to Computer Viruses. InProceedings of the 1988

Symposium on Security and Privacy, pages 52–58, Oakland, CA, Apr. 1988.
35. G. H. Kim and E. H. Spafford. The Design and Implementation of Tripwire: A File System Integrity

Checker. InACM Conference on Computer and Communication Security, pages 18–29, Fairfax, VA, 1994.
36. S. Kulakow. NetBus 2.1: Is It Still a Trojan Horse or an Actual Valid Remote Control Administration Tool?

Web page, 2001.
37. S. Lipner. Non-Discretionary Controls for Commercial Applications. In Proceedings of the 1982

Symposium on Security and Privacy, pages 2–10, Apr. 1982.
38. Zone Labs LLC. ZoneAlarm Security Suite.http://www.zonelabs.com/, 2004.
39. T. Lunt and R. Jagannathan. A Prototype Real-Time Intrusion-Detection Expert System. InProceedings of

the 1988 Symposium on Security and Privacy, pages 59–66, Apr. 1988.
40. PC Magazine. StartupCop Pro.http://www.pcmag.com/.
41. H. Nussbacker. Israeli Internet Hacking Analysis for 2000. InProceedings of the Internet Society of Israel

Conference, Tel Aviv, Israel, March 2001. http://www.isoc.org.il/conf2001/presentations/nussbackerl.ppt.
42. The Cult of the Dead Cow. Back Orifice 2000.http://www.bo2k.com or http://www.cultdeadcow.com/, 2004.
43. PestPatrol. About RATS: SubSeven and Remote Administration Trojans. http://www.pestpatrol.com/

whiterpapers, 2006.
44. M. Roesch. Snort – Lightweight Intrusion Detection for Networks. In USENIX 13-th Systems

Administration Conference – LISA’99, Seattle, Washingto, 1999.
45. J. Saltzer and M. Schroeder. The Protection of Information in Computer Systems.Proceedings of the IEEE,

63(9):1278–1308, Sep. 1975.
46. B. Schneier.Applied Cryptography, Protocols, Algorithms, and Source Code in C, Second Edition. John

Wiley & Sons, Inc., 1996.
47. Mischel Internet Security. TrojanHunter vs. the Parasitic Beast Trojan.

http://www.misec.net/papers/thvsbeast/, 2004.
48. D. D. Sleator and R. E. Tarjan. Self-Adjusting Binary Search Trees.Journal of the ACM, 32(3):652–686,

1985.
49. Winternals Software. TCPView Pro.http://www.winternals.com/.
50. D. Song, G. Shaffer, and M. Undy. Nidsbench – A Network Intrusion Detection Test Suite. InSecond

International Workshop on Recent Advances in Intrusion Detection (RAID 1999), West Lafayette, 1999.
51. Inc. Sourcefire. Snort 2.0: Detection Revisited.White Paper, February 2003.
52. E. Spafford. The Internet Worm Program: An Analysis.ACM Computer Communications Review, 19(1),

Jan. 1989.
53. R. C. Summers.Secure Computing Threats and Safeguards. McGraw-Hill, 1997.
54. M. Swimmer. Dynamic Detection and Classification of Computer Viruses. InProceedings of the Sixth

International Virus Bulletin Conference, pages 149–159. Virus Bulletin Ltd, 1996.
55. Internet Security Systems. ISS Security Alert: WindowsBackdoor Update III. http://www.xforce.iss.net,

1999.
56. H. Teng, K. Chen, and S. Lu. Adaptive Real-Time Anomaly Detection Using Inductively Generated

Sequential Patterns. InProceedings of the 1990 Symposium on Research in Security and Privacy, pages
278–284, May 1990.

57. I. Whalley. Testing Times for Trojans. InProceedings of the Ninth International Virus Bulletin Conference,
pages 55–67, September/October 1999.

58. C. Young. Taxonomy of Computer Virus Defense Mechanisms. In Proceedings of the Tenth National
Computer Security Conference, pages 220–225, Oakland, CA, Sep. 1987.

	1 Introduction
	2 Related Work
	3 Characteristics of RATs
	3.1 Frequently Observed Functionalities of RATs
	3.2 Working Mechanisms of RATs
	3.3 Encrypted RAT Traffic
	3.4 Diversified Use of Protocols by RATs
	3.5 Presence of Multiple Evasion Techniques in RATs

	4 A Framework for Apprehending RATs
	4.1 Design Rationale and Architecture for the RAT Catcher
	4.2 Session Correlator (SC)
	4.3 Message Sequencer (MS)
	4.4 Traffic Distinguisher (TD)
	4.5 Trojan Terminator (TT)

	5 Experimental Evaluation of the RAT Catcher
	5.1 Accuracy on RAT Detection
	5.2 Scalability and Performance Under Various Workloads
	5.3 The RAT Catcher in the Real World

	6 Conclusions and Future Work

