SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Expe2000;00:1-7 Prepared usingpeauth.cls [Version: 2002/09/23 v2.2]

Catching Remote P
Administration Trojans (RATYS) &

Zhonggiang Cheh Peter We? and Alex Delis?

1 Yahoo! Inc., Santa Clara, CA 95054, E-mail: zqchen@yalmaocbm
? Fortinet Inc., Sunnyvale, CA 94085, E-mail: pwei@fortinem
3 University of Athens, Athens 15771, Greece, E-mail: ad@eigr

SUMMARY

A Remote Administration Trojan (RAT) allows an attacker to remotely control a computing
system and typically consists of a server invisibly runningand listening to specificTCP/UDP
ports on a victim machine as well as a client acting as the intéace between the server and
the attacker. The accuracy of host and/or network-based méiods often employed to identify
RATshighly depends on the quality of Trojan signatures derived fom static patterns appearing
in RAT programs and/or their communications. Attackers may also bfuscate such patterns by
having RATsuse dynamic ports, encrypted messages, and even changin@jan banners. In this
paper, we propose a comprehensive framework terme@&®AT Catcherthat reliably detects and
ultimately blocks RAT malicious activities even when Trojans use multiple evasiotechniques.
Employing network-based methods and functioning ininline mode to inspect passing packets
in real time, our RAT Catchercollects and maintains status information for every connetion
and conducts session correlation to greatly improve detein accuracy. The RAT Catcher
re-assembles packets in each data stream and dissects thesuking aggregation according
to known Trojan communication protocols, further enhancing its traffic classification. By
scanning not only protocol headers but also payloadsRAT Catcheris a truly application layer
inspector that performs a range of corrective actions on idetified traffic including alerting,
packet dropping, and connection termination. We show the déctiveness and efficiency oRAT
Catchemvith experimentation in both laboratory and real-world settings.

Indexing Terms. Remote Administration Trojans, Trojan detection accuracy, session and event
correlation, application layer inspection.

1. Introduction

Remote Administration TrojangATS) are malicious pieces of code often embedded in
legitimate programs througRAT-ification proceduresdl, 55, 43]. They are stealthily
planted and help gain access of victim machines, througbhpat games, E-malil
attachments, or even in legitimate-looking binarig [6]. Once installedRATs perform
their unexpected or even unauthorized operatic¥ §nd use an array of techniques
to hide their traces to remain invisible and stay on victinsteyns for the long haul.
For instance RAT-ified versions of programbnix ps and Windowstaskmgr.exe keep
RATs from appearing in the list of active processes; moreovermuogdifying system
configurations including the boot-scripts and tRegistrydatabaseRAT-binaries often
survive system reboots or crashes. A typiRAT consists of a server component running

*Correspondence to: Zhonggiang Chen
Contract/grant sponsor: European Social Funds and NatResources Pythagoras Grant & Univ. of Athens
Research Foundation; contract/grant number: 04-7410

2 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS
4

on a victim machine and a client program acting as the interfgetween the server and the
attacker 8. The client establishes communications with its corresjog server as soon
as thelP address and port of the latter become available througtb&etdchannels such
as Email, Instant Messaging and/or Web accé8k While interacting with aRAT server,
an attacker can record keystrokes, intercept passwordspuaiate file systems, and usurp
resources of victim system4J].

By continually changing their name, location, size, and avér, or employing
information encryption, port hopping and message tungefor its communications,
RATs may elude the detection of security protection systems asdirewalls, anti-virus
systems (AVs), and intrusion detection/prevention syst€iDSs/IPSs) 42, 16]. Once
bound to legitimate program&ATs in execution inherit a victim's privileges and raise
havoc; moreover, they launch attacks against other syspemmorting themselves to be
superusersy3, 43]. RATsprovide the ideal mechanism for propagating malware iringid
viruses, worms, backdoors, and spywat8, [31, 21, 54]. The number ofRATs has been
steadily increasing from 1,359 in 2002 to 20,355 in 2004 il tupdate rates are also
impressive; jusBubSeven delivered 12 versions in 2002 alon&d. The number ofRAT-
infected machines is staggering: in 2000, 35% of securitidents in Korea were Trojan-
inflicted mostly byBack Orifice (BO) [3] and in 2001, 10% of intrusions in Israel were due
to NetBus andBO [41]. PestPatrolreports that roughly 2% of all incidents are attributed to
RATs[43]. Compromised machines are often used as spring-boardsstoibuted denial
of service attacks, further exacerbating the probl2éh [

The best option for avoidinBATsis to verify every piece of software before installation
using a-priori known program signature$9[7]. This, however, becomes impractical
as a comprehensive database of known program signatureswsilable andRATs are
frequently delivered via multiple channels such as patchgachments, file sharing, or
simply Web-site accessing. The polymorphic nature andsiaranechanisms oRATs
render their identification a challenge even if we seek digeeind known types of
Trojans [L1, 12, 2, 43]. Host- and network-based techniques have been widely@ragl
by firewalls, AVs and IDSs/IPSs to detect and bldeRTs [55, 7]. Static fingerprinting
is the predominant method in host-bagedT detection where unique facets of Trojans
are extracted to establishTaojan Databasewhich entails file names, sizes, locations,
checksums, and special pattern&iATs[35, 5, 14, 38]. By periodically scanning every file
in a system and matching fingerprints against those in tlabkstted databas&®ATs can
be revealed. In addition, monitoring the access of fileséwstiartup folder, registries, auto-
start files, and configuration scripts of a system is anotlular host-based technique
that helps identify suspicious activitie$(, 38]. Network-based methods follow a different
philosophy as they examine both the status and activitf ©R/UDP ports to determine
any deviation from expected network usags, 49]. Abnormal behavior and/or malformed
network messages can be detected by monitoring port aced¢t&sns and/or analyzing
protocol headers of packets exchanged among systeth$Sjmilar to host-based methods,
unigue RAT-manifested telltale patterns in network communicatiors exploited as
signatures to distinguish malicious traffi¢4 51]. Clearly, the RAT detection accuracy
of host- and network-based methods depends on the qualityeoTrojan database and
signatures used; the latter can be easily obfuscated ykatsgusing an array of evasion
techniques.

In this paper, we propose a comprehensive framework forctieteand dealing with
known RATswhich employs network-based detection methods and opdretdine mode
to inspect and manipulate every passing packet in real-tueobjective is to enhance the
reliability and accuracy of the detection process in congparwith existing anti-Trojan
options. To track suspiciouRAT activities, our framework monitors network sessions
established by both potential Trojans and normal appticatirecords and maintains state
information for their entire lifetime; furthermore, thisformation is archived even after a
session has terminated in order to conduct stateful ingpedhtra-session data fusion,
and inter-session correlation. By performing packet seawly and interpreting the

S E CATCHING REMOTE ADMINISTRATION TROJANS 3
&

resulting aggregations against protocols followed bydmsj oulRAT Catchemorphs data
streams into sequences of Trojan messages, facilitate@iplication-layer inspection
and classification of malicious traffic. A number of optione available to manipulate
identified RAT sessions ranging from simple alert and log generation taeiatropping
and pro-active session blocking/termination. Experiragoh with theRAT Catcheshows
its effectiveness as well as its efficiency in a range of latwry and real-world application
settings. We organize our paper as follows: Secfiautlines related work and Sectién
discusses the working mechanismsRATs. Section4 presents our proposed framework
and Sectiorb outlines the findings of our prototyping effort and expenitat evaluation.
Concluding remarks and future work can be found in Sediion

2. Related Work

Upon activation, aRAT inherits privileges of its program-carrier and complieshathe
program’s expected behavior most of the times, making iflehging to distinguish
legitimate activities from malicious ones solely based oogpam ownership and user
profiling [31, 27]. Verifying that a program is virus-infected is known to lmputationally
impossible L2]; even searching an executable for knoRATsis challenging. The “least
privilege principle” is considered an effective way to linthe potential access-scope
of Trojanized programs in mulit-user system&s[24, 22] even though it is routinely
violated P4, 26]. Techniques such as “partitioned protection domains” ‘andlti-level
security models” are also used as means for protection stghinjans f; in the former,
system partitions provide discretionary access contrithe latter each system entity is
statically assigned a security classificati@,[10]. In this context, a Trojan may only
obtain information either within the same partition or framtities tagged witHower
security classification, thereby limiting its potentiaihdage. Preventing users in different
protection domains from sharing programs can work togaetfiierintegrity models' that
compute and store checksums for all files in the systems, enalically re-calculate these
statistics to detect possible file modificatioB5,[58]. Such security procedures often affect
the flexibility of a system and are deemed as burden to users.

Fault-tolerance methods have been used to detect unegpketevior of program
segments by treating such deviations as err@4. [Changes in size, frequency of
modification, and ignition rates of programs in conjunctiath user profiles 20, 39, 56]
have been used by AVs to detect viruses &xAT's [18, 14]. To survive system reboots
or crashesRATs modify system files such awin.ini, system.iniand/orregistry entries
in Windowsand boot-scripts irJnix systems. To help detect and prevent such system-
level modifications, a number of host-based security systattow users to directly
enable/disable startup item3g. Unfortunately, this helps little as it is difficult for use
to distinguish legitimate from illegal items af®ATs often resort to renaming themselves.
ParasiticRATs inject their malicious codes into running processes orflfheffectively
shielding themselves from detectiofd. For instance, TrojamBeast inserts itself into
active processes such asnlogon and Explorer and becomes a background thread in
these programs4[/]. Most security systems fail to deal with parasifRATs as in their
effort to curb suspicious activities, they kill legitimapeocesses as wellif]. A group
of RATs can disable firewalls and AVs by killing processes or remgVites needed
by such security systemgT]. Clearly, the above host-based detection methods may be
ineffective as contemporafATs can readily defy their access control, integrity checking,
and behavior profiling.

Tsuch asTripwire

4 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS
4

RAT servers typically listen on specific ports waiting for ingttions from attackerds.p.
Utilities such asnetstat Fportand TCPView Proare designed to monitor active ports for
suspicious network activitieslp, 33, 49]. A number of firewalls also detect Trojans by
searching for applications inducing unauthorized commations. This general approach
however may vyield false negatives &ATs may bind to legitimate programs and use
standard ports3g]. Overall, the effectiveness of techniques based on tStafrojan
characteristics is questioned as soorR#d's commence using non-default ports, hijack
ports from other applications, and/or occasionally charggemunication ports.

By inspecting network traffic and searching for possiblej@mgatterns, IDSs/IPSs can
establish the intention and/or behavior of data streatdsq1]. The telltale patterns of
Trojans are typically obtained via reverse engineering det@d mining technique$g.
Most IDSs/IPSs heavily base their Trojan-detections ordfixerts and/or simple pattern
matching mechanisms, inevitably generating significatsefgositive or negative rates.
Also, this pattern matching is typically conducted onlyhint individual transport-layer
TCP/UDP packets rendering IDSs/IPSs vulnerable to evasion attgf}s To mitigate
evasive attacks, some IDSs/IPSs includBmprtand protocol analyzetthereabffer traffic
stream-reassembly functionality. Unfortunately, thisasesembly feature is only available
for pre-specified ports reducing the defense capabilitiesioh systems significantiytf,
23). Etherealis mainly designed as a protocol analyzer that passivelledsl network
traffic without generating any alert for ongoing traffic mdgiit impossible to deliver
counter measures in real tim23. Furthermore, most network-based anti-Trojan systems
identify only RAT control channels and do not deal with the content of data raflan
producing elevated false negative rat€s [n summary, conventionaRATSs detection
techniques demonstrate limitations and may fail to idgritibjans that resort to a range of
advanced evasion techniques.

3. Characteristics of RATs

As RATscan essentially capture every screen and keystroke, ensuday obtain account
information, passwords, and sensitive computing systeta. d@ATs can also spawn
arbitrary numbers of processes on spedif@P/UDP ports, impersonate victims, redirect
traffic for specific services to other systems, and laundhibiiged denial of servicedDoS
attacks. In this section, we examine the salient featurég®Adis and briefly analyze their
capabilities.

3.1. Frequently Observed Functionalities oRATs

RATs typically provide attackers with comprehensive commangermires for
file management, process scheduling, and system configuratianipulation. File
management features include potentially destructiveasjmers such adelete/mova file or
directory on victim systems. The process scheduling coraptn aRAT permits intruders
to create, view, and/or terminate running processes atWik configuration manipulation
element allowsRATs to alter the behavior of the victim system by for instanceabimg
its security features after modifying th&indows RegisttyRATs can often operate as
device controllers being able to open/close CD-ROMSs, diséiie mouse and network
cards, intercept keystrokes and/or screen snapshotshé#ipittim’s screen or change
its resolution, monitor password dialog boxes and clipdsacapture audio/video of the
victim’s environment, and finally, crash the victiMJ. The re-direct feature oRATs
allows an attacker to chain various services together atiihately forward the results
to a specified destination, making it trivial for intrudecshijack network connections,
intercept private data, and inject fake messages. By fomictyy as packet sniffer&ATs
can also monitor a victim’s network activities and deterenits topology. Furthermore, by
scanning the entire system of the victim machine, includiegarbage bin, a number of

CATCHING REMOTE ADMINISTRATION TROJANS 5

SRE

RATscan collect personal information such as user accountsygads, credit cards, and
Email addresses.

Most RATsintegrate all the above functionalities and therefore aet swiss army knife
for intruders. In this spiritBack Orifice (BO), SubSeven, andDeepThroat provide around
60, 100, and 120 commands, respectively. Tabdepicts a few commands available in
SubSeven andBack Orifice (BO). Here, theSubSeven commandRG can be used to add,
remove, or modify system configurations from Registry, canthFFN retrieves files
from the victim system, an@OM can help execute a specific program. CommaahiH,
OCD, andPWDare pertinent to information collection af&Slogs all keystrokes. Screen
shapshots can be captured wigtBSand audio/video can be recorded with the helR8F
andIN7. Similar actions are achieved through the repertoirgaak Orifice (BO) as well.

ID_ [command | description [[1D | command | description
Some commands provided iyubSeven

1 GMI get remote machine info 2 PWD get server password
3 RAS retrieve RAS passwords 4 GIP get ICQ passwords
5 RSH file manager 6 NTF download file
7 FFN find files (e.g., wildcard) in given director’ 8 TKS key logger
9 IN7 open web cam 10 OCD open CD-ROM
11 RWN shutdown/restart Windows 12 FTP start or stop FTP server
13 IRG registry editor 14 COM execute a command

Some commands provided IBack Orifice
01 PING ping the current host 02 REBOOT reboot the remote host
04 PASSES display remote cached passwords 06 INFO Display remote system info
07 KEYLOG log keystrokes to file 09 DIALOG display a dialog box
OE APPADD spawn a console application ona TCP pajft 14 HTTPON enable the HTTP server
19 PLUGINEXEC execute a plugin 20 PROCKILL kill process given byPROCLIST
23 REGMAKEKEY | create a key in the registry 28 CAPAVI obtain video stream from device]
2A SOUND play a WAV file 3D MD make a directory

Table I. A few commands provided ISubSeven andBack Orifice (BO)

A number ofRATsoffer the proxy functionality that turns a victim machinédma server
for services includingelnet, FTP, HTTP, ICQandIRC, offering free storage and complete
anonymity for attackers. The Trojagclypse for instance can be instructed to act as a
FTP server; this is depicted by the sample traffic of Talblevhich establishes separate
channels on differenf CP ports for its control and data transmissions much in thdtspir
of FTP. The apparent protocol similarities in both syntax and seios betweerkclypse
andFTP make it difficult to distinguish normdTP-flows from Trojan-generated traffic.
The traffic of Tablell shows that the data channel is constructed dynamicallyo(in9)
once the client submits commamNLSTto obtain a list of files from the compromised
machine (row 8). Clearly, the data channel is server-itgitialthough the request is client-
originated and the data port of the client is specified witmo@ndPORTdynamically
(row 6). Similarly, SubSeven can be configured to act as a proxy server with the help of
command$-TP, URL and COM (Tablel). RATs can be also used @&DoSattack tools

[dir [payload [description
protocol: TCP; attacker (denoted as A): 192.168.5.143imi¢denoted as V): 192.168.5.141
1 V:3791—A:1074 | 220 EclYpse 's FTP Server is happy to .|. banner in FTP format; telltale: “EclYpse”
2 A:1074—V:3791 USER(none) intruder logins with name “(none)”
3 V:3791—A:1074 331 Password required for (none). require password for login
4 A:1074—V:3791 PASS XXXXXX password for account name
5 V:3791—A:1074 | 230 User (none) logged in. attacker logins successfully
6 A:1074—V:3791 PORT192,168,5,143,4,51 specify port for data channel (i.e., 4*256 + 51 = 107
7 V:3791—A:1074 200 Port command successful. server stores data port number
8 A:1074—V:3791 NLST request “send host info”
9 V:1030—A:1075 | (SYN establish data channel with port 1075
10 V:3791—A:1074 150 Opening data connection for ... data channel has been established
11 A:1074—V:3791 QUIT disconnect from the server
12 [V:3791—A:1074 | 221 Goodbye. server closes the session

Table Il. Traffic generated by tHeclypse (v.1.0) Trojan

provided that enough victims are harvested and instructsdrultaneously flood specific
machines. Finally, somRATs can disable, mis-configure, or even kill firewalls, AVs, and
IPSs/IDSs incapacitating surveillance.

6 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS
4

| RAT Feedback Channel
1

I I

! | Email Server (IMAP, POP...)| |

| I

| I
A Web Server (Apache...) N
e 1N

1
| | IM/P2P Networks (IRC...)
1

IP Sweeper (Scanner)

=

Attacker

I OOOI I

Control Channel Victim
(RAT Client) (RAT Server)

Data Channels (0..N)

Figure 1. Working mechanisms ofRAT

3.2. Working Mechanisms ofRATs

Before their installationRAT-servers can be customized \RAT-provided configuration
packages termeoinders This customization includes the setting of the defa@®/UDP
ports utilized byRAT servers, definition of auto-start methods, encryption rigms
and designation of initial login passwords. For instariditServer and bo2kcfg are the
bindersfor SubSeven v2.2 and Back Orifice 2000 (BO2K) respectively 43, 42]. Prior
to being deliveredRAT-servers may be named as software patches or games with the
correspondinginders tricking users into downloading, un-bundling, and finadlyecuting
such malicious programs. Once the servers are configuregatie shipped to victims via
a number of delivery channels as described in Figldraad 2. During their installation,
RAT-servers may piggyback themselves to other legitimaterprog, termediosts so that
they are executed every time their hosts are invoked. Inithis aBO2K-server can install
itself as a thread to the host progréE8XPLORE.EXE [42]. RAT-servers typically run in the
background and listen on designated network ports waitingttacker-issued instructions,
leaving victims unaware of their damaging activity.

There is a multitude of avenues to spread Trojans to victinchimes as Figure
depicts; the most notable for the time being dnstant Messengers (IMand peer-
to-peer (P2P)systems. With the help of eithé1SN-messenger oKazaA, an attacker
may freely visit chat-rooms, scan buddy-lists, or even ceml¢f select candidate victims
among encountered active users, and subsequently d&¥es to victims. Additional
delivery options includél TTPservers especially created to disseminate Trojans alotfg wi
regular web-pages, openiignail attachments, execution of malware and distributions for
software patches, freewares, and/or games. Hence, ajéinlsystems are easily defeated
if their RAT-detection methods cover only a small portion of such pragiag channels.

The IP addressesTCP/UDP ports, access passwords, and other informatioRAT-
servers can be obtained by intruders through feedback elasimown in Figuré. IM/P2P
systemsEmail services, and shared folders can even provide auto-nditinsabetween
RAT-servers and clients. I6uptachar [43] for example, an attacker may set up I&C-
server via itsSRCBOT* function by providing a login accountickname every time a
compromised system is activated, it connects to the al®@eserver usingricknameto
upload the victim'dP-address and port number. Furthermore, nfo&tsresort to multiple
methods to outlive system crashes or reboots and evadePSSIDSs 43]. By editing

fInternet Relay Chat Robot

S E CATCHING REMOTE ADMINISTRATION TROJANS 7
&

I
I

I

Legitimate 3
Program !
(e.g., Virus cleaner) i
|

I

|

|

I

i

]

]
1
! I
! I
! I
! I
! I
1
! h
! I
! I
! I
! I
! I
1
! b
1 |
: | —
! binder RAT-Server IM/P2P Networks (IRC...) : Victim
! T
! T
! T
! T
! T
! T
! T
! T
! T
! T
! T
! T
! D
1
! |
! I
! I
! I
:

[eeNe]

(BO2K, NetBus, ..)
Software Distribution

I
I
I
I
\
'
Trojan Program 1
I
I
1
I
| (games, updates, patches, ..

Figure 2.RAT delivery procedure

Registryentries, modifying system files such wagn.ini, system.iniand autoexec.bats
well as inserting items on the startup foldeRATs can easily “hide” and be transparently
triggered on every reboot. In this regard, host-based tletemethods are inferior to their
network-based counterparts as faiR&T detection ic concerned.

3.3. Encrypted RAT Traffic

RATssuch aBBack Orifice (BO), BO2K andNetBus v2.0 encrypt their traffic flows to defeat
security systems that base th&lAT detection on pattern matching techniques. The first
half of Tablelll shows portion of encrypted traffic generatedtack Orifice (BO). The
scrambled content of encrypt&AT communications forces many anti-Trojan systems to
predominantly use fixed network ports (e.g., thBP-port for BO is configurable with
default 31337), inevitably leading to false positives/dges. INBO, the encrypted traffic

is generated by applying &ORoperation on the original data and a random stream created
with the help of a four-byte encryptideeyderived from the intruder-specified passwérd

At the receiver side, theeed(i.e., key) can be guessed via an exhaustive search due to
its short range; this seed can then be used to recover thiearteaffic [42]. Obviously,

the XOR operation neither changes the length of the original messag destroys string
patterns; this fact may help identify ti8® even if its encrypted traffic is only available.

[dir [size [payload [description
protocol: UDP; attacker (denoted as A): 192.168.5.143410&tim (denoted as V): 192.168.5.141:31337
Encrypted messages Back Orifice
1] A—V 19 9E F4 C2 EB 87 89 A2 04 4E 42 E8 69 3B B9 98 55 C3 8() 66 encrypted msg
2 V—A 37 9E F4 C2 EB 87 89 A2 04 78 42 E8 69 3A B9 98 55 C3 A0 46... encrypted msg sharing pattern with msg 1
3 [A—V 19 9E F4 C2 EB 87 89 A2 04 4E 42 E8 69 38 B9 98 55 E2 80 66 encrypted msg very similar to msg 1
4 V—A 41 9E F4 C2 EB 87 89 A2 04 74 42 E8 69 3B B9 98 55 62 A0 46... encrypted msg very similar to msg 2
5 A—sV 19 9E F4 C2 EB 87 89 A2 04 4E 42 E8 69 39 B9 98 55 C4 80 66 encrypted msg very similar to msg 1
6 V—A 49 9E F4 C2 EB 87 89 A2 04 6C 42 E8 69 37 B9 98 55 44 D3 [LF... encrypted msg very similar to msg 2
DecryptedBack Orifice traffic
1] A—V 19 2A 21 2A 5157 5459 3F 13 00 00 00 01 00 00 00 01 0P 00 msg PING starts with string “*I*QWTY?”
2 [V—A 37 2A 21 2A 5157 54 59 3F 25 00 00 00 00 00 00 00 01 20 20 21|50].. reply to “PING” (i.e., “PONG");
3| A—V 19 2A 21 2A 5157 5459 3F 13 00 00 00 02 00 00 00 20 0P 00 cmd PROCESSLIST (0x20) from client
4 1 V—A 41 2A 21 2A 5157 5459 3F 29 00 00 00 01 00 00 00 A0 20 20... reply to “PROCESSLIST” (partial)
5 A—V 19 2A 21 2A 5157 5459 3F 13 00 00 00 03 00 00 00 06 0P 00 cmd INFO (0x06) from client
6 | V—A 49 2A 21 2A 5157 5459 3F 31 00 00 00 OD 00 00 00 86 53 79... reply to “INFO”

Table Ill. Back Orifice generated traffic in both encrypted and decrypted formats

8its default value is 31337, the same as its defallP port.

8 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS
4

Through exhaustive search, we can recover the 28¢é0used in theBO-server/client
traffic of Tablelll. The decrypted traffic demonstrates that eeChmessage commences
with the 8-byte magic-string of*QWTY? followed by the 4-bytepacket length4-byte
packet ID 1-bytemessage typehe variable lengtimessage datand the 2-bytehecksum
field. The packet lengthspecifies the size of the entire message; for example, the firs
client message (row 1) is 19-bytes in length. Initially, 8@-client probes the server with
commandPING (0x01 in the 1-bytamessage typat index 16) to check the availability
of the server. The active server responds with commR@ING along with its version
number in row 2. In rows 3 and 5, the client requests inforamefiom the victim (i.e., the
BO server) with commandBROCESSLIST0x20) andINFO (0x06). Tablelll shows that
decrypted30 traffic possesses strong message structure and clear ggsnahis structure
in conjunction with the commands of Tablehelp attain improved traffic identification
based on decrypted content, which is the main techniques inseur RAT Catchero
detectBO; a similar approach was also employed®wort

The XORbased encryption algorithm used by the internationaliwersf BO2K can be
also reverse-engineered and the original traffic can bevezed, makingBO2K detection
feasible. Nevertheless, the use of plugin modul&dak complicates matters. To this end,
the pluginsenc.aes, enc_cast andenc_idea encryptBO2K traffic with theAES, CASTand
IDEA encryption algorithms respectivels]. It has been shown that such algorithms are
resistant to sophisticated differential and linear crgptgsis techniqued[30]. Hence, itis
impossible to recover original form from encrypted traffithout the requisite encryption
keys. For this type of Trojans, the only pragmatic approactdetection has to be based
on the RAT external behavior which involves monitoring of messagesiziandshake
procedure, and traffic correlation between the two traffiesshs within eaclRAT session.

[dir [payload [description
protocol: TCP; attacker (denoted as A): 192.168.5.1438102tim (denoted as V): 192.168.5.141:20034
1 A—V BN |20 00 02 00 08 08 05 00 41 0C 69 1F 5D 28 5B BC .| msg starts wittBN; size: 0x20; ver: 0x02; cmd: 0x05]|
2 V—A BN [10 00 02 00 08 08 05 00 41 0C 6B 1F 5D[28 reply msg; size: 0x10; ver: 0x02; cmd: 0x05;
3 A—V BN |0B 00 02 00 DC 33 30 00 41 client msg; size: 0x0B; cmd: 0x30
4 V——A BN |0C 00 02 00 DC 33300041 QC server msg; size: 0x0C; cmd: 0x30
5 V——A BN |34 00 02 00 FO AB 30 00 41 0D 3E F4 56 DQ ... multiple messages packed into one TCP packet;
BN |18 00 02 00 6B 29 30 00 41 0D|... msg 1 is cmd 0x30 with size 0x34;
BN |2F 00 02 00 8B 79 30 00 41 0D|... msg 2 is 0x30 with size 0x18 ...
6 A—V BN [1E 00 02 00 FO AB 50 00 41 C9 57|.... client msg; size: Ox1E; cmd: 0x50
7 V—A BN |15 00 02 00 8C 0550 0041 0C 3§ ... msg size: 0x15; ver: 0x02; cmd: 0x50;

Table IV. Portion ofNetBus Pro (v.2.0)-generated traffic

NetBus Pro [29] is a noteworthy Trojan in that it uses proprietary encrgptalgorithms
but still offers opportunities for detection based on taéforrelation; it listens to default
but reconfigurabl& CP-port 20034 and supports plugins enabling the integratfomeay
functionalities B6]. EachNetBus Pro message has a fixed-length header (i.e., 10 bytes)
consisting of string BN’ followed by four 2-byte fields namelynessage-sizeversion-
number(typical value 0x0002)unknown(often a random number), armbmmand-code
fields. The variable-sized data section follows the headdrits size is specified in the
message-sizield of the header. Tabl®/ shows a portion oNetBus Pro(v2.0)-generated
traffic. Apparently, the beginning of every message is fgatitermined by string BN’;
correspondingly, the end of the message can be resolved thiermessage-sizéeld
of its header. Multiple messages may be packed in a sin@le packet as is the case
with row 5, each of which can be identified through payloadtenninspection and
message structure analysis. Stream-based inspectionsmaarectly interpreNetBus
Pro messages spanning multiff€P packets. Also, inspection on both streams of a session
to ensure their conformance witletBus Pro protocol specification further improves the
detection accuracy. Despite the fact that decryptioRAT traffic is not always feasible,
techniques derived from dissecting protocol syntaxR&fTs combined with analysis of
patterns found in message exchanges can be exploited @t dedgans. TheNetBus Pro
protocol analyzer outlined by Algorithdof Section4 functions on this premise.

CATCHING REMOTE ADMINISTRATION TROJANS 9

SRE

3.4. Diversified Use of Protocols byRATs

By and large, the proliferation @ATscan be attributed to the fact that existiRg\Tsserve
diverse constituencies and deliver substantially difieded services using a multitude
of transport protocols. For instancEetBus, Socket de Troie and SubSeven use TCP
while Back Orifice, DeepThroat and DeltaSource are UDP-based. AsRATSs evolve they
also use different protocols. In this regaBH2K uses botiTCP and UDP even though

its ancestoBO was exclusivelyUDP-based. The syntax and semantics of client-server
messages also demonstrate diverse characteriR¥dsincludingBack Orifice, SubSeven

and BO2K maintain well-formed binary message structures; on therottand, Trojans
such aolly andFrenzy follow text-based message formats. Last, sgR#g s including
Eclypse, WanRemote andDrat uses syntax and semantics similar, if not identical, to the
standard=TP, HTTR andTelnetprotocols.

In Tablell, we show portion of the traffic generated Bylypse, an FTP-based Trojan
and TableV presents traffic generated anRemote [43] that clearly follows theHTTP
specification in both direction2f]. For brevity, we do not show th&lTTP headers
of all messages from the server but only the first one in row &&vé& responses are
embedded in the data sectiond-bif TPmessages. Tablé indicates that the client supports

[dir [payload [description
protocol: TCP; attacker (denoted as A): 192.168.5.143imi¢denoted as V): 192.168.5.141
1 A:1071—V:80 GET/HTTP/1.1 standard HTTP msg, implying login
2 V:80—A:1071 | HTTP/1.0 200 OK Content-Type:text/html response with “main menu” to attackef
<title>WANRemote 3.0 - Main Men« /title >
3 A:1089—V:80 GET /fm?cd=C:/HTTP/1.1 change directory
4 V:80——A:1089 <title>WANRemote 3.0 - File Managet/title > enter “file manager”
5 A:1105—V:80 GET /fm?get=C:/autoexec.bat HTTP/1.1 get file “autoexec.bat”
6 V:80—A:1105 | WANRemote 3.0 - File Manager: c:/autoexec.bat] file transferred successfully
7 A:1142—V:80 GET /process HTTP/1.1 get process list
8 V:80—A:1105 <title>>WANRemote 3.0 - Task List /title > return process list
9 A:1164—V:80 GET /process?kill=800 HTTP/1.1 kill specified process
10 V:80—A:1164 < title>WANRemote 3.0 - Task List /title > processed killed
11 A:1175——V:80 GET /x-logout HTTP/1.1 logout from server
12 | V:80—A:1175 <title>>WANRemote 3.0 - Log Out /title > session end

Table V.WanRemote(v.3.0)-generated traffic

HTTP(v.1.1)and the server usadTTP(v.1.0)forcing each command to be transported
using a separat&@ CP connection. For example, the packet of row 1 A&3P-source
port 1071 while the corresponding source ports for messegesvs 3 and 5 are 1089
and 1105, respectively. By placing different commandsliiTr P requests, the client can
perform various operations on the victim’s machine via thejdn server. To this effect,
the attacker can traverse directories in victim’s file systeith request td=C:/” (row 3)
and obtain designated files with commarmgt=C:/" (row 5). Through ‘kill=" of row 9,
the attacker calls for the termination of a process at theesdhat reciprocates with
status information in row 10. The apparent patteWtdANRemote 3’0definitely helps
detect individuaWanRemote(v.3.0) sessions; moreover, the correlation between different
sessions (i.e., inter-session correlation) can furtherave the detection accuracy.

Drat is a representative of th&lnetbased Trojans in which the server echoes back
any attacker input and respective pieces of output as Tdbkhows. Acting effectively
as a command interpreter, tiat-server displays the prom:/temp> waiting for
instructions from the attacker as row 3 indicates. Rows 5nd@ @ depict the echoes
of the three characters in commadil entered by the attacker in rows 4, 6 and 8; the
character-by-character transmission and echo-back mehare typical of theTelnet
protocol and together provide a reliable way to identifylstraffic. We combine together
all packets that convey the client's commamgdirt c:/windows/notepad.eXand show them
in the row marked 13-41; the 42-70 line depicts the respeatho activity. Clearly, the
attacker mistakenly typesn for the desiredun command and later uses “backspace”
(Ox08) to correct the mistake. By making available editingdtionalities Drat provides a
true interactive environment. However, it poses a chabeing security devices that detect

10 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS
&

RATsbased on patterns as the latter can be readily evaded byimgsan arbitrary number
of edition keys such abackspacedelete and/or empty spaces. An anti-Trojan system

H*

[dir [payload [description

protocol: TCP; attacker (denoted as A): 192.168.5.143jmi¢denoted as V): 192.168.5.141
1 A:1085——V:48 [OD OA] attacker just enter “RETURN”.
2 V:48——A:1085 Welcome to DaRat'z Telnet Rat. server responses with banner
3 V:48——A:1085 | DRat Version 1.3.0 ... DRat : D:/temp server displays prompt
4 A:1085—V:48 d attacker enters cmd (one char at a timg)
5 V:48——A:1085 d server echoes back input
6 A:1085—V:48 i attacker enters next char
7 V:48——A:1085 | i server echoes back
8 A:1085—V:48 r attacker enters next char
9 V:48——A:1085 r server echoes back
10 A:1085—V:48 |0D 0A with “RETURN", cmd “dir” is formed
11 V:48— A:1085 |OD 0A server echoes back
12 V:48——A:1085 DRat The Worlds Ultimate Virtual SPY. doc = 46592 DRAT.exe |. cmd executed, return file list
13-41 | A:1085—V:48 ra|08|un c:/windows/notepad.ej@D OA| attacker runs an app; “08” is backspace
42-70 | V:48——A:1085 | ra|08|un c:/windows/notepad.ej@D 0A| server echoes back all inputs
71 V:48——A:1085 | ShellExecute (2 Being a Error) Returned app is executed; server replies

Table VI.Drat(v.1.0)-generated traffic

has to simulate shell functionality and act as a commandgre&er, should it successfully
identify TelnetbasedRATs.

3.5. Presence of Multiple Evasion Techniques iRRATs

A straightforward approach foRATs to evade detection is to continually change both
message structures and banner information as such astdaetexploited as signatures
by firewalls, AVs, and IDSs/IPSs. In this regafkepThroat(v1.0) flushes the name of
the victim machine (e.g.SHEEP at the very end of its banne~Ahhhhhhhhhh My
Mouth Is Open SHEEPRwhile in other versions, the name of the victim machine ape
first as demonstrated by the bann&HEEP - Ahhhhh My Mouth Is Open (V2)f
DeepThroat(v2.0). Telltale patterns used DeepThroat change slightly in different versions
as well. For instance the patteAlhhhhhhhhhlin v.1.0 has been shortened f&hhhhhin
versionsv.2.0 andv.3.0 and ultimately becam@hhhhin v.3.1. Such banner adaptations
make it more difficult for security systems to detect withragée fixed signature the traffic
generated by various versions@depThroat operating simultaneously.

Sending decoy messages is another popular evasion teehBigidoing so, Trojans such
asDoly attempt to induce security systems to generate large nwobélse positives43],
forcing the security officers to spend considerable permfdgme examining logs. The
latter produces a good chance for the intruders to go unigeted Doly client attempts
to establish a CP connection with a victim by trying ports 3456, 4567, 5678887,
7890, 9182, 8374, 2345, 7654, and 27559 in sequence fous tiegardless if &RAT is
present. This activity resembles to port scanning whichggtlly graded as a low-severity
surveillance activity by AVs/IDSs/IPSs and is frequentiynored by security officers.
Although RATSs often operate on their default ports, they can be configuradsé ports
in either the privileged or non-privileged range. While eximenting with real traffic, we
observed thaRATsmostly employ port hopping techniques and servers useamnpjports
selected on the fly readily defeating port-based detectigmaaches. Hence, a content-
based approach would be by far more fruitful in detectingdme using decoy messages,
dynamic port hopping, and other evasion techniques.

9Doly’s server default port.

S E CATCHING REMOTE ADMINISTRATION TROJANS 11
&

4. A Framework for Apprehending RATS

Conventional security systems use add-on modules andéoiadly-crafted signatures to
identify malicious RAT activities and are unaware @&ATs unique characteristics. To
address these shortcomings, we propose an extensiblewWwmkn@amedRAT Catcher
that employs network-based detection methods, openatiise, and manipulatefRAT-
traffic in real-time. We base our design on the following doaists: i) RAT-servers are
implanted on victim machines through the channels discusse&ection3.2. Through
its real-time operation, our framework puts emphasis ordaitg RAT communications
as opposed to conventional AVs and host-based securitgragsthat mainly focus on
the Trojan installation procesd4]; and ii) features of sough®ATs including format of
messages, handshake procedures, and functionalitiesvaitabde typically via reverse
engineering, behavior analysis, and data mining techsidg8, 2]. By tracking the
progress of all established connections initiated by eitteemal applications or Trojans,
our framework conducts data correlation between diffesmssions or traffic streams,
performs stateful inspection, and identifies abnormal @ndéviating behavior in real-
time. Our RAT Catcherstores packets in every data stream, re-assembles thethd¢oge
and the resulting aggregations are subjected to protossediion according to standard
TCP/IP specifications as well as the syntax and semantics of ing@idrojans. In this
way, our framework performs layer-7 or application-levedpection and can effectively
combat evasive mechanisms used R4Ts. As soon as a session is verified as Trojan,
our framework can immediately take corrective steps byilogigblocking, terminating the
connection or simply taking over the session.

4.1. Design Rationale and Architecture for theRAT Catcher

To remotely control a computing system, an attacker shotsti $et up either CP or
UDP channel with theRAT server implanted on the victim machine.RCP session is
defined by its distinct connection and disconnection preeef 5. The former is a three-
way handshake procedure where the initiator (or clientktsta connection with §CP
SYNpacket and the recipient (or server) replies with@GP SYN-ACHKacket which in turn
incurs anACK packet from the initiator. The disconnection procedurédgity involves a
four-message exchange with each side dispatchinGR FIN packet and corresponding
acknowledgments from the two ends. Evidently, a speti@i® connection can be uniquely
identified by the tuple<client-IP, client-port, server-1P, server-post Similarly, a specific
UDP session is also identified by a similar four-element tupléhis termination often
designated with a time-out mechanism. Any change in the altople implies a new
TCP/UDP session. Overall, a connection can be represented with xtenaed tuple
<client-IP, client-port, server-1P, server-port, protdcowhereprotocolcan be eitheTCP
or UDP. Within each session, two data streams exist, one fromraxigr (or client) to
recipient (or server) and the second in the opposite daecttach data stream within a
session can be identified with a four element tupléP,, PORT, I P;, PORT;>, where
1P, and PORT, are the IP address and network port of the sourceldydand PORTy
are their destination counterparts.

Messages exchanged between a Trojan server and client aeeated in accordance
to the RAT's own syntax rules and semantics and are shipped followiegconstraints
of TCPIUDP transport protocols. The latter may not respect the Trejanessage
boundaries, therefore, inconsistencies between Trojassage borders and transport
packet demarcations are unavoidable. The transport laggraiso deliver packets in an
arbitrary order and the original data stream can be onlywereal via reassembly by its

12

ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS

recipient. For instance, thECP packet of row 5 in TabléV consists of threaetBus
Pro messages. Similarly, in th@ubSeven-generated traffic of Tablgll, multiple Trojan
commands are contained in a singIEP packet as row 12 shows. In this, commaiidg
andCL7 open the Webcam of the victini\2 andCL2 attempt to open the screen preview
andPSSobtains cached passwords. On the other hand, comdisa€F><LF> entered

| timestamp [dir | payload | description
protocol: TCP; attacker (denoted as A): 192.168.5.143jmi¢denoted as V): 192.168.5.141
1 0.002077 V:55555——A:3689 connected. 21:17 ..., ver: Legends 2.1 banner from server, access time and version
2 20.819971 A:3689—V:55555 | URLhttp://www.fortinet.com/ instruct victim to goto given “URL”
3 20.820263 A:3388—F:80 (SYN) connect to server F (i.e., www.fortinet.com)
4 21.675816 V:55555——A:3689 web browser has been opened. server successfully launches browser
5 72.771562 A:3689——V:55555 | FFNFO5*.exeC:/ try to find files “*.exe” under “C:/”
6 72.912758 V:55555——A:3689 | C:/EXPLORER.EXE C:/putty.exe ... a list of specified files is returned
7 108.402655 | A:3689——V:55555 [FTPenable!l@@@21:::1$$$C:/ enable FTP server by cmd “FTP”
8 118.066511 | A:3689——V:55555 | FTPdisable try to disable FTP server
9 118.068258 | V:55555—A:3689 | FTP server disabled remote FTP server is disabled
10 129.070129 | A:3689——V:55555 | IRG access registry editor
11 129.131769 | V:55555—A:3689 Console Control Panel Environment.]. menu of registry editor is returned
12 139.577822 | A:3689—V:55555 IN7CL7IN2CL2PSS open Webcam (IN7CL7), get passwords (PSf)
13 | 139.579805| V:55555—A:3689 | PSS cached passwords: [www.fort...]| return network addr, login name, password
14 208.272307 | A:3689——V:55555 [CLG close registry editor

Table VII. SubSeven (v.2.1)-generated traffic

by theDrat attacker in Tablé/| is split into fourTCP packets; the payload of each packet
contains only one or two characters.
There are often multiple concurrent sessions betwedRA@ client and its server
coexisting with sessions created by other applications. iRstance in theSubSeven
traffic of TableVIl, two sessions coexist after the packet in row 3. The firstasiified
by tuple <A,3689,V,55555, TCP whereA stands for the attacker located I& address

192.168.5.143 an¥ is the victim with IP address 192.168.5.141. The second session
is identified as<A, 3388, F, 80, TCB whereF is the IP address of the Web server
www.fortinet.com In a similar fashion, th®eepThroat traffic of TableVIll creates two
sessions, the control session identified<a,60000,V,2140,UDP and the data session
commencing at row 4 and identified a#\,60000,V,3150,UDP. Most anti-Trojan systems
detectRAT control-sessions only and they are completely blind toeetpe data-sessions
simply because the latter lack unique telltale patterns.

| dir | payload | description

protocol: UDP; attacker (denoted as A): 192.168.5.143jmi¢denoted as V): 192.168.5.141
1 A:60000—V:2140 00 a “ping” message
2 V:2140—A:60000 | host - Ahhhh My Mouth Is Open (v3.1)| a “pong” message
3 A:60000—V:2140 39 a request to “create directory”
4 A:60000— V:3150 c:/temp/host parameter to “create directory” command
5 V:2140—A:60000 | Directory Created reply to command “create directory” (39)
6 A:60000—V:2140 | 35 command “freeze mouse”
7 V:2140—A:60000 Mouse frozen reply to command “freeze mouse” (i.e., 35)
8 A:60000—V:2140 12 command “send host info”
9 A:60000—V:3150 | http://www.fortinet.com parameter to “send host info” command
10 V:2140——A:60000 Host Sent To URL reply to command “send host info” (12)

Table VIII. DeepThroat(v.3.1)-generated traffic

For all established connections originated by either noragaplications and/or
suspected-TrojansRAT Catchermaintains session records, including information of
connection initiator and recipient, messages exchangedaplication type of the session.
Such session information is not only maintained during ifetiine of a session but also
remains accessible beyond its lifetime as part of a histeppsitory. The capability of
tracking the state of each active session facilitates fsiaitespection, intra-session data
fusion, and inter-session correlation for Trojan-gerestdtaffic. With the help of stored
information, we can also determine the progress of a sesBimminstance, information
on connection status can indicate whethé&fGP session is in the three-way handshake
procedure, has established connection, or is at its tetimmahase. By correlating the
data of streams within the same sessiBAT Catchercan rapidly determine whether an

S E CATCHING REMOTE ADMINISTRATION TROJANS 13
&

RAT Catcher

Message Sequencer (MS) Traffic Distinguisher (TD)

W

et
Session Correlator (SC) Trojan Terminator (TT)

Incoming Packet P Outgoing Packet

i

Figure 3.RAT Catcherarchitecture

attacker’s operations are successful. In addition, byetating the information from prior
sessions with an ongoing connectiorRAT data channel could be readily associated with
its control channel, thereby prompting the same prevefptirgtive action by theRAT
Catcher Furthermore, we use the information of defunct sessiomiedtin the history
repository for carrying out session correlation compotaithat help determine the traffic
type of currently active sessions.

The storage of all transport packets facilitates their ygpiveg to Trojan messages by the
packet re-assembly procedure that takes place with thedfidhe syntax and semantics
of known Trojan protocols. The objective of this aggregatadso known asMessage
Sequencingis to conceal the packet demarcation imposed by the tranpeer and
restore the boundaries of Trojan messages. Without setpgericojan sessions may go
undetected if their constituent messages happen to spdiplattansport packets. Given
the large number of existingATsand the variety of protocols used, it becomes challenging
to identify a RAT session effectively and efficiently. To classify data stieathe RAT
Catcherresorts to multiple techniques that include traffic cotieta application protocol
analysis, and stateful inspections in addition to fine-tlisignatures. Once a session is
confirmed as Trojan, our framework may immediately blockmieate or take over the
session besides log generation. Fig@reshows the architecture of our framework that
entails the following modulesSession Correlator (SC), Message Sequencer (MS), Traffic
Distinguisher (TD) andTrojan Terminator (TT)

Once a packefP arrives at theRAT Catcher the Session Correlator (SCinodule
determines whether there exists a session which P belongs to; if there is none, a new
sessionS is created forP. Based on information abowt or correlation with other active
or defunct sessions, it may be possible to immediately deter whetherP is part of a
RAT such asBack Orifice, SubSeven, NetBus, or DeepThroat. P is then handed over to the
Message Sequencer (M&8png with its session informatiofi, where P is re-assembled
with other existing packets of the same stream to form a serpuef application messages.
In turn, this message sequence is transferred tdriéic Distinguisher (TD}o determine
the specific application type of the session. Findiharrives at thdrojan Terminator (TT)
where information onS is appropriately updated?; is stored inS to help forthcoming
re-assembly efforts and a corrective action may be takBAT traffic has been found.

4.2. Session Correlator (SC)

To maintain information for each session, we usesthgsiomata structure whose key fields
are shown in first part of TableX. Each connection is assignedassiorstructure and is
uniquely identified by its first five fields: source and dedtoralP addressesSIP, DIP),

14 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS
&

source and destination port numbe3®ORT, DPORYand protocol PROTQ. Field TYPE
indicates the application type of the session sudbegp Throat, NetBus, WanRemote etc.;
this field can assume the valbgpass should the application type cannot be determined
after a certain amount of traffic in the session has been atsg®r the session is generated
by a normal application. The fiel@ONFIRM indicates whether the value iNYPE has
been derived from correlating streams in both directionshef same session, obtained
by association with other sessions (active or zombie),rapki drawn based on different
messages in a uni-directional traffic. Clearly, should @is@sapplication type be drawn
using multiple criteria —data streams, sessions, andlatiors— the classification accuracy
is improved. The two data streams in a session, the one friemt tb server and its reverse
counterpartare stored in fiel@./ENT and SERVERrespectively; these pointersstream
structures are discussed in Sectibf

field name | size (bytes) | description

Key fields of thesessiordata structure
IP address of the host at one end of the connection
IP address of the host at the other end of the connection
port number of the host wittP addressSIP, may assume special valuewiknown
port number of the host withP addresDIP; may assume special valuewiknown
protocol utilized by the sessio CP or UDP)
identify traffic type, such aBeepThroat, NetBus, SubSeven; can beunknown
TYPEis drawn from uni-or bi-directional streams, intra- or ingession correlations
pointer to servestreantata structure
pointer to clientstreandata structure

Key fields of thesireandata structure
state of the streanTCP only) such aCLOSED, LISTEN, SYSENT, SYNRCVD, ESTABLISHED
next sequence number expect&€Ponly), computed based on information of sender
initial sequence number of the current stredr@P only)
pointer to the root ofnterval-treestoring all packets of the stream
total size of data transferred in the stream so fHDP only)
number of bytes stored in “data” buffddDP only)

SIP

DIP
SPORT
DPORT
PROTO
TYPE
CONFIRM
SERVER
CLIENT

FNIF NN NN NN NN

state
next-seq
ISN

data
total-size
data-size

FINENUNENENEN

Table 1X. Key fields in data structuregssiorand stream

Figure 4 shows an hierarchical structure termactive sessions tabléhat we use to
organize session pertinent information; it provides edfitisession insertions, retrievals,
deletions, and facilitates intra-session and inter-sessorrelations. We first use a hash-
table to group sessions with hash functiéi{SIP,DIP,PROTG)((h>>16)xor (h>> 8))
mod h_sizewhere auxiliary functiom is defined as=(SIP xor DIP xor PROT® “>>"
is the right shift operation, anch_sizeis the size of the hash table. In computing the
hash valueSIP, DIR and PROTOare treated as integers with protocdl&P and UDP
assuming valueBx06andOx11respectively. Although simple, functiod has exhibited
near-uniform distribution in our experiments. Next, eaakHtitable entry points tosplay
tree T' that complies with the binary search tree property andrettan amortized time
by moving a tree node closer to the root every time it is aeegs]. Clearly, frequently
accessed elements are more likely to be closer to the root.

A splay treel” anchored off each entry of the hash table helps organizesdiens that
present the same hash value. In our framework, each ndbeeépresents all connections
established between a source/destination pair descripéeltis SIP, DIPand PROTOof
the structuresessior(of TablelX). More specifically, every node df is associated with
a port mapperconsisting of two tables; one organizes the poBBORY used byS/Pand
the other stores port©PORT) used byDIP. If a port number is active and occupied by a
session, the appropriate record for the session is stotthé icorresponding slot of thmort
mapperMultiple connections sharing the same port number arenizgd with a linked-list
under the slot indicated by the port number. Finally, alsg@sspecific data are maintained
in the session pool of Figureand are organized as linked-lists as well.

To facilitate session retrieval, we designed functeession-findp, wildcard)whose
goal is to locate the sessisghthat packef” belongs to. This function initially searches the
active session tableith the help of data in tuplecSIP, SPORT, DIP, DPORT, PROFO
available throughP. If the outcome is an existing sessiéh P is client-initiated andS
is marked bySCas having forward directionDIR: forward’; otherwise,SClooks up the

SP E CATCHING REMOTE ADMINISTRATION TROJANS 15
&

Active Sessions P P e E TR TR ey
Table | Address Manager , 1 Port Mapper : | Session Pool
(Splay Tree) '

Hash

| SPORT
Table

1 0000 ! { siP: 192.168.5.143] !
! ! | | DIP:192.168.5.141 1
| : | | PROTO: UDP |
! : ! | sPorT:60000 | 1
' L ! | DPORT: 2140 |

| | TYPE: deepthroat | |
1| ROLE: client

Code |

SIP: 192.168.5.143 |
DIP:192.168.5.141] |
PROTO: UDP
DIR: forward

Figure 4. Session information before data channel is astedl for traffic in Tablé/Ill

Active Sessions ;-------------ooooo-ooooo-ooo 1 I e !
Table | Address Manager ' : 1 Session Pool 1

(Splay Tree)

Hash
Table

- SIP: 192.168.5.143) |
! | DIP:192.168.5.141 |
1| PrOTO: UDP

i | sPoRT: 60000
| | DPORT: 3150

| | TYPE: deepthroat | |
| | ROLE: client |

Code |

SIP: 192.168.5.143] |
DIP:192.168.5.141 |
PROTO: UDP
DIR: forward

= sip: 102.166.5.143 |
| | DIP:192.168.5.141 | 1
i | PROTO: UDP

| | SPORT: 60000
| | DPORT: 2140

|| TYPE: deepthroat | |
! | ROLE: client !

Figure 5. Session information after data channel is estad(i for traffic in Tablé/Ill

active session table again with a new tuglBIP, DPORT, SIP, SPORT, PRO®Gormed

by exchanging the roles of source and destination ends. Aengpty results in this second
attempt indicates thaP is part of a server-originated stream tagged with directidiR:
reversé. The wildcard argument ofsession-find(3pecifies whether wildcard matching is
conducted in the session lookup. By assuming vakafce-port or “ destination-port

for parametewildcard, session-find(¢onsiders any active source or destination port to be
a match. Shoulavildcard be designated asnbné€, an exact port match is performed.

Algorithm 1 outlines the three-step operati®C carries out. First, the function call
session-findP,none)is used to extract the sessidgh corresponding to packeP by
traversing the active session table; a non-sulhdicates thatP belongs to an existing
session an@&Csimply exits by returnings. Next, SCverifies whetherP initiates a new
session that acts as a data channel associated with améRgE control channel. Finally,
the application type of the newly created sessidor packetP is set by correlating with
active/defunct session tables.

We use theDeepThroat traffic of TableVIll as an example to describe the procedure
followed by SC The traffic segment indicates that the attacker estalslisive UDP
sessions witli2140 and 3150 as their corresponding destination ports; the former acts
as the command channel and the latter as the data channebuBing the traffic of
Table VIl to our RAT Catcher SCcreates sessiotiA,60000,V,2140,UDP immediately
after packet at row 1 is encountered. WigDdeals with packeP of row 2, the invocation
of session-findpP, none)yields session<A,60000,V,2140,UDP whose mark DIR:
reversé indicates P to be a server-originating packet. We assume that afteregeitg
the first two packets, th&C records information on sessionA,60000,V,2140,UDR,

16 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS
&

Algorithm 1 Procedure followed bgession Correlator (SC)

1: Pis anewly arriving packetSIPandDIP are the source/destinatidR addresses oP; sportanddportare
the source/destination ports B, PROTOis the protocol ofP;
: find S associated withP in active session table by calling functisession-findP, none)
. if (S'is not null)then
returnS andexit;
end if
: find sessior?” in theactive sessions tableith function callsession-findpP, destination-port)
. if (T"is not null)then
if dportof sessioril” is any, replace it with that of?, return7” andexit; otherwise, create a new sessisn
for P with tuple <SIP,sport,DIP,dport,PROTS,; fields TYPEandCONFIRMof S are set to the same as
T'; returnS andexit;
9: end if
10: create a new sessishfor P with tuple <SIP,sport,DIP,dport,prot;
11: find sessiof” in the defunct session table with tupteDIP,dport,PROTG>;
12: if (T is not null)then
13: setTYPEof S to that of 7" and returnS;
14: end if

constructs the session table of Figdrand tentatively marks the sessionsepThroat.
When the packet in row 4 is encountered, RAT Catcherestablishes that no session
<A,60000,V,3150,UDP exists as evidenced by Figude Before creating a new session
<A,60000,V,3150,UDR, SClooks up in theactive sessions tabfer any session matching
<A,60000,V,any,UDP with the help of the callsession-findP, destination-port)By
checking the type of the session in the lookup resuk,60000,V,2140,UDR, the RAT
Catcherestablishes that BeepThroat control channel indeed exists and therefore marks
the newly created session BsepThroat (Figure5). Algorithm 1 carries out this session
correlation betweeRAT control and data channels in lines 6 to 9.

Information about terminated @ombiesessions, especially those recently torn down,
may be helpful to determine the application type of curgeattive sessions. For example,
if a service provided on a specific network port of a host idient with the tuple
<DIP,DPORT,PROTO has been determined as a Trojan server by some previousrsgssi
its application type is not expected to change abruptlyeBas the above observation, our
RAT Catcherkeeps information abowombiesessions of Trojan servers accessible for a
period of time —configurable but set to 5minutes by defauttet such zombie sessions
are organized in the defunct session table with key:DiP,DPORT,PROTGS and value
of TYPE Any time a new sessior:SIP,SPORT,DIP,DPORT,PROTQis generated by
the SC the defunct session table is consulted with queBI/P,DPORT,PROTE, and the
application type of the returned session, if any, is assignehe newly created session.
For instance, by the tim&AT Catchemprocesses the connection beginning at row 3 of
TableV, session<A,1071,V,80,TCP has become zombie and therefore, it is stored in
the defunct session table. By simply searching 40/,80,TCP> in the defunct session
table, the application type of the session established Wwy3rof TableV can be quickly
determined a¥VanRemoteSuch a correlation between ongoing connections and giead
known zombiescan establish relevant temporal session associationsagidly identify
the application types of ongoing sessions.

4.3. Message Sequencer (MS)

We design thestreamstructure —key elements of which appear in the lower part of
Table IX— so that packet re-assembly and state tracking for a dagmnstrcan be
easily carried out. Different types of information are stbifor connection-oriented and
connectionless channels. FBCP streams, fieldstatetracks the connection state of its
originator and can b8 YN-SEN,TSYN-RCVDESTABLISHEDor CLOSE fields ISN and
next-segmaintain the initial sequence number and the next expe@agdence number,
respectively. Lastgatais a pointer to ainterval-tree[17] used to organize all encountered

S E CATCHING REMOTE ADMINISTRATION TROJANS 17
&

stream packets according to a search keyr{2] wheren, ny represent start and end
sequence numbers; the value of every interval-tree nodesiisgde packet of the stream
in question. In aUDP stream, thedatapoints to a buffer that stores data received but
unprocessed for the stream in question thus far, whosesindicated by fieldata-size
The fieldtotal-sizeindicates the number of bytes transmitted helping track/tieme of
data encountered by the session. We define functiorstralhm-find§, P) to retrieve the
stream/ corresponding to packét within sessionS.

TheMessage Sequenceses an interval-treg implemented as a red-black tree to store
stream-pertinent data. The key;[V.] of a specific nodd/ in I represents the start and
end sequence numbeiSENandESN of the corresponding packét; V; can be directly
obtained from fieldsequence numbef P's TCP header whilel, can be derived with
the help of the fieldgotal length IP header lengthas well asTCP header sizef the
packet. FOlUDP streams, we simply assign the current valugatal-sizeof the stream
as the start sequence numb8S() of the incoming packet and itSSNcan be derived
from SSNand the packet size. For any two packBtand(@ of the same stream, we define
different relationships based on their sequence inter&jlsdenotingP; and P, as the
start and end sequence numbers foas well as@); and Q. for @ respectively, we can
determine thata) Q is a duplicate ofP if P,=Q, and P.=Q.; b) P and Q overlap if
P,<Qs andQs< P, < Q. or Q,<P; and P;< Q.<P,.; c) P containsQ if Q,>P, and
Q.<P, or @ containsP if P;>Qs andP.<(Q.; andd) P precedes or follow§) if P.<Q;
or Ps>Q., respectively. With the help of these interval relations, @esign functions to
manipulate the interval treéiterval-insert{, P) inserts a node representing packeinto
1, interval-deletel, P) removes the node of pack&tfrom I, andinterval-retrievel, P)
returns a pointer to a nodg of the treel provided that a duplicate, overlap, or containment
relationship betweeid) and P can be established; otherwise, the outcome UL
Evidently, these operations maintain complexitlog(n)) wheren is the number of nodes
in 7. In addition, the functiopacket-build(; SSN, ESNcreates and returns a new packet
@ with interval indicated by$SN, ESNFinally, functioninterval-traversal() performs an
in-order tree walk of and lists all intervals (i.e., packets) in sorted order git8SN this
function is useful for logging packets into permanent sjera

The stream re-assembly process used/8jis presented in Algorithm2 and works as
follows: for an arriving packe®, MS obtains the sessiof of P and functionstream-
find(S, P) is invoked to fetch its strearh Next, MS checks the freshness &f by calling

Algorithm 2 The procedure followed bylessage Sequencer (MS)

1: P < incoming packetS < session of? returned bySession Correlator (SCY « stream-find§, P);

if (TYPEandCONFIRMof S are setthen
P is part of aRAT or normal session; hand it over to the protocol analyzercatdd byTYPEor Traffic
Terminator (TT) exit;

:end if

. Q < interval-retrievel, P);

if (Q is empty)then

P is a brand new packet and functignterval-insert{, P)is used to add® into I;

: else

check whether the overlapping partsfofind any packet i) have the identical contents; if not, generate

alerts ancexit;

10: end if

11: ts« initial sequence numbet3N) of I; t. < (sequence number 6§)+(payload size o)), whereQ is the

packet with largest sequence number in

12: if ((te - ts) is larger thanV/ AX _STZ E (default M AX _S1Z E=5KB)) then

13: TYPEandCONFIRMof S are set to béypassandexit;

14: end if

15: O < packet-build{, ts, t.) and is handed over foraffic Distinguisher (TD)

function interval-retrieve[, P), which returns a pointer to nod@ of tree /. A NULL
@ implies thatP is a new packet and can be inserted iftavith the help of function
interval-insert{, P). If P and@ are duplicates, their payloads are compared to ensure that

18 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS
&

Traffic Distinguisher (TD)

} ‘ WanRemote ‘ o ‘ Eclypse ‘ P ‘ Ultors Trojan ‘ 1

I | Back Orifice ‘ |

3 HellDriver ‘3 ! | Drat Trojan ‘3 ! | DeepThroat ‘3

f ‘ WebServect ‘ :
i o000 :

ooo P ooo o ooo

| ‘ Setiri Trojan ‘ 3 1| Tini Telnet Serveh

1| Infector ‘1 !| subseven ‘l

_‘,,,,,,,,,J [— [,,,,,,,,J [S— [,,,,,,,,: ,,,,,,,, [,,,,,,,,:

HTTP Dissector FTP Dissector Telnet Dissector Miscellenea
Dissector

‘ Traffic Classifier (TC) ‘
[} [

l

from Message Sequencer to Trojan Terminator

Figure 6.Traffic Distinguisher (TDromponents

they have identical content befofe is inserted into/ with a different timestamp. In a
similar manner, for cases wheféand(@ overlap and eitheP contains@ or) contains

P, their contents on the common sequence interval are coutpiétbey share the same
content for the overlapping par®, is inserted intd sinceP is a normal overlap packet or
retransmission of); otherwise,P is suspicious as it may have been crafted with evasive
tools | and administrator-specified counter measures such as idgpppn be applied.
Finally, function packet-build{, SSN, ESN) is called, withSSN the initial sequence
number of the strearthand ES N the largest sequence number thus faf,ito re-assemble
the data stream and the resulting aggregation, tersa@er-packet), is handed to the
Traffic Distinguisher (TD)nodule.

4.4, Traffic Distinguisher (TD)

As every Trojan follows its own protocol, it would be unredit to use a monolithic
mechanism for detecting all possibRATs. The Traffic Distinguisher (TD)module
addresses this challenge by using a multi-phase trafficifilzestion scheme. First, all
incoming traffic is categorized by theraffic Classifier (TC)into four general types of
streamsHTTP, FTP, Telnetind Miscellanea Subsequently, each type is handled by its
own traffic Dissector In the Miscellanea Dissectoiwe employ specific Trojan analyzers
to detect streams that potentially belong Ré\Ts using proprietary protocols as such
Trojans hardly manifest any commonalities. Figarghows thelD components and their
organizationTraffic Classifier (TComponent mainly employs heuristic rules to classify
traffic. For every incoming packe®, along with its sessioly, stream/, and thesuper-
packetO constructed by modulklessage Sequencer (MSYT determines the traffic type
of P with the help of the following rules:
1. packetP is client-initiated: Thesuper-packe® is matched against patterméthod
URL HTTP/[0.91.01.1]", where methodis any legitimateHTTP-method such as
GET, POSTandPUT [25]; a positive result causes sessi®nto be marked asITTP.
Similarly, S is claimed asFTP-compliant traffic if O follows pattern €ommand
parametefOD OA". S is marked adlelnetcompliant traffic if application payload
of P is less than 3 bytes an@ follows pattern tommand paramet@D OA".
Otherwise,S is marked aMiscellanea

l'such adragroute

S E CATCHING REMOTE ADMINISTRATION TROJANS 19
&

2. packetP is server-initiated: I follows pattern HTTP/[0.91.0/1.1] 3-digits status-
text’, S is marked asHTTP-compliant traffic..S is deemed a$TP traffic if O
conforms with syntax text-stringOD OA”. In order to identify Telnetcompliant
traffic, O is first split into lines with demarcation symbdBD OA|, the first line is
then rewritten by simulating the effects of function-keysatkspactand “deleté,
and the outcome is compared against the client-dispatabvednand. If all above
checks fail,S is marked adiscellanea

OnceTCdetermines the type d?, it invokes the correspondirigissector

TheDissectorsanalyze the header and body of exchanged messages in battiatis of

a session and correlate messages within the same sessioth&r improve classification
accuracy. In particular, th&éiTTP Dissectorinspects the header and body ETTP
messages, attempting to ident®ATsthat follow theHT TP protocol such ag/ANRemote.
TheFTP DissectoiidentifiesFTP-based Trojans includingclypse, HellDriver andinfector
while theTelnet Dissectodetects th®rat, Ultors andTini Telnet Server Trojans that follow
Telnetprotocol specifications. SimilarlyRATs including SubSeven and NetBus that use
their own protocol specifications are handled\bigcellanea Dissectgthe latter is mostly
based on analyzers that URAT specifications often obtained through reverse engineering

By and large RAT streams that are transported via the same protocol appbantery

similar except in their use of ports, banners, and seryaie®received. For instance, all
FTP-based Trojans such &slypse (Tablell) andHellDriver useTCP-ports for their control
and data channels and their server use banners that diffeinacontent. For example, the
Eclypse banneris220 EclYpse 's FTP Server is happy to see w@alid that oHellDriver’s is
“220 ICS FTP Server ready”AlthoughFTP-compliantRATssupport different command
sets, they overall follow théTP specification. Based on these observations, RAT
CatcherdetectsFTP-compliant RAT types by mainly using their server-banners and
client-command sets. As soon as the banner and command sehefvly-established
FTP-basedRAT become availableRAT Catchercan successfully identify the Trojan in
guestion through proper augmentation of #iEP Dissector This also applied t¢HTTP
and TelnetcompliantRATs as well. Algorithm3 shows the overall operation of tfelrP
Dissector the dissectors folfelnetand HTTP are laid out similarly. AlgorithnB treats

Algorithm 3 Procedure foF TP Dissector

1: P is the newly arrival packetS and I are session and data stream tFabelongs toO is the re-assembled
“super-packet”
2: if (I is from server to client of sessid$) then
3: Ois splitinto multiple lines demarcated k9D OA|, banner is assigned the first line
4: for (each bannetelitale of FTP-basedRATddentified byRAT Catchey do
5 matchbanneragainsttelltale and TYPEof S is set to theRATtype corresponding ttelltale if a match
is found
end for
else
O is split into multiple lines demarcated BHYD 0A, commands assigned the first token of the first line
separated by empty space
9: if (command is PORT) then
10: calculate port numbert based on the parameter of tR®RTcommand — refer to Tablé for calculation
formula;
create a new session with tupteDIP,any,SIP,pt, TCB, whereSI P and DI P are the source/destination
IP addresses aP

o ~N2

11: endif

12: for (each commandnstruction used byFTP-basedRATS) do

13: matchcommand againstinstruction andCONFIRMof S is set if a match is found
14: end for

15: end if

16: P is handed over tdrojan Terminator (TT)

FTP commandPORTIin a special way as this command specifies the port used for the
data channel. A pseudo-sessiaDIP,any,SIP,pt, TCR is created wher& P, DIP are
the source/destination IP addresses of the packet in gunestndpt is the port number

20 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS
&

specified in commanBORT. As the network port that would be used by Trojan server data
channel in the near future is yet unknown, a placehcdaiis used instead.

The function oMiscellanea Dissectds inherently different from that of its counterparts
in Figure6 as it attempts to detect proprietalRAT communication protocols that hardly
demonstrate any commonalities. This dissector essgntalls as a scheduler for all
registered analyzers whose objective is to dissect exelysproprietary protocols. For
each incoming packeP, Miscellanea Dissectoinvokes in sequence aRAT-analyzers
that have been implemented and incorporated in our framewdre process continues
until the application type of is either determined or alRAT-analyzers have been used
with no outcome.

Algorithm 4 Protocol Analyzer foNetBus Pro

1: P is the newly arrival packetS and I are session and data stream tFabelongs toO is the re-assembled
super-packet

2: verify thatO is at least 10 bytes in size and starts with striBg\", otherwise, exit from the procedure

3: len = O[2, 3], that is, the second and third bytes(@f version = O[4, 5]; code = O[8,9]

4: check conditions ((size @ >= len) and @ersion = 2) and ¢ode < 200)) satisfied; otherwise, exit from
the procedure

. if (I is from server to client of sessid#) then
TYPEof S is set toNetBus Pro

else
CONFIRMof S is set and &etBus Pro session is detected

:end if

. Pis handed over tdrojan Terminator (TT)

SORNDW

Analyzers within theMiscellanea Dissectoshare similar working mechanisms and
Algorithm 4 shows the skeleton of thiéetBus Pro analyzer. In brief, Algorithrt first finds
boundaries oRAT-messages from the re-assembdegher-packet Gorovided by module
MS. In particular, Algorithm4 inspects whethesuper-packe satisfies the minimum
message size of 10Bytes and starts with telltaB®\N™ as necessitated byetBus Pro
specification. It then examines whether the restored messggld NetBus Pro traffic.
This is done by extracting well-defined fields includimgssage-siz@ersion-numberand
command-codand tentatively marking the flow a&tBus Pro. Finally, Algorithm4 uses
the first server-message to confirm the initial marking byfits client message and set
the field CONFIRM

4.5. Trojan Terminator (TT)

The Trojan Terminator (TT)module of theRAT Catcherallows for counter measures to
be taken for different types of detect&®ATs. The TT module examines the application
type of a received packd? in conjunction with the status of its sessiéhand streany
and take administrator-specified actions for the variopssyof traffic. If fieldsTYPEand
CONFIRMof sessionS are not setTT simply forwardsP to the next hop enroute to its
destination. Otherwisd, T uses a number of options including alert generation, loggin
P as well as its data streafmand sessiord, blocking of subsequent messages from the
same session, and/or take-over by acting &Ad& server to the initiator of the session.
Information shown in TabléX for sessiort is also updated based éhto help subsequent
re-assembly operations and improve the accuradyAit Catcher

In addition,TT can become more proactive by disabling identifi&4ll's. In particular, it
may remove all Trojan-related components from the victifii&s system. For instance,
NetSphere has a unique feature that allows for the purging of its setheough the
client-commandillServer. The command<KillServer> issued by theNetSphere client
forces the server to disconnect itself from the network;ddition, the server un-installs
itself from the victim system by removing alletSphere pertinent files. Similarly, Trojan
GateCrasher also provides commandsifiinstall;” and “end;” to terminate the execution
of servers and purge from victim machines all pertinent fis simulating the roles of

S E CATCHING REMOTE ADMINISTRATION TROJANS 21
&

RAT-clients, ourTT can take over confirmed Trojan sessions and p&4&€&sfrom victim
machines. In the same manner, ddrcan play the role of th&®AT-servers, helping collect
vital information about attackers without suffering thestitactive consequences BIAT-
servers. In order to take over a detecfAT session, thd T sends alCP RESEDacket
or anICMP destination unreachabl@essage to the server. Subsequeitlycrafts fake
replies for all client-generated commands, and recoraplii from the attackers. Finally,
it is worth pointing out that differentiated actions can bken according not only on the
RAT types but also on the transport protocols.

5. Experimental Evaluation of the RAT Catcher

We have implemented the propodedT Catchein Cas a subsystem in thES-module of
FortiGate a multi-function security protection system and a stamdalnetwork device
providing firewall, AV, and IDS/IPS functionalities3P]. The modular architecture of
FortiGateforms the basis for its extensibility and scalability, allng for the seamless
coupling of all our RAT Catchesrelated components. In our experiments we used
FortiGate-30Q@hat operates in inline fashion, ha&®gabytemain memory, can manage
prorated 400 bpstraffic, and maintains upto one million concurrent netwarkigections.
We subjected th&AT Catcherto a wide range of experiments based on the testbed shown
in Figure7 with a number of test machines undertaking the roles of ef@AT-servers or
clients. Test machines run eithkinux or Windowsas a large number &®AT-clients and
servers are available for these platforms. All test machivere connected to theortiGate-
300 via two switches supporting 100/1,00ps ports: the first simulates thiaternal
network whereRAT-servers are found while the second switch plays the rokxtdérnal
network where variouRAT-clients are operated by attackers. To verify the behaviouo
RAT Catcherwe installedEtherealtraffic sniffers R3] —denoted asSniffers in Figure7—

to capture data exchanges amaR4T-clients, RAT Catcherand RAT-servers. In what
follows, we report on our laboratory-based effort to estdibihe accurate operation of the
RAT Catcherand baseline performance characteristics. We also repdheodeployment
and performance of the framework in actual networks.

5.1. Accuracy onRAT Detection

Our initial focus was on establishing the accuracy of RAT Catcheiin detecting Trojans
that use either theITTP, FTP, Telnestandard specifications or proprietary protocols with
the help of the test environment of FigureWe also intended to compare the behavior of
RAT Catchemersus that ofSnort an open-source IPS that predominantly uses signatures
for RAT detection §4]. In [9], we discuss howSnortcan be used for this purpose and
outline specific rules. Every time we implanted a new Trojarver or client on a test
machine, we re-installed the OS, network and regular agiptins of the machine in
guestion to avoid any accidental interference. For all érpents we discuss in this section,
the action taken byRAT Catcheron identified Trojan sessions is configured todzess
meaning that theRAT Catcheronly generates alerts for the detect®dT sessions and
simply forwards all traffic. We proceed with our experimeintthree stages with different
test procedures: manual test, automated test, and testme@specially for encrypted
RATs.

In the manual testing stage, we initially installedm@lP-based Trojan servers identified
by our RAT Catcher including Eclypse, HellDriver, and Infector, then manually execute
their corresponding clients and enter randomly seled®d commands. OurRAT
Catchersuccessfully identified all such Trojan communications gederated appropriate
alerts. Next, we installed a subset BAT servers of different types on a single test
machine denoted asgl, carefully configured each of them to avoid any conflict on
communication ports, installation locations, clashing filodifications, and activated them

22 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS
&

Figure 7. Testbed foRAT Catchersubject to real traffic

RAT Catcher

Internal External

Network Netwrok

Test Machine
Normal Applications Noise Generator
(tester)

Figure 8. Testbed foRAT Catchersubject to synthetic traffic

all simultaneously. By executinGAT client programs one at a time to communicate with
their own servers on test machink our RAT Catcherrevealed all Trojan activity. We
observed the same accurate detection fromRIA& Catcherwhen multipleRAT-clients
were invoked at the same time. TRAT Catchesstill achieved a perfect detection accuracy
even whenbackgroundor attack-free traffic generated WU-FTPD co-existed during
the testing. We successfully performed manual tests Wifis based orHTTP, Telnet

and proprietary protocols by repeating the above test pioee Using the sniffers of
Figure7, we captured alRAT traffic generated during this manual test stage and used it in
forthcoming tests. Evidently, the large number of commavdslable in the repertoires of
RATsrenders manual testing very tedious and time-consuming.

As every individuaRAT command performs a well-defined operation and there isyrarel
dependency between different command&AT server may not need to be “aware” of
the sequence of client-issued commands and it is essgntialnory-less. We exploit this
memory-less characteristic to automatically generatecteses as follows: for eadRAT
under test, a session templal€P or UDP) is first selected, then the template is filled with
a sequence of appropriate command/response messaddse ensued traffic is injected
into our RAT Catchervia a home-mad#&Stesting systemd] termedtesteras shown in
Figure 8. Thetestercan be configured to manipulate the traffic before it is regdato
our RAT Catcher this manipulation includes modification of protocol fielsisch aslP
addresses, ports, checksums, and sequence numbersenephaof packet payloads with
arbitrary data, and/or re-shuffling packet orders.

For a TCP-based RAT connection, the session template consists of three parts:
connection establishment, message exchange, and caméatnination. The first part
contains the three-way handshake procedure with threeepmcklient-initiatedSYN,
SYNACK from the server, and client’s confirmatigkCK. The message exchange part

**based on the command set supported by individRe&T's.

S E CATCHING REMOTE ADMINISTRATION TROJANS 23
&

contains a series of “command/respor&g(pairs while the termination part is made up
of two “FIN,ACK’ pairs — one originated from the client and the second froengrver.
Clearly, packets in both connection establishment anditetion have no payload and
are fixed; packets in the message exchange part were geherdtamatically with the
help of command sets and possible responses foRIE under test. Th&JDP session
template simply consists of a sequence of “command/regp@h3” pairs specified by
testers or automatically generated. Such sequences ofandsare randomly chosen from
the command sets for tHeATs under testing. In addition, the numberRAT sessions to
be created and the appearance frequency of each commane geterated traffic are
configurable. To simulate multiple concurrent sessionstesiercan generate an arbitrary
number of test cases, interleave them together, and shiufleeplay order before feeding
into the RAT Catcher

We employedsubSeven in the automated testing stage to show the detection agcurac
of both RAT Catcherand Snort Overall, we generated 100,000 BEP-basedSubSeven
sessions; each session contained a random number —in tige @n[l, 20]- of
“command/reply €/r)” pairs whose sizes and payloads were randomized unles#ispe
format/parameter requirements are necessitated by thecpto The generatedRAT
sessions were injected into bo®AT Catcherand Snort The outcome of the experiment
appears in Tabl¥. Sessions are grouped according to the number of their “camdimeply
(c/r)” pairs and columrent shows the number of Trojan-sessions per group. Colaooin
reply shows the number of sessions from each group that do noetrayyy server-reply.
Our RAT Catcherinitially uses one or more messages of a session to deterthane
potentialRAT type of the session which subsequently is confirmed by atditimessages
received. The two columnRAT Catcherdetectand RAT Catcherconfirmindicate the
number of sessions tentatively labeled as Trojan and thas#rmed as such by ouRAT
CatcherTableX also shows respective results obtained \@itort(v.2.2having all specific
signatures for detectingubSeven enabled.

“clr” cnt no-reply | reply RAT Catcheretect (%) | RAT Catcherconfirm (%) | SnoOrtdetect (%) [SnoOrimiss (%)
1 | 4865 118 4747 4865 (100.00) 4747 (97.57) 95 (1.95) 4770 (98.05)
2 | 5062 2 5060 5062 (100.00) 5062 (100.00) 176 (3.48) 4886 (96.52)
3 | 5069 0 5069 5069 (100.00) 5069 (100.00) 276 (5.44) 4793 (94.56)
4 | 5318 0 5318 5318 (100.00) 5318(100.00) 349 (6.56) 4969 (93.44)
5 | 4911 0 4911 4911 (100.00) 4911 (100.00) 410 (0.083) 4501 (91.65)
6 | 5171 0 5171 5171 (100.00) 5171 (100.00) 556 (10.75) 4615 (89.25)
7 | 4979 0 4979 4979 (100.00) 4979 (100.00) 570 (11.45) 4409 (88.55)
8 | 5306 0 5306 5306 (100.00) 5306 (100.00) 683 (12.87) 4623 (87.13)
9 | 5038 0 5038 5038 (100.00) 5038 (100.00) 761 (15.11) 4277 (84.89)

10 | 4857 0 4857 4857 (100.00) 4857 (100.00) 723 (14.89) 4134 (85.11)
20 | 4879 0 4879 4879 (100.00) 4879 (100.00) 1503 (30.81) 3376 (69.19)

Table X. TestingRAT Catcherand SnortusingSubSeven-based test cases

Table X shows that theRAT Catcherdetects allSubSeven sessions and its overall
confirmrate is nearly perfect. Only in the first group, a few instanoé unconfirmed
Trojan connections appear as single message-sessioriagfie option for confirmation.
Nevertheless, abubSeven are properly tagged and only 2.43%RAT-sessions cannot be
confirmed. On the contrary, the accuracySsfortis far from satisfactory with worst 1.95%
detection rate for group 1, best 30.81% for group 20, andaaei6.59% for all cases.
This is attributed to the fact th8nortuses only three rules f@ubSeven. Clearly, we could
craft signatures itsnortto cover allSubSeven commands but this would greatly burden its
operation and deteriorate its performance to an unacdeg&atel. We repeated our testing
for traffic generated by TP, HTTP, andTelnetbased Trojans using synthetic background
noise with the layout of Figurg. We experimented with various intensities of background
noise traffic regulated by the machines making upthise generatoand established very
similar results to those shown in Table

In the last stage of our baseline experimentation, we de#dh Wrojans that use
encryption algorithms. As suclRATs have extra dimensions of freedom—encryption
algorithms and encryption keys—and share little commonialitheir encryption processes,

24 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS
&

Internal External
Network Netwrok

’7 RAT Catcher

LSW“Ch 1 Switch 2
Tester Machines

(testers 1,2,...,N)

Noise Generators

(generators 1,2,...,M)|

Figure 9. Testbed with multiple testers to genef@AF traffic and multiple testers for background noise

we designed special testing procedures that we discusshveithelp ofBack Orifice (BO)-
andNetBus Pro-generated traffic. We used the Internet available sounde-éor theBO-
client and changed its encryption seed for each newly alessgssion. The various streams
of ensued traffic —resembling that of Tallé— were fed into bothRAT Catcherand
Snort In all instancesRAT Catcherand Snortmaintain the same detection accuracy as
both resort to application-layer protocol dissection. \&lixperimenting witiNetBus Pro,

we deployed a synthetic approachNesBus Pro uses a proprietary encryption algorithm
and its source code is not known. We generated the 10-bylecafpn protocol header
and randomly selected payload for every createtBus Pro packet. We generated upto
1,000,00QNetBus Pro sessions and injected this synthetic traffic to &I Catcherand
Snort Our experiments showed that tRAT Catchercreates no false negatives achieving
the perfect detection rate whil8nortfails to recognize most of the generated sessions.
Snortappears to be ineffective as it can detect only thestBus Pro sessions that happen
to have client-initiated and server-originated packet wizes 0f0x20and 0x10Bytes,
respectively. In contrast, thieetBus Pro protocol analyzer of RAT Catcherreats the
message-sizieeld as a variable and therefore can recogmeeBus Pro messages of any
size. Moreover, th&RAT Catcheresorts to message structure analysis and correlation of
bi-directional traffic within a session to further improus detection accuracy. We have
repeated the same approach in experimenting with combimatf RAT and attack-free
traffic flows and obtained similar results for the performaont RAT Catcherand Snort

In summary, for Trojans based &l TP, FTP, Telnetor proprietary protocols, thRAT
Catchercreates no false positives/negatives.

5.2. Scalability and Performance Under Various Workloads

As most RAT-clients are human-operated, the time gap between two cotige
commands submitted to the server is often long reflectingttaeker’s thinking time. The
time-stampedsubSeven message exchanges of Tablg indicate that this thinking time
can be as long &0 secondsbetween messages 13 and 14— while on averatfssconds
This interactive nature of Trojans seems to indicate thatgssing overheads incurred by
our RAT Catcheshould not be a concern. However fastiGatés to be typically deployed
at the edge between internal and external networks, it m@nafncounter in excess of
half a million concurrent sessions and response times agésponding sessions may be
noticeably affected.

We evaluate the capabilities of tRAT Catchemunder the above circumstances with the
help of the testbed of Figur@and the traffic of TabléV. We use the latter as a template
to generate various test cases and we split it into two pidwedirst consists of the packets
making up the normal CPthree-way handshake —not shown in the Table for brevity— and

tof Algorithm 4

S E CATCHING REMOTE ADMINISTRATION TROJANS 25
&

packet 1; the second part contains the remaining packeta®well as the four packets of
the normal disconnection (also not shown). We configure ystesn to generate two alerts
for eachNetBus Pro session: the first is created when the session is markidtBas Pro

by using data stream from the client to server and the secoraised when the session is
confirmed as a truletBus Pro with the help of data stream from the server to cliébAT
Catchemyenerates the first alert when packet 1 is encountered aségubntly confirms
the session after it has processed packet 2. In our expestitan we configure th&AT
Catchero forward all traffic even if Trojans have been detected anour RAT Catcher
implementation, we use theRU to replace sessions when the memory is full. As the
generation of the second alert depends on the presencefofktradert and the availability
of the session informatiorRAT Catchermay fail to raise this second alert if tHeAT
session in question is evicted due to memory congestion.

In all the tests performed in this sectioN=20 machines are used &ssterso create
foreground trafficas follows: they replay the first half of the trace in Talblé for n
times, therefore generating RAT sessions; then pause fbsecondand then replay the
second part of the trace fartimes;n assumes values in the range of [10,000, 700,000].
Meanwhile, we usé/=2 noise-generator machines whose purpose is to crea@ssions
of background traffiausing the attack-fre&/U-FTPDapplication —m takes values in the
range [1, 50,000]. We also elect to introduce artificial glelm the replay of background
traffic by splitting eachWU-FTPDsession into two parts and stall the noise-generators for
1secondn between replaying these two parts. Each time a trace Ilayeg, thetesters
modify IPs and port numbers of both source and destination of commescto avoid
conflicts among different replayed sessions. Similarlg tloise-generators also change
protocol fields accordingly so that source and destinalizsmand ports do not present
conflicts. To simplify the coordination among different ttesachines, we assign non-
overlapping IP address ranges to different machines. Foyégst, we observe the behavior
of RAT Catchemby recording the number of sessions that are correctly ndeaik&letBus
Pro with both alerts generated, and calculate the ratio of soctectly marked sessions
over the totah replayed\etBus Pro sessions.

case# | | m;FTPdelay [n=10,000 | n=50,000 [n=75,000 | n»=100,000 | n»=200,000 | ~»=500,000 | n=700,000
1 1;no 100.00 100.00 100.00 100.00 100.00 100.00 100.00
2 1; 1 second 100.00 100.00 100.00 100.00 100.00 100.00 100.00
3 10,000; no 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4 10,000; 1 second 100.00 100.00 100.00 100.00 100.00 100.00 99.99
5 20,000; no 100.00 100.00 100.00 100.00 100.00 100.00 100.00
6 20,000; 1 second 100.00 100.00 100.00 100.00 100.00 100.00 99.99
7 30,000; no 100.00 100.00 100.00 100.00 100.00 100.00 100.00
8 30,000; 1 second 100.00 100.00 100.00 100.00 100.00 100.00 99.98
9 40,000; no 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 40,000; 1 second 100.00 100.00 100.00 100.00 100.00 100.00 99.98
11 50,000; no 100.00 100.00 100.00 100.00 100.00 100.00 100.00
12 50,000; 1 second 100.00 100.00 100.00 100.00 100.00 100.00 99.80

Table XI. Test results of oURAT Catchemnder various traffic workloads

TableXI shows the results of all our tests conducted under diverskl@arls. TheRAT
Catcherdemonstrates the correct behavior when no artificial dedagsntroduced by the
noise-generators regardless of the volum&ai traffic and intensity of the background
noise. When artificial delays are in place while replayitt)-FTPD packets, theRAT
Catcherfails to generate the second required alert —confirmatiorkimg— for a small
number of Trojan sessions as we increase the volumes ofrfared and background
traffic. Nevertheless, even for this small fraction of sessj RAT Catcherstill carries
out the tentative marking. Overall, there is RAT session completely missed by our
framework. In addition, we also manually verify that no bguund traffic is mistakenly
identified asRATs or dropped due t&RAT Catchemalfunction. In all cases, the latency
for SubSeven traffic is statistically the same with and withoRAT Catcherpresent
in FortiGate By repeating the aforementioned procedure with otR&Ts including
SubSeven, DeepThroat, BO2K, andNetSphere we obtain similar results.

26 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS
&

France P.R. China USA

Suspicious Traffic Logger Suspicious Traffic Logger Suspicious Traffic Logger
RAT Catcher RAT Catcher
FortiGate300 FortiGate:
VPN
FortiNet Data-Center
Threat Analysis Center
IPS Testing Center

Figure 10. Deployment dRAT Catchelin France, P.R. China and United States

5.3. TheRAT Catchein the Real World

To evaluate the effectiveness of our approach in a real wsetting, we have deployed
FortiGate-30@levices in three higher education institutions in Frande, &f China and
the U.S.A. In collecting network-traffic data, we used theolat of Figurel0Oto store and
forward both confirmed and suspicious traffic streams cointgiattacks to a corporate
Threat Analysis Center (TAGYr manual processing and verification purposes. In order to
help discover new types of attacks and better ascertairatbe-hegative rate diortiGate-
300 we augmentRAT Catcherwith the Suspicious Traffic Logger (STlhodule that
simply logs likely malicious yet not-locally resolved siras/sessions. Regional devices
periodically transfer data on detect&ATs and un-identified but suspect connections to
TAC where sampling and analyses on the traffic are performedsim#ar fashion, the
collected suspicious traffic b$TLis manually analyzed for new strains of Trojans. Once
the confirmed Trojan traffic is stored, we also uSeortto assess its effectiveness by
computing the false negative rate while portions of confatrattack-free traffic fronSTL

is replayed toSnortfor gauging its false positive rate. From the forwardedficad TAC,

we present all detecte@AT instances foBack Orifice, NetBus andSubSeven during the
period of June 26th, 2006 to July 9th, 2006 in Taklée.

day Back Orifice NetBus SubSeven
US,CN,FR/Total Catcher | Snort US,CN,FR/Total | Catcher | Snort US,CN,FR/Total [Catcher | Snort
1 204, 115, 46/365 | 365/0 365/0 | 55, 25,17/97 97/0 63/34 32,15, 4/51 51/0 33/18
2 87,75, 29/191 191/0 191/0 | 86, 68, 36/190 190/0 143/47 | 26,12, 16/54 54/0 32/22
3 197,132, 104/433| 433/0 433/0 | 53,32,10/95 95/0 64/31 11,6, 8/25 25/0 16/9
4 168, 64, 40/272 272/0 272/0 108, 47, 32/187 187/0 117170 46, 34, 11/91 91/0 62/29
5 265, 119, 14/398 | 398/0 398/0 | 56, 34,10/100 100/0 74126 36, 24, 2/62 62/0 36/26
6 96, 51, 67/214 214/0 214/0 | 89,36, 4/129 129/0 84/45 17,8, 2/27 2710 19/8
7 230, 95, 14/339 339/0 339/0 | 51,28,17/96 96/0 47/49 33, 25, 7/65 65/0 49/16
8 205, 121, 99/425 | 425/0 425/0 | 115,50,29/194 | 194/0 90/104 | 50, 26, 15/91 91/0 59/32
9 43, 25,17/85 85/0 85/0 65, 41, 16/122 122/0 56/66 12,4, 3/19 19/0 15/4
10 218,107, 18/343 | 343/0 343/0 | 66,29, 11/106 106/0 77129 28, 20, 14/62 62/0 27135
11 125, 64, 37/226 226/0 226/0 | 79,53,32/164 164/0 109/55 | 42,16, 3/61 61/0 37/24
12 182, 93, 43/318 318/0 318/0 | 77,30,19/126 126/0 67/59 42,18, 19/79 79/0 45/34
13 246, 123,51/420 | 420/0 420/0 | 104,53,24/181 | 181/0 122/59 | 49,27, 13/89 89/0 38/51
14 96, 54, 13/163 163/0 163/0 | 56, 31,30/117 117/0 80/37 38,17, 17/72 72/0 40/32

Table XII. Detection rates biRAT Catcherand Snortin our real-world traffic

TableXIl points out mosRAT instances occur in U.S. followed by China and France;
Back Orifice is the most frequently foun®AT in the three regions, followed byetBus
andSubSeven as shown in columtyS,CN,FR/Totalln TAC, we manually establish that
all RAT sessions shown in Tabkll detected and reported by our regionally plaéear
Catches have been indeed correctly identified.

TableXIl shows the detection/prevention results and false negaiivRAT Catcheiand
Snortin ColumnsCatcherand Snortin the format ofcorrect/error, should all identified
RAT sessions atACbe replayed tdRAT Catcherand Snortwhen both are configured to

S E CATCHING REMOTE ADMINISTRATION TROJANS 27
&

block all RAT sessions. Clearlf\RAT Catcherdoes not create any false positives/negatives
and successfully blocks all identifi¢@lAT connections. Moreover, it typically determines
the application type of a session after inspecting the firsssage from each direction
of the session; so, it effectively forwards no attackerrmsiited command and minimizes
potential damage to victims. On the other haBdprtdetects alBack Orifice connections as

it integrates a dedicated protocol dissector which peréoroe-wise is equivalent to that of
our RAT CatcherHowever,Snortmisses a number ofetBus andSubSeven connections,
generating false negatives since the injected traffic has meanually evaluated to be
malicious. For instanceSnortrule 3009 P] used to identifyNetBus Pro contains pattern
“BN|20 00 02 00’ where the byte sequenc¢0 00" immediately following string BN’
designates the size of the message. Obvio@slgytrule 3009 assumes that alétBus Pro
messages wittommand-code 0x0&hould beOx20bytes. However, the sizes dktBus

Pro messages withommand-code 0x0&an vary in different sessions as demonstrated by
the captured traffic shown in the first part of TablBl ; this leads to a false negative by
the Snortrules in place as the connection request fromNagBus Pro-client has size of 31
bytes Ox1F) instead of 32 byte<0(20.

| dir | payload | description
NetBus Pro traffic — protocol: TCP; attacker denoted as A; victim denoted as V
1 A:35821— >V:20034 | BN|1F 000200 DC 33 050041 0C 69 [LF msg starts witlBN; size: 0x1F; ver:
|5D 28 5B 95 9C AD 95 A8 E6 28 FD|.. 0x02; cmd: 0x05 (connection establishment);

N

V:20034— >A:35821 | BN|1000 02 00 DC 33 050041 0C 69 1F 5D|2§ reply msg; size: 0x10; ver: 0x02; cmd: 0x05 (con. est});
Normal FTP-traffic — protocol:TCP, FTP server as S; FTP client denoted as C

1 C:46943- >S:21 PASV|0D 0A| client requests “passive” mode

2 S:21— >C:46943 227 Entering Passive Mode (x, Y, z, w, 66, 63) server listens on port 16959 (66 * 256 + 63)
3 C:46944- >S:16959 | (SYN) client requests data connection

4 S:16959- >C:46944 (SYNJ|ACK) server accepts the data connection

5 C:46944- >S:16959 | (ACK) client confirms data connection

6 C:46943- >S:21 RETR commands.tkD 0A| client requests file "commands.txt”

7 S:21- >C:46943 150 ASCII data connection for commands.txt response from server

8 S:16959- >C:46944 PWD - print name of current/working directory ...| content of file "commands.txt”

Table XIII. Traffic causingSnortto generate false positives and negatives

By replaying STL-collected traffic that has been manually verified as legitanwe
can establish thaSnortalso generates false-positives. For example, the secandipa
Table XIIl shows a normaFTP session and its data connection for a file transfer. In
message 1, thETP-client requests “passive mode” which is approved by theesen
message 2. At the same time, the server also informs the cliéts intent to use the port
16959for the data connection. In messages 3 to 5, ah@®Rconnection is established and
subsequently used to deliver the content of theclismmands.txtequested by the client in
message 6. As the patteRWDis part of the transported content of message 8, it triggers
Snortrule 107 discussed ind] which is obviously a false alarm. Overall, we have observed
that RAT Catchercorrectly identifies and subsequently blocks traffic stre&mown to be
the result ofRATs whereasSnortlags behind due to limited number of specific rules for
each Trojan, yielding both false positives and negatives.

6. Conclusions and Future Work

A Remote Administration Trojan RAT) is a malicious program that allows an
attacker to remotely control a computing system often argairrevocable damage.
Existing techniques including fingerprinting, auto-stadnitoring, surveillance of network
activities and packet analysis using static signaturegoarftked communication ports
are limited in both scope and effectiveness. Today, traffiitiscation, port hopping, file
renaming and compression, information encryption alonitp wvvasion techniques work
counter to the effectiveness and efficiency of anti-Trojatems. In this paper, we propose
the RAT Catchera network-based framework for Trojan detection that oggsraninline
fashion at the edge of the network and reliably identif@g” activities.

28 ZHONGQIANG CHEN, PETER WEI AND ALEX DELIS
&

The RAT Catchefinspects every passing packet and maintains informatiothéentire
lifetime of sessions created by both Trojans and normaliegipdns. This session tracking
improves detection accuracy by providing stateful insjpacas well as intra-session and
inter-session data correlation. TRAT Catcherstores all packets in every data stream, re-
assembles them, and interprets the resulting data aggmegatccording to known Trojan
protocols. To this end, the framework performs deep inspecin data streams by scanning
protocol fields and whenever feasible message content.RATe Catcherdissects both
data streams within a session and correlates them in ordendore that the traffic in
both directions complies with protocol specifications dafiroy RAT systems in terms
of syntax and semantics. By analyzing the syntax/formatpgflieation messages and
inspecting the exchange order of messages between cliehtseavers, oURAT Catcher
can defeat evasion techniques. By associa®Ad control and data channels, correlating
active with defunct sessions, and restoring boundarieppf@ation messages through re-
assembly, th&AT Catcherdoes not generate false positives or negatives. Actioneseth
on identified Trojan sessions include alerting, packet lotay, session take-over, and
connection termination.

Experiments showed that the proposed framework is bothctéfée and efficient.
Subjected to comprehensive testing, RRAT Catcherdemonstrated wid®AT coverage,
excellent detection accuracy, and low processing ovehé&@d plan to further pursue our
work in the area in at least three directions: first, we wikgenhancing ouRAT Catcher
so that it can deal with new types of Trojans as the latter tmecknown; second, develop
advanced techniques to identifgATs that use strong cryptographic mechanisms and
finally, explore the integration of oURAT Catchemith other security systems including
firewalls, anti-virus, and anti-malware programs to morteaively combat aggregate
malicious activities resulting from the mixture &AT and popular worms known as
Blended Threats
Acknowledgments: We are very grateful to the anonymous reviewers for theinitbet
comments and suggestions that helped us significantly mepoar work. We also thank
Qinghong Yi, Gary Duan, Ping Wu, Joe Zhu, Yelin Guan, and Hbllogng for helping
us with various aspects of thRAT Catcherimplementation and testing and Prof. Boris
Aronov for comments on earlier versions of the manuscript.

REFERENCES

1. C. M. Adams and S. E. Tavaris. Designing S-Boxes for Cipligsistant To Differential Cryptanalysis.
In Proceedings of the 3rd Symposium on State and Progress eiRRasn Cryptographypages 181-190,
Rome, Italy, Feb. 1993.

2. L. Adelman. An Abstract Theory of Computer Viruses. Pmoceedings of Advances in Cryptology
(CRYPTO’88)pages 354-374, New York, NY, Aug. 1988. Springer-Verlag.

3. Korea Information Security Agency. Security Incident atBtics in Korea.
http://www.kisa.or.kr/english/statistics/hac000.

4. D. Bell and L. LaPadula. Secure Computer Systems: Unifigab&tion and MULTICS Interpretation.
Technical report, MITRE Corporation, Bedford, MA, July BB7MTR-2997.

5. M. Bishop. A Model of Security Monitoring. IfProceedings of the Fifth Annual Computer Security
Applications Conferencgages 46-52, Dec. 1989.

6. CERT. Advisory CA-1999-01: Trojan Horse Version of TCPapfpers.http://www.cert.org/advisories/CA-
1999-01.htm11999.

7. CERT. Advisory CA-1999-02: Trojan Horsehttp://www.cert.org/advisories/CA-1999-02.htriD99.

8. Z. Chen, P. Wei, and A. Delis. A Pragmatic Methodology fesfing Intrusion Prevention Systems (IPSs).
Technical report, Deprt. of Informatics & Telecommunioas, Univ. of Athens, Athens, Greece, August
2004.

9. Z. Chen, P. Wei, and A. Delis. Catching Remote AdminigirafTrojans. Technical report, Deprt. of
Informatics & Telecommunications, Univ. of Athens, Athe@eece, May 2007. www.di.uoa.gréad.

10. D. Clark and D. Wilson. A Comparison of Commercial andifdily Computer Security Policies. In
Proceedings of the 1987 Symposium on Security and Pripeges 184—-194, Apr. 1987.

11. F. Cohen. Computer Viruses: Theory and Experime@tmputers and Securit$(1):22-35, Feb. 1987.

12. F. Cohen. Computational Aspects of Computer Viruggsmputers and Securit$(4):325-344, Jun. 1989.

13. F. Cohen. Practical Defenses Against Computer ViruSesaputers and Securit$(2):149-160, Apr. 1989.

14. Symantec Com. Norton Anti-Virus Systerhttp://www.symantec.com/

15. D. E. Comer. Internetworking with TCP/IP: Principles, Protocols, andchitecture Prentice-Hall,
Englewood Cliffs, NJ, 1991.

S E CATCHING REMOTE ADMINISTRATION TROJANS 29
&

28.
29.
30.
31.
32.
34. Foundstone Inc. FPort: Intrusion Detection Tduttp://www.foundstone.com/
35.
36.

37.

38

40.
41.

42.
43.

44.
45.
46.
47.
48.

49.
. D. Song, G. Shaffer, and M. Undy. Nidsbench — A Networkusibn Detection Test Suite. I8econd

51.
52.

53.
54.

55.

56.

57.

58.

. Commodon. Threats to Your Security on the Internet-8ub® http://www.commodon.com, 2001.
. T. H. Cormen, C. E. Leiserson, and R. L. Rivelsttroduction to Algorithms The MIT Press, Boston, MA,

1997.

. Privacy Software Corporation. Anti-Trojan Program:®@&an. http://www.nsclean.com/trolist. htp2004.
. H. DeMaio. Viruses - Management Issu@omputers and Securit$(5):381-388, Oct. 1989.
. D. Denning. An Intrusion-Detection ModelEEE Transactions on Software Engineerir®E-13(2):222—

232, Feb. 1987.

. D. Denning. The Science of Computing: Computer Viruggserican Scientis76(3):236—-238, May 1988.

. T. Duff. Experiences with Viruses on UNIX Systen@omputing Systemg(2):155-172, Spring 1989.

. Ethereal. Ethereal: Powerful Multi-Platform Analyststp://www.ethereal.comMay 2004.

. R. Farrow.UNIX System SecurityAddison-Wesley Publishing Co., Reading, MA, 1991.

. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter Leach, and T. B. Lee. Hypertext Transfer

Protocol — HTTP/1.1.Internet Engineering Task Forcdune 1999.

. S. Garfinkel and G. Spafford?ractical UNIX Security O'Reilly and Associates, Sebastopol, CA, 1991.
. W. Gleissner. A Mathematical Theory for the Spread of @oter Viruses. Computers and Security

8(1):35-41, Feb. 1989.

S. Gordon and D. M. Chess. Attitude Adjustment: Trojamt lalware on the Internet. IRroceedings of
the EICAR pages 183—-204, Copenhaguen, Denmark, May 1999.

R. Hansen. Moose Test for Windows: NetBus Pro and How it ppdaed.

http://www.heise.de/ct/english/99/17/088999.

H. M. Heys and S. E. Tavares. On the Security of the CASThyption Algorithm. InProc. of Canadian

Conf. on El. & Comp. EngHalifax, Canada, Sep. 1994.

L. Hoffman. Rogue Programs: Viruses, Worms, and Trojan Hors&an Nostrand Reinhold, New York
City, NY, 1990.

Fortinet Inc. Intrusion Prevention SysteiVeb Site: www.fortinet.con®ct. 2004.

M. Joseph and A. Avizienis. A Fault Tolerant Approach tmiputer Viruses. IfProceedings of the 1988
Symposium on Security and Privapages 52-58, Oakland, CA, Apr. 1988.

G. H. Kim and E. H. Spafford. The Design and Implementatid Tripwire: A File System Integrity
Checker. INPACM Conference on Computer and Communication Secyrétges 18-29, Fairfax, VA, 1994.
S. Kulakow. NetBus 2.1: Is It Still a Trojan Horse or an dedtValid Remote Control Administration Tool?
Web page2001.

S. Lipner. Non-Discretionary Controls for Commerciapphications. InProceedings of the 1982
Symposium on Security and Privapages 2—10, Apr. 1982.

. Zone Labs LLC. ZoneAlarm Security Suithttp://www.zonelabs.com2004.
39.

T. Lunt and R. Jagannathan. A Prototype Real-Time litndBetection Expert System. Proceedings of
the 1988 Symposium on Security and Privgmages 59-66, Apr. 1988.

PC Magazine. StartupCop Prottp://www.pcmag.com/

H. Nussbacker. Israeli Internet Hacking Analysis fod@0In Proceedings of the Internet Society of Israel
ConferenceTel Aviv, Israel, March 2001. http://www.isoc.org.ilief2001/presentations/nussbackerl.ppt.
The Cult of the Dead Cow. Back Orifice 200itp://www.bo2k.com or http://www.cultdeadcow.cpg04.
PestPatrol. About RATS: SubSeven and Remote Admitiwtralrojans. http://www.pestpatrol.com/
whiterpapers, 2006.

M. Roesch. Snort — Lightweight Intrusion Detection foetNorks. In USENIX 13-th Systems
Administration Conference — LISA'9Seattle, Washingto, 1999.

J. Saltzer and M. Schroeder. The Protection of Infolmnati Computer Systemd$2roceedings of the IEEE
63(9):1278-1308, Sep. 1975.

B. Schneier.Applied Cryptography, Protocols, Algorithms, and Sourea€in C, Second EditionJohn
Wiley & Sons, Inc., 1996.

Mischel Internet Security. TrojanHunter VS. the Péiasi Beast Trojan.
http://www.misec.net/papers/thvsheagi04.

D. D. Sleator and R. E. Tarjan. Self-Adjusting Binary i8halrees. Journal of the ACM32(3):652-686,
1985.

Winternals Software. TCPView Prabttp://www.winternals.com/

International Workshop on Recent Advances in IntrusioreBt@n (RAID 1999)West Lafayette, 1999.
Inc. Sourcefire. Snort 2.0: Detection Revisit&tlhite PaperFebruary 2003.

E. Spafford. The Internet Worm Program: An AnalysisCM Computer Communications Revjel®(1),
Jan. 1989.

R. C. SummersSecure Computing Threats and SafeguarieGraw-Hill, 1997.

M. Swimmer. Dynamic Detection and Classification of Catep Viruses. InProceedings of the Sixth
International Virus Bulletin Confereng@ages 149-159. Virus Bulletin Ltd, 1996.

Internet Security Systems. ISS Security Alert: Wind@&eskdoor Update Ill. http://www.xforce.iss.ngt
1999.

H. Teng, K. Chen, and S. Lu. Adaptive Real-Time Anomalytebon Using Inductively Generated
Sequential Patterns. IRroceedings of the 1990 Symposium on Research in SecudtyPdvacy, pages
278-284, May 1990.

I. Whalley. Testing Times for Trojans. Rroceedings of the Ninth International Virus Bulletin Cereince
pages 55-67, September/October 1999.

C. Young. Taxonomy of Computer Virus Defense Mechanisims Proceedings of the Tenth National
Computer Security Conferengeages 220-225, Oakland, CA, Sep. 1987.

	1 Introduction
	2 Related Work
	3 Characteristics of RATs
	3.1 Frequently Observed Functionalities of RATs
	3.2 Working Mechanisms of RATs
	3.3 Encrypted RAT Traffic
	3.4 Diversified Use of Protocols by RATs
	3.5 Presence of Multiple Evasion Techniques in RATs

	4 A Framework for Apprehending RATs
	4.1 Design Rationale and Architecture for the RAT Catcher
	4.2 Session Correlator (SC)
	4.3 Message Sequencer (MS)
	4.4 Traffic Distinguisher (TD)
	4.5 Trojan Terminator (TT)

	5 Experimental Evaluation of the RAT Catcher
	5.1 Accuracy on RAT Detection
	5.2 Scalability and Performance Under Various Workloads
	5.3 The RAT Catcher in the Real World

	6 Conclusions and Future Work

