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Abstract. Infrastructure-as-a-Service (IaaS) cloud providers often com-
bine different hardware components in an attempt to form a single infras-
tructure. This single infrastructure hides any underlying heterogeneity
and complexity of the physical layer. Given a non-homogeneous hard-
ware infrastructure, assigning VMs to physical machines (PMs) becomes
a particularly challenging task. VM placement decisions have to take into
account the operational conditions of the cloud (e.g., current PM load)
and load balancing prospects through VM migrations. In this work, we
propose a service realizing a two-phase VM-to-PM placement scheme. In
the first phase, we identify a promising group of PMs, termed cohort,
among the many choices that might be available; such a cohort hosts the
virtual infrastructure of the user request. In the second phase, we deter-
mine the final VM-to-PM mapping considering all low-level constraints
arising from the particular user requests and special characteristics of
the selected cohort. Our evaluation shows that in large non-homogeneous
physical infrastructures, we significantly reduce the VM placement plan
production time and improve plan quality.

1 Introduction

Infrastructure-as-a-Service (IaaS) cloud providers often face the following chal-
lenge: they must offer uniform access (resource provision) over a non-uniform
hardware infrastructure. Non-homogeneous infrastructures may be the product
of hardware upgrades, where old resources are left operational alongside new
ones, or federated environments, where several parties are willing to share hard-
ware resources with diverse characteristics.

Resource management of non-homogeneous hardware resources has been ex-
tensively studied [7]. Typically, a resource management system receives, queues,
and finally matches user job requirements with the characteristics of the offered
hardware. For instance, scheduling jobs in the Grid requires choosing an appro-
priate Grid site that complies with the user requirements. The advent of the
clouds has introduced very strict abstractions over the physical resources. IaaS
clouds restrict users from specifying the exact physical resources to be consumed
when instantiating virtual machines (VMs). Cloud consumers remain agnostic
of the underlying physical infrastructure. Only high-level resource requirements
such as CPU and RAM are stated in user requests. In return, the cloud offers
new options for load balancing. Live VM migration allows for relocation of jobs



to offloaded hardware inside the cloud in a manner transparent to the user. Thus,
the VM-to-physical machines placement policies must be revisited in the context
of the cloud to take into account both the new enhancements and the additional
constraints that cloud abstractions offer.

In this paper, we focus on the problem of instantiating entire virtual infras-
tructures in large non-homogeneous IaaS clouds. We introduce a service imple-
menting a two-phase mechanism. In the first phase, we synthesize infrastructures
out of existing promising physical machines (PMs). These dynamically-formed
physical infrastructures, termed cohorts, host the user-requestedVMs. In the sec-
ond phase, we determine the final VM-to-PM mapping considering all low-level
constraints arising from the particular user requests and special characteristics
of the most promising selected cohorts. Compared to other constraint-based VM

scheduling systems [8, 9, 20], the novelty of our approach mainly lies in the first
phase. During this phase, besides resource availability, we also take into account
properties such as migration capabilities, network bandwidth connectivity, and
user-provided deployment hints. This helps prune out many possible cohorts
within the cloud, and thus reduces the time required to produce a deployment
plan in the second phase. We express both the selection of hosting nodes and
the production of VM-to-PM mappings as constraint satisfaction problems and
we use cloud-resources to solve these problems. Our evaluation shows that this
approach 1) scales effectively for hundreds of PMs, 2) reduces plan production
time by up to a factor of 9, and 3) improves plan quality by up to a factor of 4,
when compared to a single-phase VM placement approach.

2 Overview of Our Approach

We assign user-requested VMs to cloud-provided PMs through a service im-
plementing a two-phase optimization process. During the first phase we select
a subset of PMs with properties that best serve the VM placement. We term
these dynamically formed subsets of PMs cohorts. Cohorts may entail PMs from
a single rack and/or machines spread across the network. In the second phase,
we solve a constraint satisfaction problem that yields a near optimal VM-to-PM
mapping. Constraints emanate from user-provided deployment hints and internal
cloud specifications such as hardware resource characteristics and administration
preferences. The goal in selecting a subset of all available PMs, during the first
optimization phase, is to reduce the number of constraints and the search space
during the second phase.

To serve a user request for a virtual infrastructure, a single cohort has to be
selected to host all VMs involved. The main idea in cohort selection is that we
need to assist future load balancing requests in the context of an IaaS cloud.
Since load balancing is better performed among PMs supporting live migration,
we favor cohort formation among such nodes. In case, the user-requested resource
requirements exceed the VM hosting capacity of all PM pools supporting live
migration, we must merge neighboring pools to form larger ones. We synthesize
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Fig. 1. High level view of our approach.

cohorts based on a 4-level hierarchy, depicted as a triangle in Figure 1. These
four levels are defined as follows:

– At level 0, all groups of PMs that support live migration make up corre-
sponding cohorts. Load balancing through VM migration for these cohorts
is transparent. In addition, each PM that does not feature live migration
makes up a cohort on its own.

– At level 1, we may form cohorts from diverse groups of level 0. Cohorts of
level 1 may involve PMs supporting both live migration as well as migration
through suspend/resume.

– Level 2 features cohorts among which migration is infeasible due to hard-
ware incompatibilities, insufficient network bandwidth, etc.

– Level 3 is a single cohort consisting of the entire non-homogeneous physical
infrastructure and so it signifies the maximum amount of resources available.

When serving a user request, we try to satisfy all virtual infrastructure require-
ments through a single cohort. The search for such a cohort starts from level 0
and may reach up to level 3. The higher the level of the selected cohort is, the
more computational resources are needed to solve the VM assignment problem
in the second phase. As more PMs are available in cohorts generated at higher
levels, the search space of the VM-to-PM mapping increases. Cohort selection is
formulated as a constraint satisfaction problem discussed in detail in Section 4.

In the second phase, where the final VM-to-PM assignment is produced,
all fine-grained constraints of the selected cohort are taken into account in a
constraint satisfaction problem. These fine-grained constraints refer to a) all
specifics regarding the hosting capacity including features and resource avail-
ability in PMs, b) user-provided deployment hints and c) cloud administrative
goals.

Figure 1 presents a high-level view of our approach. The user submits a re-
quest for a virtual infrastructure to the Dynamic Cohort Synthesizer. The user
request includes both VM specifications and deployment hints. The PMs of the
selected cohort along with the user request are forwarded to the Deployment



Planner that produces the final VM-to-PM mapping. We term this mapping de-
ployment plan. For all user requests encountered all respective deployment plans
are delivered to the Deployer, that in turn interacts with the cloud’s facilities
and coordinates each VM instantiation.

Both the Dynamic Cohort Synthesizer and the Deployment Planner have to
solve constraint satisfaction problems. They do so using resources of the cloud
itself. The Elastic Solver, of Figure 1, is a service providing access to a set of
VMs in the cloud that form a distributed constraint satisfaction solver.

3 User Provided Hints & Constraints

Shown in Figure 1, the deployment of a virtual infrastructure starts with the user
submitting a request for VMs to our service. The user request is an infrastructure
description (XML document [19]) with the following sections:
1. Description of all VMs and resource requirements.
2. One or more possible infrastructure deployments, each one accompanied with

its own set of deployment hints. The deployment hints are translated into
user-provided constraints that drive the cloud’s VM-to-PM assignment. Ta-
ble 1 shows some commonly used hints.

3. The conditions under which a transition from one infrastructure deployment
to another is required. A transition may enable and/or disable deployment
hints associated with the respective infrastructure deployments. In turn, this
may call for VM migrations.

Apart from the constraints derived from hints in the infrastructure description,
our approach also leverages constraints describing the internal physical cloud
infrastructure. Such constraints refer to both the availability of resources and
high-level resource management goals that the cloud administration may require
(e.g., PowerSave hint of Table 1).

Within the Dynamic Cohort Synthesizer, hints are realized as cohort eval-
uation cost functions. The same hints are realized by the Deployment Planner
as specific deployment plan evaluation functions driving the VM-to-PM assign-
ment. In other words, deployment hints are interpreted in different ways de-
pending on the phase of our approach. Some hints are even ignored during the
cohort selection phase. ParVMs is a typical example of how the same hint is
treated in different ways. During cohort selection, we penalize cohorts that pro-
vide fewer PMs than the number of VMs referenced in the ParVMs deployment

Table 1. Commonly used deployment hints.

FavorVM Try to reserve a single PM for a specific VM.

MinTraf Minimize traffic by co-deploying a set of VMs on the same PM.

ParVMs Spread VMs across separate PMs.

PowerSave Reduce the number of PMs used for VM deployment.

EmptyNode Offload a specific PM.



hint, whereas during the final VM-to-PM assignment we penalize plans that
place the VMs referenced in the same ParVMs hint on the same PM. To reduce
the number of constraints considered, the Dynamic Cohort Synthesizer ignores
certain hints such as the MinTraf.

After a deployment plan is applied –through respective VM placement oper-
ations – the deployment hints used in the production of the VM-to-PM mapping
are not discarded. Some deployment hints have “side-effects” on future deploy-
ment plans. A deployment hint is marked to have “side-effects” if it has to
be considered during the deployment of virtual infrastructures of future user
requests. Deployment hints with “side effects” are known to the cloud adminis-
tration and are marked as such upon their implementation. A typical example
of such a hint is the FavorVM, which calls for a VM to be placed on an of-
floaded PM. This PM should be kept offloaded as long as the VM referenced in
the deployment hint is online. Consequently, the deployment of future virtual
infrastructures should also respect any FavorVM hints already in place.

4 Synthesis of Dynamic Infrastructures

Selecting a single subset of all PMs (cohort) requires iterating over the levels
discussed in Section 2. The Dynamic Cohort Synthesizer ranks the cohorts of
the same level based on metrics provided by the cloud administration. These
metrics may reflect the cohort’s load, its reliability (e.g. redundant hardware),
or even higher level properties such as its prospect of load exchange with other
cohorts.

Algorithm 1 gradually explores all cohort levels in search of a promising
“neighborhood”. The input of the algorithm consists of a) the user request,
b) the number of candidate cohorts (k) which should be used as the starting
seed for the dynamic formation of the next level cohorts, c) the load threshold
(i.e., average CPU utilization) over which a cohort is considered to be overloaded
and d) a resource availability factor (overcommit) indicating how many times
the resources of a cohort should surpass the resources requested. Both input
parameters overcommit and k allow cloud administrators to tune the quality
of the produced deployment plans. The overcommit parameter ensures that the
Deployment Planner will have enough space to search for a VM-to-PM map-
ping during the second optimization phase of our approach. The k parameter
allows cloud administrators to reduce the amount of lower level cohorts used as
a starting point in cohort synthesis. Since each cohort synthesis attempt results
in a simulated annealing execution, high k values reduce the danger of getting
trapped into a local optimum. This is because each execution of the simulated
annealing starts with a different cohort as seed.

Starting from level 0, we first rank cohorts given that we need to satisfy the
provided user request (CohortRanking function call of line 2). We also filter out
cohorts that do not satisfy the overload threshold and the resource availability
factor (CohortFiltering call of line 3). If all cohorts are filtered out, then we
must search higher level cohorts using the while loop of lines 4 to 12. In line 6,



Algorithm 1 Dynamic Cohort Synthesizer
Input: request: user request for a virtual infrastructure

k : The top-k cohorts will be returned

load threshold: Threshold over which the cohort is considered overloaded

overcommit: How many times the cohort’s resources must surpass the requested resources

Output: Set of cohorts we will consider for deployment

1: level := 0 ; ranked cohorts := ∅

2: ranked cohorts := CohortRanking(level,request);
3: ranked cohorts := CohortFiltering(ranked cohorts, load threshold, overcommit,

request);
4: while ranked cohorts = ∅ and level < 4 do

5: ranked cohorts := ∅

6: graded cohorts := CohortRanking(level,request);
7: for i := 0 ; i < k ; i++ do

8: good cohort := MergeCohorts(level, graded cohorts[i], request,
load threshold, overcommit)

9: ranked cohorts := ranked cohorts ∪ {good cohort}
10: end for

11: level := level + 1
12: end while

13: return ranked cohorts

we use the CohortRanking function to grade all cohorts of the level indicated
by variable level. The top-k highest scoring cohorts of the current level are used
as a starting point in exploring the next level up. Merging lower level cohorts is
performed in the MergeCohorts call of line 8. Below, we outline the functionality
of the following routines: CohortRanking, CohortFiltering and MergeCohorts.

Cohort Ranking: Each cohort maintains the following key properties: a) the
number of PMs it contains, b) resource availability indicators including CPU
average load, total/unused RAM, hard disk capacity, redundancy and high avail-
ability features. For simplicity, we elaborate the first two indicators in the dis-
cussion that follows, c) average bandwidth of network connections among PMs
within the cohort and d) a set of cohort-specific characteristics (e.g., CPU ar-
chitecture).

Static characteristics of cohorts at level 0 are provided by the cloud adminis-
trator (with the “Physical Infrastructure Description” of Figure 1). In this regard,
we expect the administrator to specify the properties of all PMs as well as the
cohorts supporting live migration. Recall that each live migration group of PMs
is a level 0 cohort and each PM that does not support live migration forms a
cohort by itself. Using the PM properties we compute a score for every available
cohort at level 0 as follows: initially we evaluate the resource availability within
the cohort:

ResEval0(Cohort) =
∑

i∈R

wi ∗ (Providedi(Cohort)−Requiredi) (1)

where R is the set of resources including average CPU, RAM, and network
bandwidth utilization rates. Providedi and Requiredi represent the provision
and requirement of resource i respectively. The weights wi are set by the admin-
istrator to reflect the importance of each resource and to normalize the inter-
mediate results. These administrator-defined weights allow our approach to be
tuned to match specific requirements and administrative preferences. Next, we



evaluate requirements resulting from both user provided hints and administra-
tor’s imperatives:

ConstrEval(Cohort) =
∑

j∈Constr.

wj ∗ Constraintj(Cohort) (2)

where Constraintj are cost functions expressing user hints and administration
preferences as we describe in Section 3. Again, wj indicates constraint impor-
tance. Each constraint function takes as input a cohort and returns the degree of
the human-provided preference/hint satisfaction (Constraint : Cohort 7→ [0, 1]).
We designate the sum of ResEval and ConstrEval to be the cohort’s overall
score:

Score(Cohort) = ResEval(Cohort) + ConstrEval(Cohort) (3)

The ResEval(Cohort) at levels above 0 are computed recursively as follows:

ResEvaln(Cohort) =

∑
s∈S

ResEvaln−1(s)

|S|
(4)

where n represents the level and S is the set of all lower level cohorts within
the Cohort.

Cohort Filtering: Algorithm 1 filters out cohorts that are not worthy to be
considered in the final VM placement. This action takes place in line 3 and within
the functionMergeCohorts of line 8. Filtering uses the overcommit, load threshold
limits as well as information regarding the specific resources requested by the
user. We exclude cohorts that do not comply with the rules of Table 2. Rule 1,
avoids stressing overloaded cohorts. Rule 2 ensures that the candidate cohorts
have sufficient resources so that in the second phase (final VM-to-PM mapping)
there will be enough options to choose from and produce a high-scoring plan.
Finally, Rule 3 functions in levels 0 and 1 and filters out migration-incompatible
combinations of cohorts.

Cohort Merging: Through the merging of cohorts of a certain level we synthe-
size more comprehensive cohorts at the next level up. This operation is required
when the hosting capacity of each and every cohort at the current level does not
suffice to address all user resource demands. The cohort to be formed must have
both the VM hosting capacity and the characteristics to match the user request.
Thus, the goal of the merging process is to produce a number of high-scoring
cohorts and then choose the “best”. The formula used to compute the cohort
ranking is also used here to designate this best selection. We have formulated

Table 2. Cohort Filtering Rules.

Rule 1: A cohort’s resource availability is below a certain
“threshold” (set as input in Alg. 1)

Rule 2: A cohort’s resource availability is less than “overcommit”
times the requested quantity

Rule 3: Mismatch with user-provided specifications, such as
levels 0 & 1 differences in CPU architecture



Algorithm 2 Simulated-Annealing
Input: same iterations: Maximum number of iterations yielding no improvement

T : Temperature

GetNeighborOf(): Space exploration function

Score(): Score function

seed: Starting seed of space exploration

Output: A near-optimal solution

1: same := 0
2: best solution := current solution := GetInitialSolution(seed)
3: while same <same iterations do

4: new solution := GetNeighborOf (current solution)
5: D = Score(new solution) - Score(current solution)

6: if ( T > 10−5 AND eD/T > Random()) OR (T < 10−5 AND D > 0) then

7: current solution := new solution
8: end if

9: if Score(new solution) > Score(best solution) then

10: best solution := new solution ; same := 0
11: end if

12: same++ ; T := 0.99 * T
13: end while

14: return best solution

the above selection as an optimization problem whose constraints are the user
needs and administration preferences. As the number of these constraints and
their combinations while merging cohorts may increase exponentially to the size
of the physical infrastructure, we resort to finding a near-optimal solution. To
this end, we employ a stochastic and easily parallelizable approach –depicted in
Algorithm 2– that is based on simulated annealing [11].

The primary objective of Algorithm 2 is to create from a lower-level seed
cohort, a new formation at the current level. The solution has to be a single
cohort that complies with the rules of Table 2. Towards achieving this objective,
GetNeighborOf forms new potential “coalitions of resources” through naviga-
tion among cohorts of the current level. The function generates new cohorts by
merging neighboring lower-level cohorts connected through at least one network
route. More specifically, the lower level cohorts are randomly selected with only
one requirement: each potential merging operation will result in a single cohort
with its nodes adequately networked (i.e., preferably nodes that have direct phys-
ical links). Every cohort produced by GetNeighborOf is assigned a score within
Algorithm 2 with the help of Eqn. 3. This computation is carried out efficiently
as the resource evaluation is a single average sum and the constraint evaluation
uses a reduced, in terms of size, set of constraints.

Algorithm 2 input parameters, T and same iterations are used to designate
the termination condition of the simulated-annealing procedure. As the algo-
rithm visits more solutions, its temperature (T ) drops. In high temperature
states, we are allowed to choose a new solution even if it is worse than the one
we currently have at hand. In this respect, Algorithm 2 avoids getting trapped
in local optima. The maximum number of allowed consecutive iterations that
yield no improvement is defined by the same iterations parameter. As soon as
the value of same iterations is reached, we assume that a local near-optimum



solution is found. As we show in Algorithm 1, MergeCohorts is called k times.
Every time, we use as input a different cohort from the top-k cohorts of the
previous level to serve as seed in Algorithm 2.

5 Deployment Plan Production

All properties of the selected cohort (i.e., PMs, resource availability, network con-
nections and cohort-specific characteristics) along with the user-provided con-
straints (deployment hints) are used as input to the Deployment Planner that
ultimately produces the actual mapping of VMs-to-PMs in a way similar to the
one discussed in [19]. The Deployment Planner also takes into account previ-
ously encountered deployment hints referring to virtual infrastructures already
deployed and operational on (some) nodes of the selected cohort. However, since
these infrastructures are already deployed, the set of deployment hints can be
trimmed down only to those hints marked to have “side effects” as we discuss
in Section 3. We employ Algorithm 2 to produce the mapping of VMs to PMs.
Again, we need to designate two aspects: a) how to select a neighbor solution
commencing with a seed-mapping and b) how to ascertain the value of the pro-
duced candidate solution.

In general, the plans neighboring a specific deployment plan p are designated
by the following formula:

Np = {P ∈ AllP lans | Prob(P (v) 6= p(v)) = d,∀v ∈ V }, (5)

where V is the set of VMs under deployment and d is the value of the probability
that a VM v is to be deployed on a PM other than the one currently set in plan
p. High values of d result in producing almost random deployment plans that
render Algorithm 2 ineffective. On the other hand, significantly reducing d may
trap the search process for a neighbor(s) into local optima. A detailed discussion
on this plan generation procedure can be found in [19].

The input scoring function is implemented as the weighted sum of the cost
evaluation functions corresponding to the constraints relevant to the user request
at hand. For a given deployment plan m the Score is:

Score(m) =
∑

Consti∈Cs

wiConsti(m) (6)

where Cs is the set of constraints and wi the respective user/administrator
imposed weights indicating the importance of each constraint.

6 Elastic Solver Service

Simulated annealing is inherently parallelizable and can effectively harvest the
distributed nature of the same cloud infrastructure we administer. Every time
the simulated annealing is invoked, it can use different seeds (e.g. Algorithm 1
line 8). In this manner even if one execution gets trapped into a local optimum,
a plausible solution can be ultimately found by another execution.
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The Elastic Solver is a service providing virtual infrastructures used to solve
the constraint satisfaction problems described in the previous sections. As Fig-
ure 2 depicts, the solver follows a master-workers architecture and interacts with
both the Dynamic Cohort Synthesizer and the Deployment Planner. As the vir-
tual infrastructures employed by the Elastic Solver are hosted in the cloud, this
service also acts as a special cloud client. Worker VMs requested by the solver
are configured so that as soon as they come online they register with the mas-
ter component of the Elastic Solver and declare their availability. These workers
remain idle until a request for solving a cohort-merging or a VM placement prob-
lem arrives. In [18], we show how we are able to dynamically adjust the exact
number of worker nodes so that our “profit” in using this service is maximized.
We employ an iterative process that periodically adds or removes worker nodes
in an attempt to assess the VM’s performance and to properly adjust the number
of worker nodes. Larger elastic solver infrastructures result in better deployment
solutions and reduced deployment time but at the cost of higher maintenance
overhead as they reserve more resources.

7 Evaluation

Our evaluation examines the performance of deployment plan production for
a wide range of different infrastructures. A comparison of our constraint-based
approach against other VM placement algorithms can be found in [19]. We have
simulated two network topologies, shown in Figure 3, denoted as LAN and star.
In both topologies, there are groups of PMs supporting live migration. The two
topologies differ in the way these groups are connected amongst themselves. A
LAN can be created by lining up switches, each one leading to a single live
migration group (bottom left of Figure 3). In the star topology (right half of
Figure 3), a central switch connects N other switches and each switch leads to
N live migration groups. N is the fan-out of the star topology. In our evaluation,
the network’s fan-out also indicates the number of PMs inside any live migration
group in both the star and LAN topologies.

With the exception of the network connections inside a live migration group,
all other network links are assigned their bandwidth randomly out of three dis-
tinct values: 100, 1, 000 and 10, 000 Kbps. We expect connection within a live
migration group to be dedicated and of high bandwidth, thus, we assign them the
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maximum bandwidth of 10, 000 Kbps. Apart from the connectivity bandwidth,
infrastructure non-homogeneity is also introduced through the characteristics of
the PMs. Each live migration group is made of identical PMs belonging to one of
three classes. Each of the three equally-sized classes has PMs of specific capacity
in hosting VMs. Here, this capacity depends on the amount of available RAM.
Therefore, classes feature PMs of 16, 8 and 4 GB of RAM respectively. In addi-
tion, we assume 20% of all live migration groups to be incompatible with the user
request (e.g. due to different CPU architecture). In our simulation, whenever we
set an average load percentage, we randomly deviate from it up to 10%. The
load is realized as a reduction of the available resources of the infrastructure.
Each PM features a single CPU from which VMs reserve a fraction. The CPU
reserve fraction is explicitly stated in the user’s virtual infrastructure request.

Workload Description: We have run experiments with all the workflows de-
scribed in [3]. Here, we present the results of a virtual infrastructure request
resembling the Laser Interferometer Gravitational Wave Observatory (LIGO)
Inspiral Analysis Workflow. Figure 4 presents the VMs involved along with the
deployment hints provided by the user. The requested virtual infrastructure is
made of 14 VMs. Each VM reserves 1 GB of RAM and 10% of the CPU available
on the hosting node. Table 3 summarizes all user hints and their weights used
in this experiment. Apart from the user hints, we also employ administrative
deployment hints (Table 4) so as to promote the deployment of VMs in neigh-
boring PMs. The input parameters of Algorithm 1 are as follows: load threshold

is 10%, overcommit is set to 6, we perform 200 same iterations and we set k to
100.

Table 3. User deployment hints.

Hint Involved VMs Weight

ParVMs VMs {1,2,3},{4,5,6},
(x4) {8,9,10},{11,12,13} 40.0

FavorVM VM 7 & VM 14
(x2) 40.0

Table 4. Administrative hints.

Hint Description Weight

Reduce Reduce the number of
Groups live migration groups 40.0

Reduce Reduce the network hops
Dist between migration groups 40.0
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Fig. 5. Evaluating our approach when increasing the infrastructure’s size.

Scaling the Infrastructure: Figures 5(a) and 5(d) show the time required for
producing a deployment plan as we increase the number of PMs from 30 to 1000.
In configurations denoted as “Orig.” we use only the Deployment Planner for
plan production whereas in configurations denoted as “Reduce” we also employ
the Dynamic Cohort Synthesizer to reduce the search space. For each of the
two topologies, we offer two variations corresponding to different fan-out values.
“Orig. 2” and “Reduce 2” correspond to configurations where the fan-out is 2
whereas for “Orig. 4” and “Reduce 4” the fan-out is 4.

To have a full understanding of the improvement, we must also examine
the score of the produced plans, as computed through Equation 1. Figures 5(b)
and 5(e) show the plan score for the LAN and star topology respectively. The
Deployment Planner alone fails to produce high-scoring deployment plans as the
size of the infrastructure increases. The reason for this is that the selection of
PMs tends to disperse the virtual infrastructure across the physical infrastruc-
ture. The extra proximity cost functions that promote plans utilizing neighboring
PMs are not enough to concentrate the user’s VMs. The option of increasing the
weight of the proximity functions proves to be ineffective in large infrastructures.
High weight values for proximity administrative hints render the user provided
hints insignificant playing a minor role in plan production. Instead, when we re-
duce the hosting infrastructure, Deployment Planner manages to produce high-
scoring plans. The cohort selection renders the proximity cost most effective.

Network Efficiency when Scaling the Infrastructure: In non-homogeneous
infrastructures, low-bandwidth network connections used by several VMs may
quickly become a performance bottleneck. To this end, we try to concentrate
VMs of the same virtual infrastructure in the same neighborhood of PMs. We
use two metrics to measure network efficiency a) the “packet hop count” and



 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80

T
im

e 
(S

ec
on

ds
)

Load percentage

Orig. 2
Orig. 4

Reduce 2
Reduce 4

Fig. 6. Plan time under increasing load.

 20
 25
 30
 35
 40
 45
 50
 55
 60
 65

 0  10  20  30  40  50  60  70  80

S
co

re

Load percentage

Fig. 7. Plan score under increasing load.

b) the “average minimum path bandwidth”. For each pair of VMs there is a
path of minimum length over the physical network that connects the two PMs
where VMs are deployed. We are interested in two properties of this min-path,
a) its length and b) the connection with the minimum bandwidth along this
min-path. The length of the min-path is the number of network switches (hops)
a packet must pass starting from the source VM until it reaches the target VM.
The “packet hop count” metric is the summation of all min-path lengths of all
possible VM pairs. We use “packet hop count” to estimate the network latency
within the virtual infrastructure. The connection with the minimum bandwidth
in a min-path also determines the maximum bandwidth of the communication
among the source and target VMs -as the min-path is often the only path. The
“average minimum path bandwidth” also takes into account all min-paths of all
possible VM pairs and produces an average of the minimum bandwidth. We use
the “average minimum path bandwidth” as an indicator of the virtual network
bandwidth within the virtual infrastructure.

Figures 5(c) and 5(f) show the average number of hops and the bandwidth in
plans produced in a star topology when we use the Dynamic Cohort Synthesizer
(Reduce 2 & 4) and when we do not (Orig. 2 & 4). The respective LAN results
are similar. When selecting a cohort in our approach, the search space shrinks
radically and remains unchanged regardless of the set of PMs available in the
infrastructure. The confinement of VMs to a small sub-infrastructure with ded-
icated network connections such as those within live migration groups increases
the average minimum bandwidth.
Infrastructure Load: Increasing the load of the cloud reduces the capacity of
the physical infrastructure to host VMs. We fix the number of PMs to 100 and
gradually increase their load from 0% to 80%. Figures 6 and 7 show that high load
has little impact on the performance of the Deployment Planner operating alone,
without the help of Dynamic Cohort Synthesizer. This is because the number
of constraints in the respective constraint satisfaction problem remain the same
regardless of load. Any constraints depicting the load on a particular PM must
be taken into consideration by the Deployment Planner regardless of whether
the PM’s load is low or high. In contrast, in our two-phase approach there is a
performance degradation as the load increases. Yet, the worst performance we
get in an unrealistic scenario, with 80% load, is still higher than the respective
“Orig.” configuration.



8 Related Work

The assignment of VMs-to-PMs can be reduced to the job assignment problem
should VMs correspond to jobs and PMs to processing elements. The job assign-
ment problem has been extensively studied [15, 24], yet it is regularly revisited
as application areas emerge. The placement policy in [16] exploits the tendency
of VMs to have certain properties in common. In [23] a two level control manage-
ment system is used for the placement of VMs to PMs using combinatorial and
and multi-objective optimization to address potentially conflicting placement
constraints. [5] reformulates the problem as a multi-unit combinatorial auction.
In [17], placement constraints are treated as separate dimensions in a multi-
dimensional Knapsack problem. User and administrative preferences expressed
through constraints are also employed in [8, 9, 20, 19]. Often, as the number of
constraints increases more resources are needed to solve the constraint satisfac-
tion problem. Here, we address the issue of VM placement scalability through
the introduction of dynamically-formed cohorts.

Network connectivity is of critical importance for data centers [2] and has in-
fluenced our experimental group formation. [14] outlines an approach that builds
networks of VM test-beds over physical infrastructures via simulated annealing.
Algorithms that improve the embedding of virtual networks to physical layouts
are considered in [6]. In [13], the VM placement is mainly addressed from the
network traffic perspective.

The use of heuristics is a common approach among systems performing load
balancing in data centers. vManage [12] describes a low overhead solution for
managing load in an infrastructure hosting VMs. The VM placement policies
primarily consider properties of both platform (e.g., power management) and
the virtualization layer (e.g., SLA violations). Likely instability issues are also
addressed. Sandpiper [22] detects and monitors performance bottlenecks in a
cluster hosting VMs. Two approaches are evaluated in the decision making
mechanism that produces the VM migration actions: the first, termed black-box,
remains fully OS-and-applications agnostic while the second, termed gray-box,
exploits statistics originating from both the OS and the application-layer. Com-
pared to both Sandpiper and vManage, our approach addresses performance
bottlenecks by exploiting provided preferences and not by monitoring the op-
eration of VMs. Modeling the VM load is deemed important in the black-box
approach used in IaaS clouds. [10, 4, 21] classify VM workloads and develop met-
rics to model the encountered workloads in an effort to reduce VM migration
costs.

In our approach, we do not try to predict the performance requirements of
VMs but we trust user-provided hints to avoid performance bottlenecks. Through
PM grouping, we reduce the search space of the constraint satisfaction problem
in the second phase (VM to PM mapping). In this way, we address both po-
tential scalability issues [8, 9, 20, 19], and balance load. Compared to [14, 6, 13],
our approach is more general as it makes use of constraints expressing high-level
properties. Finally, compared with other site-based approaches [1], our approach
synthesizes physical infrastructures (cohorts) on-the-fly.



9 Conclusions

In this paper, we examine the problem of VM placement in non-homogeneous
IaaS cloud environments. We propose a service realizing a two-phase approach
that manages diversified resources. Compared to a heavyweight monolithic ap-
proach, our scheme can scale to several hundreds of physical nodes. In fact, the
quality of the deployment plans we produce remains largely unaffected by the
size of the physical infrastructure. A key concern has been the confinement of
the solicited virtual infrastructure into a dynamically-adjusted set of physical
nodes whose size and properties match the user requests. As a result, overall
plan quality is improved since latency amongst deployed VMs is reduced and
the average bandwidth increases dramatically. Our future work includes explor-
ing the use of other constraint satisfaction algorithms and refining the cost and
revenue functions of the Elastic Solver service.
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