
The Journal of Systems and Software 82 (2009) 274–291
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss
Adaptive disk scheduling with workload-dependent anticipation intervals q

Konstantinos Tsakalozos *, Vassilis Stoumpos, Kostas Saidis, Alex Delis
University of Athens, Department of Informatics and Telecommunications, Typa Buildings, University Campus, Athens 15784, Greece
a r t i c l e i n f o

Article history:
Received 11 September 2007
Received in revised form 9 June 2008
Accepted 9 June 2008
Available online 26 June 2008

Keywords:
Scheduling of block-devices
Anticipatory scheduling
Kernel structures
0164-1212/$ - see front matter � 2008 Elsevier Inc. A
doi:10.1016/j.jss.2008.06.025

q This work was partially supported by a Europea
Resources Pythagoras Grant with No. 7410 and the U
Foundation.

* Corresponding author. Tel.: +30 210 727 5212; fa
E-mail addresses: k.tsakalozos@di.uoa.gr (K. Tsak

(V. Stoumpos), saiko@di.uoa.gr (K. Saidis), ad@di.uoa.
a b s t r a c t

Anticipatory scheduling (AS) of I/O requests has become a viable choice for block-device schedulers in
open-source OS-kernels as prior work has established its superiority over traditional disk-scheduling pol-
icies. An AS-scheduler selectively stalls the block-device right after servicing a request in hope that a new
request for a nearby sector will be soon posted. Clearly, this decision may introduce delays if the antic-
ipated I/O does not arrive on time. In this paper, we build on the success of the AS and propose an
approach that minimizes the overhead of unsuccessful anticipations. Our suggested approach termed
workload-dependent anticipation scheduling (WAS), determines the length of every anticipation period
in an on-line fashion in order to reduce penalties by taking into account the evolving spatio-temporal
characteristics of running processes as well as properties of the underlying computing system. We har-
vest the spatio-temporal features of individual processes and employ a system-wide process classifica-
tion scheme that is re-calibrated on the fly. The resulting classification enables the disk scheduler to
make informed decisions and vary the anticipation interval accordingly, on a per-process basis. We have
implemented and incorporated WAS into the current Linux kernel. Through experimentation with a wide
range of diverse workloads, we demonstrate WAS benefits and establish reduction of penalties over other
AS-scheduler implementations.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Effective disk scheduling remains a key aspect in contemporary
computing systems as it significantly influences the behavior of the
kernel and helps better utilize block-devices. As improvements on
both CPU-speed and access to main-memory continue to out-pace
advances in disk technology along with application-footprints
growing larger and more demanding in terms of I/Os, the schedul-
ing of block-devices remains a critical issue in the overall perfor-
mance of the OS kernel (Love, 2005; Vongsathorn and Carson,
1990; Worthington et al., 1994; Silberschatz et al., 2003). Tradi-
tional block-device schedulers such as shortest-seek-latency-first
(SSF), SCAN, Look and variants (Finkel, 1986; Stoupa and Vakali,
2006; Tanenbaum, 2001) mainly target single disk systems. These
schedulers attempt to minimize the distance traveled by the disk
arm, since arm movements are orders of magnitude more time-
consuming than the time spent to actually transfer data between
the block medium and the main-memory. The presumed opera-
tional pattern in the above work-conserving schedulers is straight-
forward: as soon as a process gets its request serviced it is
ll rights reserved.

n Social Funds and National
niversity of Athens Research

x: +30 210 727 5214.
alozos), stoumpos@di.uoa.gr
gr (A. Delis).
considered ‘‘idle” in terms of I/O activity. To this end, the scheduler
serves a request posted by possibly another process. However, this
‘‘idleness” is only deceptive as the just-serviced process was actu-
ally allowed no CPU time to post a new request.

The anticipatory scheduling (AS) takes a different approach in
deciding what is the next block request to be served. Instead of
immediately dispatching to the next queued I/O – issued very
likely by another process – the scheduler stalls the device for a
short time period. Such a pause offers the opportunity to the pro-
cess-just-serviced to post a new I/O for a nearby sector which
might be attended ahead of other already awaiting I/Os in the
queue of the block-device. This in effect allows AS to overcome
the problem of process deceptive idleness (Bruno et al., 1999; Iyer
and Druschel, 2001) and facilitates requests that are physically
close on the magnetic medium by avoiding superfluous arm move-
ments. The risk entailed in I/O anticipation is obvious: if the pro-
cess expected to post a follow-up request does not do so within
the anticipation interval, then the scheduler keeps the block device
idle with no gain in return; so the time spent in anticipation essen-
tially constitutes penalty that is clearly undesirable. However, suc-
cessful anticipations are expected to frequently occur in many
environments due to the following recurring I/O patterns:

� File-systems attempt to place logically adjacent blocks in phys-
ically successive sectors (Leffler et al., 1984; Rosenblum and
Ousterhout, 1991).

mailto:k.tsakalozos@di.uoa.gr
mailto:stoumpos@di.uoa.gr
mailto:saiko@di.uoa.gr
mailto:ad@di.uoa.gr
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

Serviced

Request

Disk Platters

Read Queue (FIFO)

Elevator Queue

WriteQueue (FIFO)

Incoming

Request

K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291 275
� Many applications complete their entire block reading during
the beginning of their process-lifetimes and flush their buffers
near their termination phase creating distinct I/O activity peri-
ods (Chen et al., 2004).

� Application servers, such as information and retrieval systems,
typically produce multiple nearly-synchronous I/Os while eval-
uating queries (Faloutsos et al., 1995; Özden et al., 1994).

In this paper, we build on the success of anticipation scheduler
(Love, 2005; Iyer and Druschel, 2001; Kernel Traffic, 2008), and
propose an approach that uses anticipation intervals of variable
length. The goal is to wait shorter in unsuccessful anticipations
and minimize the penalties involved.

Our approach monitors all I/O requests of each process and by
utilizing its most recent ones, dynamically places the process in
question to a specific class. This class represents the process’ recent
behavior as implied by its block-device I/O access pattern. By des-
ignating an appropriate anticipation interval to each class, we can
treat similarly behaving processes in a near-optimal way. In our
proposal, we keep track of I/O request inter-arrival times as well
as the distances between the sectors requested. Such spatio-tem-
poral behavior of each process is taken into account in order to
accurately establish its history and capture its specific nature
(class) at a given time. In effect, as a process develops, its history
may change. Our approach responds to this change by re-establish-
ing the class in which the process may currently belong to. We
minimize AS-related penalties by having the same process being
treated with potentially different anticipation periods during its
lifetime.

The proposed mechanism introduces a light-weight in-kernel
element that cooperates with the existing anticipation policy and
hints on the appropriate anticipation interval. Moreover, the in-
kernel element is supported by two infrequently-invoked user-
space components:

1. The classification subsystem that produces a classification
scheme of all active processes.

2. The designation subsystem that assigns optimal anticipation
intervals to each class of processes. This involves expressing
the problem of assignment as a linear-optimization one and
solving it.

As processes morph ever-changing workloads over time, the
two user-space components help dynamically designate new clas-
ses of processes and provide appropriate anticipation periods. This
outcome is fed to the kernel on-the-fly and so the disk scheduler
may adapt to versatile circumstances the block-device might face.
In this context, we term our approach as workload-dependent
anticipation scheduling (WAS).1 The precondition for the realiza-
tion of anticipation periods with varying length is that the clock
of the underlying architecture provides sufficient granularity. This
is the case with all dominant contemporary architectures such as
i386, x86-64 and sparc64 as well as many older ones including alpha

and ppc (Patterson and Hennessy, 2007; Carothers, 2007).
We have developed the pertinent WAS kernel elements and

associated user-space modules and have ported them into Linux
running kernel v.2.6.23. Moreover, we have implemented an in-
kernel AS scheduling policy that realizes the 95% rule for the set-
ting the length of the anticipation intervals (Iyer and Druschel,
2001). Using the above two implementations along with the stan-
dard Linux AS (LAS) implementation that features a fix-anticipation
period, we have experimented with a wide range of workloads. Our
results establish that WAS offers anticipation with shorter penal-
ties and fewer waits than its counterparts. In addition, WAS better
1 Pronounced ‘‘vas”. Fig. 1. Deadline-I/O scheduling.
identifies the nature of the processes that make up a workload, is
more adaptive to changing process behavior, works seamlessly
with kernel mechanisms such prefetching and overcomes soft-
ware/hardware changes in the underlying computing system more
gracefully. The rest of the paper is organized as follows: Section 2
outlines the existing Linux kernel for disk scheduling. Section 3
presents our approach in providing anticipatory scheduling with
varying intervals that are workload-dependent. Section 4 discusses
our experimental evaluation and findings while Section 5 briefly
presents related work. Conclusions can be found in Section 6.

2. Disk-scheduling in the Linux kernel

The current Linux v.2.6.23 kernel offers an array of disk schedul-
ing options that include the Deadline-I/O, Anticipatory, Complete
Fair Queuing and the Noop-I/O schedulers. In prior releases, the
Elevator discipline was the default disk-scheduling policy and fea-
tured front and back-merging of incoming requests to the queue of
pending disk jobs according to their sector-number. However,
highly localized disk access patterns rendered this pure Elevator
discipline rather ineffective creating starvation at times.

The Deadline-I/O discipline favors readers over writers (Love,
2005; Bovet and Cesati, 2005). It employs a differentiating treat-
ment for these two types of block requests as reads are assigned
a default expiration time of 500 ms and writes a 5 s expiration
time. The notion of deadline here is different from that in more tra-
ditional real-time settings (Bestavros and Braoudakis, 1994; Biya-
bani et al., 1988; Haritsa et al., 1990) as it offers no guarantees
about strict job latency. The Deadline-I/O approach uses three
queues: the Read and the Write Queues accept in FIFO respective re-
quests. All requests also enter the Elevator Queue as Fig. 1 depicts
and are sorted according to their sector-number. In the usual mode
of operation, the Deadline-I/O scheduler services the first request
from the Elevator Queue. Once, this request is dispatched to the de-
vice, its corresponding entry in the FIFO queues is also removed.
Should a request at the head of either Read or Write Queue have
waited longer than its designated threshold (i.e., more than
500 ms or 5 s, respectively) and is currently expired, it automati-
cally has the highest priority and gets immediately dispatched
for service. In addition, its corresponding entry from the Elevator

Queue is removed. The assignment of longer expiration intervals
to write requests than their read counterparts ensures that the lat-
ter enjoy the best chances for quick service. Writers do not starve
as they are always served once their expiration occurs.

The AS scheduling that is currently part of the Linux kernel
v.2.6.23 extends the operation of the Deadline-I/O scheduler by
potentially anticipating the read requests. In its fundamental
underpinnings, the Linux anticipation scheduling (LAS) uses all ele-
ments of Fig. 1. Each request obtains an expiration time within
which it should be dispatched to the block-device. Should any re-
quest located in either Read or Write Queue expire, the scheduler
‘‘rushes” to dispatch it. Through this aging feature, LAS properly
handles the starvation of writes apart from avoiding unnecessary
seeks when multiple read requests for nearby blocks are posted.

2 This has been actually our experience during our experimentation with WAS.

276 K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291
As far as anticipation is concerned writes do not receive any special
care but reads do. Any time a read request is serviced, the kernel
determines on the fly whether to wait for a short period of time
in anticipation of another nearby I/O launched by the same pro-
cess. If the anticipation does eventuate and the I/O finally takes
place, the kernel dispatches the newly-posted I/O instead of han-
dling the item at the head of the Elevator Queue. In doing so, LAS
can help further improve the block-device throughput for a wide
range of file system workloads (Love, 2005; Iyer and Druschel,
2001).

It is worth discussing the subtle mechanism that determines
whether the disk has to stall. Each process maintains two pieces
of estimated information which are: (a) its mean think-time (Rus-
chitzka and Farby, 1977), and (b) its mean seek-distance traveled
between consecutive requests (Lazowska et al., 1984). The kernel
enters anticipation only when the following two conditions are
met:

1. The current mean think-time of the just serviced process is less
than the set anticipation interval.

2. The mean seek-distance of the just serviced process is less than
the distance to the request at the head of the Elevator Queue.

In LAS, the anticipation interval during which a device stalls is
fixed and remains unchanged throughout the operation of the ker-
nel. Its duration is a product of empirical observation (Love, 2005;
Bovet and Cesati, 2005) and is constrained by the kernel clock
which in turn depends on the hardware that the OS runs on. Since
Linux supports a great range of architectures the frequency of the
kernel clock is a kernel build time parameter. In a wide range of
architectures including i386, alpha, ppc, sparc64, m88knommu and
x86-64, the kernel clock can be tuned to tick once every millisecond.
In this case, the anticipation period is set to a fixed 6 ms period (or
6 clock ticks). Our proposed approach does require such clock
granularity in order to properly set the duration of the anticipation
intervals. Another group of hardware architectures consisting of
arm, sparc, mips and m68k have their clocks tick only 100 times
per second and so the anticipation period is set to at least 10 ms
(or 1 clock tick). The selection of the LAS anticipation period plays
a major role in minimizing seeks and maximizing block-device
efficiency.

Apart from Deadline and Anticipatory schedulers, the 2.6.23 Li-
nux kernel offers two more I/O scheduling alternatives: complete
fair queuing I/O (CFQ) and Noop I/O. The CFQ scheduler attempts
to equally share the disk I/O bandwidth among all processes plac-
ing requests, therefore it is suitable for desktop and multimedia
applications. For each process submitting requests to a block-de-
vice there is a distinct queue. In this manner, requests from the
same process are placed in the same queue sorted according to
their sector number. CFQ services a number of requests from each
queue (by default four) before proceeding in serving the next
queue in a round robin fashion. To this effect, CFQ safeguards
per-process fairness. The Noop I/O scheduler simply coalesces a re-
quest with an adjacent one if there is such an opportunity. Beyond
this, the Noop I/O does nothing more than serving in strictly FIFO
fashion and is intended for use with flash memory devices where
accessing any block presents the same time overhead.

Finally, the disk scheduling of Linux is supplemented with a pre-
fetch mechanism. Prefetching synergistically works with disk
scheduling and is a must-have feature for contemporary OSs (Sil-
berschatz et al., 2003; Mauro and McDougall, 2000; McKusick
and Neville-Neil, 2003). In Linux, prefetching mostly deals with
sequential accessing of blocks and its function is based on a win-
dow of pages to be read ‘‘ahead” of time. The size of this window
dynamically adjusts to specific application needs (Love, 2005).
Both LAS scheduler and prefetching are fine-tuned elements of
the kernel and operate in tandem. While we provide an enhanced
approach for anticipatory-based scheduling, our intention is not to
examine the benefits of our proposal in isolation but rather estab-
lish its strength in operational systems. To this end and during our
evaluation, we do not carry out simulations. Instead, we perform
all our experiments involving pragmatic workloads on actual sys-
tems with the vital mechanism of prefetching either enabled or
disabled. Our comparison involves our own proposal versus all
available disk-scheduling options in the current Linux kernel.

3. The WAS adaptive anticipation approach

In this section, we outline our approach that uses anticipation
intervals whose length may vary over time. Through process mon-
itoring, we establish a scheme that allows for workload-based
selection of the anticipation period of each and every I/O anticipa-
tion in the kernel.

When in regular operation, WAS simply has to set the length of
period during which disk stalls in hope of a successive request
placed by the process just served. To determine the length of antic-
ipation, WAS identifies the process behavior by examining its re-
cent I/O history and associates the process with a specific class of
behavior in a CPU light-weight fashion. The set of the classes in
question as well as the anticipation intervals assigned to each class
are products of a number of initialization steps taking place only
infrequently. In the following, we present an overview of these
steps as well as the operational features of the WAS.

3.1. Initialization aspects of WAS

Before WAS commences its regular operation, a number of ini-
tialization steps must occur. Fig. 2 depicts the flow of the opera-
tions and marks the input as well as the output of all phases
involved. At first, WAS requires a calibration phase whose main
objective is to produce a viable classification scheme. This scheme
defines a finite number of N behavioral classes on which processes
are eventually mapped to. The calibration phase is only required
when there are major hardware or software changes; such changes
include CPU, board, memory, disk upgrades as well as migrations
to different file systems. Although we impose no minimum dura-
tion for the calibration process, we expect it to last for at least a
few minutes.2 During calibration, WAS traces all I/O requests that
reach the kernel. At this time, WAS essentially functions as the
standard LAS-scheduler but with anticipation period raised from
6 ms to a maximum value (often 10 ms). The spatio-temporal dif-
ferences of the I/Os in the trace along with minimal administrator
input help jointly produce a set of distinct classes corresponding to
different types of process behavior. Such a classification scheme is
successful, should it place processes with different behavior to dif-
ferent classes. We point out that during regular WAS operation –
discussed latter – the association of a process with a class is not
fixed as a process may change classes throughout its lifetime.

Subsequently, WAS enters the observation period in which it
still operates with a fixed anticipation interval (i.e., as LAS-sched-
uler). During this phase, we compile statistics regarding the suc-
cessful/unsuccessful anticipations taking place within each and
every of the adopted classes. These statistics guide the administra-
tor to determine whether the adopted classification scheme is
acceptable. If the classification scheme turns out not to be a plau-
sible choice – mostly due to its inability to effectively differentiate
among the process behavior classes adopted – the administrator
can modify both composition and nature of classes and re-enter
a new calibration phase (Fig. 2). This procedure of setting up

Calibration Phase Linear Optimization

Classification
Subsystem

Designation
Subsystem

re-calibration of N classes

Observation Phase

Observation TraceCalibration Trace

Scheduler

Configuration

Classification
N classes Statistics

Fig. 2. Flow of operations to configure WAS (resulting to scheduler configurations used during regular operation).

User Space

Kernel

Disk Unit

Process
Request
History

LAS Scheduler

Classifier
Element

Lookup Table
Anticipation

I/O request

anticipation period

D
is

k
D

riv
er

consult
history

Subsystem Subsystem
Classification Designation

update
history

anticipate

Fig. 3. The WAS approach: refining the operation of the LAS-scheduler.

K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291 277
different process classes and then observing their effectiveness is
iterative in nature and we use it to ascertain the plausibility of
the finally adopted classification scheme and pertinent statistics.

We may directly use the aforementioned statistics to designate
anticipation periods to process classes either manually or heuris-
tically. However, such a course of action inevitably leads to poor
anticipation interval assignment. Instead, we may deploy an
optimization phase which addresses the problem at hand in a
rigorous manner: using both the adopted process classes and
their pertinent statistics, we solve a linear optimization problem
and associate an optimal anticipation period for each process
class (Fig. 2).

In WAS, we realize the iteration over calibration and the
observation phases via the classification subsystem. The latter is
responsible for assembling the I/O trace, creating initial classifica-
tion scheme, assessing the utility of the adopted classification
ultimately re-adjusting and accepting of the classification scheme.
Similarly, WAS carries out the optimization phase with the help
of its designation subsystem. Both classification and designation
subsystems may be computationally-intensive and, thus, we
deploy them as modules in user-space (Fig. 3) invoked only
infrequently.3

The combined effect of the two subsystems, as illustrated in Fig.
2, is a scheduler configuration, that represents the full adaptation of
3 In Section 4.6 we discuss the incurred overheads for the execution of these
components.
the WAS-scheduler to the characteristics of the hardware and the
encountered workload. A scheduler configuration consists of the se-
lected classification scheme (fed into the classifier element of Fig.
3) and the designated anticipation periods for all process classes
(that populate the Anticipation Lookup Table of Fig. 3). If work-
loads are recurrent over specific periods of time, such scheduler con-

figurations can be (re-)used in a ‘‘plug-and-play” fashion by the
administrator. Similarly, if a group of identical machines – say in
a cluster – handle the same type of workloads, a scheduler configura-

tion can be cloned across all computing systems.

3.2. WAS foundation elements

The current Linux kernel ‘‘ignores” the block request history of a
process as far as the length of the anticipation interval is con-
cerned. It is upon this past history that we build our approach,
and our conjecture is that minimal use of spatial and temporal ele-
ments of I/O request history can improve the effectiveness of LAS.
Fig. 4 depicts a typical time-line of a process consisting of CPU-
bursts interleaved with I/O operations and periods of idleness.
The latter is not shown for simplicity. For convenience, we desig-
nate the most-recent block request as I/Oi, the second most-recent
as I/Oi � 1 and so on. Of key-importance here are the spatio-tempo-
ral differences between any two successive I/O-requests, namely:

� dti: The time difference between the ith and the preceding
(i � 1)th request in the past.

δ it

siδtδ i−1

δ
i−1

s

I/O
i−1

I/O
ii−2I/OI/O

21
I/O

Start of a Process

CPU−time

time

CPU−timeI/O time

Fig. 4. Layout of process request history.

278 K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291
� dsi: The space difference, in terms of sector distance, between
the sector of ith request and the sector of the preceding
(i � 1)th request.

Evidently, the entire history of a process could be articulated by
a series of such spatio-temporal differences of block requests.

We represent the spatio-temporal nature of a process history
with a cyclic list whose elements entail the two types of differ-
ences. This list is linked to the in-kernel process structure so when
the process terminates the memory resources used to store the list
are freed. We use k � 1 nodes in order to articulate the pair-wise
relationships of the k most-recent block requests as Fig. 5 shows.
Initially, all nodes contain zero values. To compute a new pair of
differences, we need to maintain per process the last time-stamp
at which a request was posted and the sector of the request in
question. Once all k � 1 list elements are populated, the ‘‘oldest”
one is replaced by the newest entry. A pointer helps mark the most
recently entered pair of spatio-temporal differences. In the course
of updating the list, the pointer always moves to the top of the
structure. The kernel overhead needed for updating the process
history is minimal as only a few instructions have to be executed
any time a process issues a new I/O. Provided that history lists
are maintained in kernel space, their length has to be bound. As
the more-distant past history reveals less information about a pro-
cess current behavior, the older portion of history becomes less
critical when it comes to characterizing the inter-arrival and loca-
tion aspects of ongoing I/Os (Akyurek and Salem, 1995; Denning,
1968). Evidently, the history length presents a trade-off between
memory-efficiency and accuracy of process characterization in
terms of I/O activity.

WAS consults with the history of a specific process and suggests
a proper anticipation period, any time the anticipatory-scheduler
decides to stall for a forthcoming I/O. The duration of the anticipa-
tion period may vary over time for the same process; this is in con-
trast to LAS that stalls invariantly for a fixed period. WAS
designates the appropriate anticipation interval in two steps:
δs

δt

δs

δt

δs

δt

δs

δt

δt

δs
δs

δt

i−1

i−1

i−2

i−2

i−3

i−3

most recent
top

difference
spatiotemporal

Most Recent Timestamp

Last Sector Request

i

i

i−(k−3)

i−(k−3)
i−(k−2)

i−(k−2)

Fig. 5. Structures pertinent to spatio-temporal history of a process.
1. The process whose I/O was just completed is mapped to a spe-
cific behavior class based on its recent I/O activity. This is deter-
mined on-the-fly by the classifier element (Fig. 3) with the help
of process I/O history, the structure of which appears in Fig. 5.

2. WAS uses the class number the process gets mapped to as an
index to the anticipation look-up table of Fig. 3 and retrieves
the corresponding anticipation period.

The in-kernel elements of WAS rely on the classification subsys-
tem to produce the set of classes for different types of process
behavior. Each class is expected to have different potential for an
upcoming I/O, therefore is best served by a distinct anticipation
period length. Moreover, WAS exploits the optimal anticipation
periods produced by the designation subsystem for each process
class. This information is stored in the anticipation look-up table
maintained in kernel space as Fig. 3 shows. Note, that a process
may be reassigned as far as its class is concerned due its own
changing I/O request pattern, enabling the WAS scheduler to treat
the same process differently in the course of time.

The assignment of a process to a class and the table look up, in-
volved in anticipation interval selection, present minimal CPU
overheads and, thus, both tasks are included in the kernel. On
the other hand, we realize classification and designation subsys-
tems as user-space processes as both are computationally inten-
sive and produce sizable main-memory footprints (Denning,
1968; Papadimitriou and Steiglitz, 1982; Theodoridis and Kou-
troumbas, 2005). In what follows, we outline the work of the in-
kernel classifier element in Section 3.3 and discuss in detail the
operation of classification and designation subsystems in Sections
3.4–3.6.

3.3. The classifier element

The primary goal of our in-kernel classifier element is to deter-
mine the ‘‘class” that a process currently belongs to. This is accom-
plished with the help of the process history and the notion of the
anticipation prospect functions (APFs). Anticipation prospect esti-
mates the potential for a successful anticipation based on a single
spatio/temporal difference in the process history. With values in
the [0..100] range, the APF represents the likelihood that a submit-
ting process will benefit from anticipating a forthcoming block re-
quest. More specifically, an anticipation prospect value close to 100
promotes anticipation in the disk scheduler, as the forthcoming re-
quest is expected to be nearby. On the other hand, anticipation
prospect values close to zero indicate that an upcoming I/O is
rather unlikely to obtain gains from anticipation.

Our approach features two anticipation prospect functions: the
spatial-APF based on sector distances in the I/O request history and
the temporal-APF based on time differences. Figs. 6 and 7 depict
examples of such functions. Fig. 6 shows the spatial anticipation
prospect function over the difference in disk address space be-
tween subsequent I/O requests. Here, spatial anticipation prospect
is a step function that discerns between three cases in spatial dif-

 100

 70

 55

5

0 20 40 60 80 100 120 140 160

A
nt

ic
ip

at
io

n
P

ro
sp

ec
t

Distance Between Requests in Blocks

Spatial Anticipation Prospect

Fig. 6. Sample of spatial anticipation prospect function SðdsÞ.

 100

 30
 25

5

0 10 20 30 40 50 60

A
nt

ic
ip

at
io

n
P

ro
sp

ec
t

Distance Between Requests in Milliseconds

Temporal Anticipation Prospect

Fig. 7. Sample of temporal anticipation prospect function TðdtÞ.

Length of
 Step 4

Value of
Step 3

1
2

3
4

5

 12

 10

0

2

4

6

8

Template of an Anticipation Prospect Function

A
nt

ic
ip

at
io

n
P

ro
sp

ec
t

delta [ms or sectors]
100 200 300 400 500

Fig. 8. Template of an anticipation prospect function (APF).

K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291 279
ferences: small sector differences (0–40) that are promising for
anticipation, medium sector differences (41–60) that are less
promising, and large sector differences (61 and above) that are
poor candidates for anticipation. In the same spirit, Fig. 7 presents
a sample temporal anticipation prospect function for time differ-
ence between requests in milliseconds. In general, large (spatial
or temporal) differences indicate process behavior that is less
promising for successful anticipations, therefore monotonically
decreasing step functions are good candidates to be used as APFs.

In our approach, APF functions are a product of the calibration
phase and they are part of our scheduler configuration. Once avail-
able, the functions are jointly used by our in-kernel classifier ele-
ment to dynamically map processes to classes. In particular, the
spatio-temporal differences of a history entry j in Fig. 5 contribute
to the combined anticipation prospect value C (of Eq. 2) by factor:

Cj ¼ SðdsjÞ þ TðdtjÞ ð1Þ

where S and T are the respective spatial and temporal APFs. Note
that Cj theoretically takes values in ½0;200�. In practice though,
functions S and T may be such that they cannot sum up to 200,
therefore, Cj takes values in ½0;maxfCjg�# ½0;200�. For instance,
maxfCjg can be at most 70þ 30 ¼ 100 if functions S and T of Figs.
6 and 7 are used. In essence, Cj represents the prospect of successful
anticipation, as estimated by a single spatio-temporal difference in
the process history. The classifier element considers recent requests
to be more significant than dated ones, as they often offer a better
insight regarding the ‘‘intention” of a process. More specifically, our
classifier element employs a geometric weighting scheme used to
represent decay (Akyurek and Salem, 1995; Carr and Hennessy,
1981; Denning, 1968; Faloutsos et al., 1995). If wj is the weight of
the jth history entry, then the weight for the previous entry is
wj�1 ¼ wj=2. So, the classifier element sums all Cj and normalizes
the result to have the process at hand binded to one of the N classes
at any given time.

In short, the output of the classifier element, that is the class
number the process currently belongs to, is computed as follows:
first, the classifier considers the entire process history in the
weighted sum

Pj¼i�ðk�2Þ
j¼i wj�iCj where i is the identifier of the most

recent I/O request and the process history involves k � 1 elements
as Fig. 5 indicates. Subsequently, the sum is normalized in the
range of ½0;1� by dividing with

Pj¼i�ðk�2Þ
j¼i wj�i maxfCjg which is the

maximum value the weighted sum Cj can assume. Provided that
WAS works with N classes of processes, expression (2) denotes
the identifier of the class that the requesting process belongs to
at this time:

C ¼ N �

Pj¼i�ðk�2Þ

j¼i
wj�iCj

Pj¼i�ðk�2Þ

j¼i
wj�i maxfCjg

2
6666666

3
7777777

ð2Þ

Evidently, C takes values in the range ½1;N�.
The intuitive choice for N would have been a large number as

more classes would help us specify process behavior more accu-
rately. However, the number of classes is constrained by two fac-
tors: (a) the size of the Anticipation Lookup Table that is a kernel
structure and has to be as compact as possible and (b) the compu-
tational needs of the designation subsystem. During our assign-
ment of anticipation periods to classes that we discuss in Section
3.6, we solve a linear optimization problem. The complexity of this
problem is, among other things, a function of the number of classes
used. In practice, we stipulate that a few hundreds of classes (i.e.,
100–300) is a good compromise between process behavior granu-
larity and CPU costs involved.

3.4. The classification subsystem

The prime objective of the classification subsystem is to pro-
duce the two APFs ultimately used by the classifier element to
map an I/O requesting process to a specific class (Fig. 3). The sec-
ondary objective is to compile pertinent anticipation statistics for
all suggested classes during the observation phase (Fig. 2). The
APF functions jointly form a classification scheme that may clearly
differentiate among types of processes that either favor or do not
favor consecutive I/O requests. Creating such a scheme is a known
challenge (McKusick and Neville-Neil, 2003; Theodoridis and Kou-
troumbas, 2005; Kontos and Megalooikonomou, 2005) and so we
resort to both heuristics and experimentation to offer a solution
that is inexpensive to generate, yet works well in practice.

To derive an APF, we commence from a template anticipation
prospect function – such as the one shown in Fig. 8 – that eventu-
ally evolves into a specific function. Such an APF function template
entails a number of steps m with decreasing values along the y-axis
as the spatial or temporal delta increases along the x-axis. To pro-

Arrival_Time Service_Time 1st_Sector_to_Read Num_of_Sectors_to_Read Anticipated(Y/N) ProcessID

Fig. 9. Data collected for every I/O (read) during the trace period of the calibration phase.

280 K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291
duce a concrete APF function, we have to deal with three key tem-
plate parameters: the number m of steps involved, the y-value of
each step, and the width of each step along the x-axis. Our ap-
proach takes as input the number of steps m and for each such step
its respective y-value.4 In this manner, the number of possible
alternative prospect functions is limited.

To determine the length of each step along the x-axis, the
classification subsystem uses the I/O trace captured during the
calibration phase. Fig. 9 depicts the structure of trace data as
a tuple. Requests are logged according to their arrival time
and include the identifier of the requesting process, whether
the I/O was anticipated, the first sector as well as the number
of all subsequent sectors read, and finally, the service time that
the kernel took to complete the I/O. With the above trace at
hand, we determine the length of each step of the APF func-
tions. Consider the case of the spatial–AFP for the sake of dis-
cussion. Each logged I/O maintains a distance in terms of
sectors from its previous counterpart in the same process.
Should we place all such spatial I/O differences from all pro-
cesses in the trace on a graph, we create a simple distribution
map whose x-axis corresponds to deltas in terms of number of
sectors and the y-axis shows the observed population of each
delta for the entire trace.

Algorithm 1 computes the spatial-APF using the above simple
distribution map as input.5 This is accomplished by computing
the length of all the APF steps so that the populations appearing
in all steps are nearly-equal (i.e., yielding a near-equal-populated
histogram Mandel, 1984). The length of each such resulting step
quantifies the respective delta in the spatial-APF. The algorithm
initially computes the number of spatial differences that every step
would have, should all steps be equi-populated. This ‘‘exact” pop-
ulation-stored in population_target – is used as a target by the
algorithm which gradually increases the step-length so that the
resulting step-population –stored in real_step_population –
reaches at least this target. The inner while-loop performs the in-
crease of the step length while the outer for-loop iterates through
all steps. As a prior step may be assigned more differences than
its exact target population, the algorithm recomputes the popula-
tion_target variable each time the length of a new step is to be as-
signed. Such minor deviations from equi-populated steps are
acceptable as individual APFs do not have to be fine-grained. When
we aggregate two anticipation prospect functions, we inadver-
tently create a large number of distinguishable values that the fac-
tor Cj of Eq. (1) may take. It is worth noting that the final class
designation as depicted by Eq. (2) is a function of the two prospect
functions and the aging of I/O requests.

Algorithm 1

Determining the Length of each step in the APFs

Input:
m: Number of steps to be produced,
NumOfDiffs: Number of differences,
DistMap []: Distribution map of all differences. Each item of
the array is the population of the corresponding difference
delta.
4 These values are all user-defined.
5 it can also compute the temporal-APF given the respective distribution map of

temporal differences.
Output:
StepLength []: Array of step lengths
Begin

d ¼ 1 {pointer iterating through DistMap}
cur step start ¼ 0 {where does the current step starts}
remain diffs ¼ NumOfDiffs

for step ¼ 1 to m do

population target ¼ remain diffs/ (m� stepþ 1)
{desired population of current step, it will be exceeded so
we re-calculate for each step}
real step population ¼ 0
while ððpopulation target > real step populationÞ and
ðremain diffs > real step populationÞÞ do

real step populationþ ¼ DistMap½d�
dþ ¼ 1

end while
StepLength½step� ¼ d� cur step start
{make preparations for the next step}
cur step start ¼ d
{calculate remaining differences to equally distribute
among the rest of the steps}
remain diffs� ¼ real step population

end for
End
3.5. Ascertaining the choice of the APFs

While operating in observation period, WAS can help the admin-
istrator ascertain the quality of the choices made regarding APFs.
To this end, WAS monitors how each class behaves when a maxi-
mum fixed anticipation period is used and accumulates statistics
for every class of the scheme defined via the adopted APFs. The sta-
tistics in question pertain to the successful and/or unsuccessful
anticipations per class.

During observation, for every anticipation attempted within
every class we monitor the time elapsed between the initiation
of an anticipation and its ultimate success or failure. Therefore,
at the end of the observation period we know the specific statistics
of I/O requests that either have succeeded in their anticipation or
failed. Fig. 10 presents the number of failed and succeeded antici-
pations per class when the Cold Boot workload discussed in Section
4 is used. Here, the APFs are derived using the Cold Boot workload
in the calibration phase and we also assume N ¼ 100 classes. In a
more detailed view, Fig. 11 depicts the compiled statistics for the
specific class ‘‘28” of Fig. 10. In this, 120 of I/O requests eventuate
only after stalling for just 1 ms, around 100 requests complete after
stalling for 2 ms etc.; the depicted right-most column shows the
amount of anticipations that ultimately failed. We name the above
accrued per-class statistics as anticipation distribution (AD). We
note that all N = 100 classes present corresponding ADs as that of
Fig. 11.

Anticipation distributions (ADs) serve two purposes:

1. They help the administrator ascertain the utility and the suc-
cess of the selected-thus-far classes of processes. If the ADs at
hand indicate a poor selection of APFs/classification-scheme,
the user may have to step back, intervene, and start another cal-
ibration phase so that new and presumably better APFs are
selected.

0

 200

 400

 600

 800

 1000

 1200

 1400

Fail10987654321

N
um

be
r

of
 A

nt
ic

ip
at

io
ns

Milliseconds to Completion

Anticipation Distribution

Fig. 12. The anticipation distribution (AD) derived after observing the entire Cold
Boot workload, assuming a single process class and fixed anticipation interval at
10 ms.

1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 A

nt
ic

ip
at

io
ns

Class

successes
fails

1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 A

nt
ic

ip
at

io
ns

Class

successes
fails

Fig. 10. Number of successful/failed anticipations for N ¼ 100 classes–Cold Boot workload.

0

 20

 40

 60

 80

 100

 120

 140

Fail10987654321

N
um

be
r

of
 A

nt
ic

ip
at

io
ns

Milliseconds to Completion

Anticipation Distribution

Fig. 11. Anticipation distribution (AD) for the specific class 28 from the N = 100
classes involved in the example Cold Boot workload classification.

K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291 281
2. They are fed into the designation subsystem, should they por-
tray a good distribution of process classes. The designation sub-
system optimally assigns a specific anticipation period to every
class. With this assignment completed, the Anticipation Lookup
Table of WAS is populated and the scheduler commences its
normal operation.

In what follows, we elaborate the first of the above points while
we discuss the second in Section 3.6.

ADs help differentiate viable choices made regarding the classi-
fication scheme from poor ones. Apparently, the worst feasible
classification is the one that consists of a single class as it cannot
discriminate among different process behaviors and all classes
are treated in the same manner. Fig. 12 shows the AD of such a sin-
gle-class scheme used to characterize the behavior of I/Os in the
Cold Boot workload. Interestingly, this is the case with LAS as all
I/Os are indiscriminately stalled for 6 ms. An equally unhelpful
scheme is the one where multiple classes exist but all articulate
the same behavior, thus, providing no insight for better anticipa-
tion. In this case, there is no reason to treat any class differently
as the corresponding ADs offer no differentiation information. Con-
sequently, the more evident the distinction among classes is, the
better the classification scheme ultimately is. For instance, in
Fig. 10 we see that some classes, such as class ‘‘28”, feature far
more successes than fails; conversely, other classes, such as class
‘‘2”, appear to have only a few more successes than fails. Such clear
distinction between classes and respective ADs indicates success-
ful calibration. Finally, another unsuccessful classification results
when many classes feature no anticipations. Depending on the nat-
ure of workloads used during calibration, some classes are by far
more populous than others due to recurring I/O access patterns.
However, classifications that populate only few classes are unde-
sirable since scarcely populated classes represent rare process
behaviors. In short, ADs that may prompt re-calibration and call
for the re-adjustment of APFs demonstrate one or more of the fol-
lowing properties:

� all ADs are similar to the distribution derived by the single-class
classification scheme,

� no differentiation exist among the ADs of different classes,
� there are many scarcely-populated classes.

The administrator’s intervention would likely entail the use of a
different trace and/or changes in the number of steps m while set-
ting the APF-functions and their y-axis corresponding values. In
general, a trace should include processes that demonstrate as
much diverse behavior as possible so that a more successful
classification scheme is established. As re-calibration is somewhat
of an involved procedure, it is meant and actually takes place
infrequently.

It is worth pointing out that the re-calibration could be further
automated so that administrators do not have to delve into details.
To this end, we could use a similarity metric such as the correlation
coefficient (Mandel, 1984) to measure the ‘‘similarity” among all
classes adopted in a workload and use this as a criterion to re-ad-
just the APFs. In particular, we could represent each AD as a vector.
For example, the AD representing class 28 depicted in Fig. 11
would be <120, 100, 50, 38, 9, 21, 13, 8, 0, 5, 80>. Then, the coef-
ficient similarity between the AD of each class and the AD for the
entire workload (i.e., single-class classification scheme such as that
depicted in Fig. 12) can be computed. Having derived N such val-
ues, we could then compute the average similarity value for the
classification at hand. This value should be definitely lower than

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

10987654321

P
en

al
ty

 [m
s]

Anticipation Period [ms]

Penalty

Fig. 14. Anticipation penalty for different anticipation periods.

 1.6

 1.8

2

 2.2

 2.4

1098765432

P
en

al
ty

 p
er

 S
uc

ce
ss

 [m
s]

Anticipation Period [ms]

Average Penalty per Success

Fig. 15. Average penalty per success for different anticipation periods.

282 K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291
one and should ideally be as close as possible to zero. Average va-
lue one indicates classes with identical behavior and zero exempli-
fies a set of completely different classes something which is very
difficult to attain in pragmatic settings. Moreover, we could assist
the automated process in discussion by requiring that no more
than l% of classes are empty. Although a re-calibration process fol-
lowing the above approach can be developed, its realization falls
beyond the scope of our work here and we plan to examine it in
the future. We have followed a semi-manual approach instead
and while working with the Cold Boot workload and imposing that
no more than 30% of classes are without any population, we estab-
lished an average similarity value of 0.63. The latter represents a
viable and pragmatic choice for the ADs finally adopted in one of
the classifications used.

3.6. The designation subsystem

The objective of the user-space designation subsystem is to
determine the appropriate anticipation interval for every class pro-
duced by the classification subsystem. We treat this as an optimi-
zation problem which involves the N process behavior classes and
the respective anticipation distributions (ADs) produced by the
classification subsystem.

Before laying out this optimization problem, we consider the
case of the class characterized by the distribution of Fig. 11. In an
attempt to designate the best possible anticipation interval, we
may start reducing the stalling duration; should we change it to
6 ms the failed anticipations will increase to include those cur-
rently in the 7–10 ms range. At the same time, the shorter antici-
pation period will reduce the penalty time for keeping the disk
idle. We define penalty time as total waiting time for I/Os that took
the chance to enter anticipation but did not eventuate. While
assigning specific anticipation intervals to classes, we have to deal
with two contradicting goals. Namely, we have to:

� lower the number of failures,
� minimize the overall penalty time.

Minimizing the total time the hard disk remains idle in antici-
pation of a request favors shorter anticipation periods. In contrast,
lowering the number of failures calls for longer anticipation peri-
ods. In our example, we let the anticipation intervals range be-
tween 1 and 10 ms and show the above contradicting objectives
with the help of Figs. 13 and 14. The two graphs depict the decreas-
ing number of failed anticipations and the increasing correspond-
ing penalties as we augment the anticipation interval. In order to
work a compromise between the two objectives, we could suggest
the use of the average penalty per successful anticipation heuristic.
Fig. 15 shows how values for this heuristic range for values ob-
0

 50

 100

 150

 200

 250

 300

1098765432

F
ai

lu
re

s

Anticipation Period [ms]

Number of Failed Anticipations

Fig. 13. Failed anticipations for different anticipation periods.
tained from the distribution of Fig. 11. Here, the ‘‘best” anticipation
period for the class of Fig. 11 appears to be 4 ms. However in the
context of the designation subsystem, we address the anticipation
interval assignment more rigorously by treating it as a linear opti-
mization problem; this is done so that an overall optimal solution
is found. This optimization problem is carried out in user-space
only when the administrator wishes to fine-tune WAS to a specific
workload. The objective function we seek to minimize is the total
number of failed requests for all N classes:

min
XN

i¼1

Failsi

()
ð3Þ

Our linear optimization exclusively relies on the information that
the anticipation distributions (ADs) offer. This information in ADs
can be readily represented by a matrix A½i; j� featuring N rows and
M þ 1 columns. The rows correspond to the N process behavior clas-
ses adopted in the classification scheme and M is the number of dif-
ferent milliseconds along the x-axis of the ADs. Each column
identifier reflects the number of milliseconds elapsed in successful
anticipations. The last column of the matrix provides the number
of observed failed anticipations per class during the classification
phase. In A, values Si;j indicate the number of successful anticipa-
tions observed for class i during the jth ms of the anticipation per-
iod; values Fi denote the observed failures for class i when intervals
are longer than M ms. Therefore, we define:

A½i; j� ¼

S1;1 S1;2 � � � S1;M F1

S2;1 S2;2 � � � S2;M F2

..

. ..
. . .

. ..
. ..

.

SN;1 SN;2 � � � SN;M FN

2
66664

3
77775

with i 2 ½1;N� and j 2 ½1;M þ 1�:

ð4Þ

K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291 283
Assume that the designation subsystem assigns class i to an antici-
pation interval that lasts 5 ms. Then, according to matrix A the
number of failed anticipations will be the sum of all elements in
row i, from column 5þ 1 to the last column M þ 1, that isPMþ1

k¼6 A½i; k�. This specific cumulative information for all classes is
presented by matrix B as follows:

B½i; j� ¼

PMþ1

k¼2
A½1; k�

PMþ1

k¼3
A½1; k� � � �

PMþ1

k¼Mþ1
A½1; k�

PMþ1

k¼2
A½2; k�

PMþ1

k¼3
A½2; k� � � �

PMþ1

k¼Mþ1
A½2; k�

..

. ..
. . .

. ..
.

PMþ1

k¼2
A½N; k�

PMþ1

k¼3
A½N; k� � � �

PMþ1

k¼Mþ1
A½N; k�

2
6666666666664

3
7777777777775

ð5Þ

We denote the solution of the linear optimization problem with X,
where:

X½i; j� ¼
1 if class i is assigned jms anticipation
0 if class i is not assigned jms anticipation

�
ð6Þ

for i 2 ½1;N� and j 2 ½1;M�. Evidently, we can only assign one antic-
ipation period to a class, so:

XM

j¼1

X½i; j� ¼ 1; 8 class i 2 ½1;N� ð7Þ

We revisit Expression 3 and rewrite our objective function in terms
of X and B. Note that given the solution in X, the number of requests
Failsi that are expected to fail for class i 2 ½1;N� is

PM
j¼1X½i; j�B½i; j�.

Consequently, our objective expression becomes:

min
XN

i¼1

XM

j¼1

X½i; j�B½i; j�
()

ð8Þ

Should we try to solve the problem with the conditions provided
thus far, we will obtain the longest possible anticipation time, that
is M, for each class. This is expected since the maximum anticipa-
tion period will produce the fewest failed anticipations. As noted
before, we have to consider two contradicting objectives. At this
point, we introduce a constraint that expresses the quality of the
solution which is directly related not only to the sum of all failed
anticipations, but also to the time spent in anticipation, and, thus,
incorporate the second objective in the linear optimization prob-
lem. We introduce this aspect by imposing the constraint that the
average waiting time per failed request does not exceed a
threshold:

Penalty
Fails

< G ð9Þ

With this new parameterized rule, our solution can meet certain
quality criteria: lower G yields solutions where anticipations occur
only if there is high probability that they will succeed; similarly,
higher G will return solutions where anticipations occur, even if
their probability of success is not very high. However, we should
bear in mind that enhanced quality, that is small values for G, makes
the optimization problem harder and, thus, comes at the expense of
CPU overhead during problem solving. Revisiting condition 9, we
express Fails as:

Fails ¼
XN

i¼1

XM

j¼1

X½i; j�B½i; j� ð10Þ

For the penalty, we need to consider that a class assigned anticipa-
tion period j ms also sustains a penalty of j ms for each failed antic-
ipation. Consequently the penalty time for all classes is:
Penalty ¼
XN

i¼1

XM

j¼1

X½i; j�B½i; j�j ð11Þ

By substituting Expressions 10 and 11 to Condition 9 the quality
constraint is expressed as follows:

XN

i¼1

XM

j¼1

X½i; j�B½i; j�ðj� GÞ < 0 ð12Þ

Conditions (6)–(8), (12) make up a linear system whose solution can
optimally assign anticipation interval to classes. We efficiently solve
this linear system using the Simplex method (Papadimitriou and
Steiglitz, 1982).

In some cases, the solution of this optimization problem sug-
gests that some classes have anticipation period near or exactly
zero. This is the case of classes where their respective ADs show
mostly failed attempts. In general, having anticipation period close
to zero cancels out the benefits of anticipation. Therefore, we may
also impose that anticipation intervals feature values above a
threshold q. Such a constraint would be:

X½i; j� ¼ 0; 8i; j : i 2 ½1;N�; j 2 ½1; q� ð13Þ

Overall, the solution of this linear optimization problem allows for
the flexible use of CPU cycles through constraint 9. At the same
time, the assignment of the anticipation periods for all classes does
not happen in isolation as is the case with the possible use of the
average penalty per successful anticipation heuristic presented ear-
lier in Section 3.6.

4. Experimental evaluation

We have developed both the in-kernel and user-space modules
of WAS in C and ported our implementation to Linux with kernel
v.2.6.23. Moreover, we have implemented a LAS-scheduler that
uses the 95%-rule for setting the length of the anticipation intervals
(Iyer and Druschel, 2001); although such a patch has been avail-
able for FreeBSD (Iyer, 2001), to the best of our knowledge our
implementation is the first for Linux. The main objective of our
experimental effort was to show that while WAS still enjoys the
performance advantages of AS-based over traditional disciplines,
it combats deceptive idleness with fewer operational penalties.
During experimentation, we used a variety of both synthetic and
application workloads and/or traces. These workloads represent a
wide range of operational environments for block-devices and fall
into three categories:

1. Workloads produced by benchmarks,
2. workloads produced by processes that mimic specific types of

system behavior, and,
3. customized workloads that aim to reveal specific aspects of the

operation of block-device schedulers.

The first group consists of the Andrew’s benchmark (Howard
et al., 1988), the kernel compile (Love, 2005) and the Bonnie++

workload (Coker, 2008). Andrew’s benchmark was extended so
that multiple instances of the benchmark are in concurrent execu-
tion. In this first group, the kernel compile and Bonnie++ are at the
opposite ends of the spectrum: kernel compile involves accessing
many small files and anticipation may hamper performance while
Bonnie++ accesses different parts of large files. The second cate-
gory entails workloads that attempt to recreate I/O traces encoun-
tered in multi-user systems, database servers and scientific
applications (Seltzer and Stonebraker, 1991). The final set of work-
loads consists of the Linux OS ‘‘Cold Boot” and the synthetic KVA.
Both serve as mechanisms to reveal strong and weak points in
the WAS behavior. Our experimentation also investigates the im-

0

 10

 20

 30

 40

 50

 60

 70

 80

1 10 100 1000 10000 100000 1e+06

A
nt

ic
ip

at
io

n
P

ro
sp

ec
t

Distance Between Requests in Blocks

Spatial Anticipation Prospect

Slow Andrew’s
Slow Cold Boot
Fast Andrew’s

Fast Cold Boot

Fig. 16. Spatial-APFs derived through calibration with Cold Boot and Andrew’s-like
workloads.

0

 10

 20

 30

 40

 50

 60

 70

 80

5 10 20 30 40 50 60 70 80 90 100 120

A
nt

ic
ip

at
io

n
P

ro
sp

ec
t

Distance Between Requests in Milliseconds

Temporal Anticipation Prospect

Slow Andrew’s
Slow Cold Boot
Fast Andrew’s

Fast Cold Boot

Fig. 17. Temporal-APFs derived through calibration with Cold Boot and Andrew’s-
like workloads.

284 K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291
pact prefetching and ‘‘slower” hardware may have on our ap-
proach. Before discussing key findings obtained for each workload,
we present our methodology and the metrics used.

4.1. Methodology

As discussed in Section 3, the calibration and observation peri-
ods are critical in deriving viable classification schemes. Choosing
an appropriate such scheme is crucial in capturing the main soft-
ware and hardware features of the computing system at hand.
Out of the eight workloads we present in this section, the Cold Boot
and the Andrew’s-like benchmark are versatile enough to yield via-
ble classification schemes. These two workloads feature processes
with diverse I/O behaviors and thus, they are good candidates for
creating classification schemes. The Cold Boot reads numerous files
requiring – in most of the times – one seek per file. Moreover, the
1 GB of main memory available in our system is sufficient to cache
the entire boot procedure so blocks are read only once. The An-
drew’s-like benchmark is different as it seeks into many small files
that exceed the capacity of the main memory causing the files to be
buffered out. This in turn causes cache misses and forces block-de-
vice activity. Using these workloads for calibration, we generate
two classification schemes for WAS. Each classification scheme
yields a different population for the lookup table. A particular
classification scheme along with its respective lookup table values
constitutes a scheduler configuration.

For all eight workloads examined here, we experiment with
four anticipatory disk-scheduling disciplines and/or scheduler

configurations, namely:

1. WAS (Andrew’s-like): Our proposed WAS approach featuring
varying anticipation periods and using a classification scheme
derived via the Andrew’s-like workload.

2. WAS (Cold Boot): Similar to previous, but WAS scheduler now
uses a classification scheme derived with the help of the Cold
Boot workload.

3. 95% heuristic: Our implementation of the heuristic described in
Iyer and Druschel (2001). This algorithm maintains statistics on
the arrival time of requests per process. It then sets the antici-
pation time to be such that 95% of the requests, already served,
would have been successful.

4. Static 6 ms: The default Linux disk-scheduler (LAS) that assumes
a constant 6 ms anticipation interval.

We used two different computing systems in our experimenta-
tion: a ‘‘fast” one that was a Pentium 4 at 3 GHz with 1 GB main-
memory and 80 GB Serial-ATA hard disk and a ‘‘slow” one which
was a Pentium M at 1.3 GHz equipped with 512 MB of memory
and a 30 GB Ultra-ATA-100 hard disk. The ‘‘fast” system served
as our main experimentation platform. For both systems, we used
two classification schemes calibrated through the Cold Boot and
the Andrew’s-like workloads. Figs. 16 and 17 show the respective
anticipation prospect functions (APFs) for the above classification
schemes termed Fast Cold Boot, Fast Andrew’s, Slow Cold Boot
and Slow Andrew’s.

The spatial-APFs are mainly affected by the pattern with which
blocks in the specific workloads are accessed. As both slow and fast
machines use reiserfs as their file-system, the same workload pro-
duces identical spatial access patterns in both systems. Conse-
quently, the spatial anticipation functions are identical in both
machines when the same workload (i.e., Andrew’s-like or Cold
Boot benchmark - Fig. 16) is used. In similar spirit, the temporal-
APFs are mainly affected by the frequency with which I/O requests
are posted. This means that even different workloads would pro-
duce similar temporal associations on the same hardware (i.e., Fast
Andrew’s and Fast Cold Boot in Fig. 17).
Through extensive experimentation, we established that a his-
tory length of five (5) I/Os sufficiently captures the behavior of a
process for the examined workloads. In addition, we set the opti-
mization goal G to 6 ms. As discussed in Section 3.6, G is the aver-
age waiting time that the designation subsystem optimization
attempts to accomplish. By setting G to 6 ms, we impose that the
average anticipation period in the WAS (Cold Boot) and WAS (An-
drew’s-like) configurations tries to be equal to the constant antic-
ipation period of Static 6 ms allowing us the comparison with LAS.

4.2. Evaluation metrics

Prior work has examined the effectiveness of AS versus that of
conventional disk-scheduling policies by using throughput as the
main comparison metric (Iyer and Druschel, 2001). In our work,
we have ascertained previous results on the performance of AS.
We have also established that even if no varying anticipation peri-
ods are used –as is the case with LAS–AS-based schedulers consis-
tently produce higher throughput rates than their conventional
counterparts. Our main goal in this evaluation is to investigate
the behavior of the various AS-based schedulers and in particular
evaluate the effectiveness of those that use varying-length antici-
pation periods to combat deceptive idleness.

Extensive experimentation with anticipatory scheduling varia-
tions produced small gains in terms of throughput for WAS in com-
parison to LAS and 95%-heuristic. In real-life OS deployment, there
is a multitude of important factors that may interfere as far as
throughput is concerned apart from the anticipation periods used.
Most notably, throughput heavily depends on prefetch, cache
mechanisms (implemented in both hardware and software) and
of course on the mode the scheduler operates in. For instance as
Section 2 points out, LAS works in a combined anticipation/deadline

L
A

S

W
A

S(
C

ol
d)

W
A

S(
A

nd
r.

)

MB/Sec

10

12
11.5
 11

10.5

9.5
9

FC
FS

D
ea

dl
in

e

C
FQ

95
%

 H
eu

r.

Throughput of Andrew’s like benchmark

Fig. 19. Throughput delivered by the Linux kernel v.2.6.23 when experimenting
with the Andrew’s-like workload and different schedulers.

MB/sec

W
A

S
(C

ol
d)

W
A

S
(A

nd
r.

)

FC
FS

95
%

 H
eu

r.

C
FQ

D
ea

dl
in

e

L
A

S

25

27.5

30

32.5

Throughput of Multi-user workload

Fig. 20. Throughput delivered by the Linux kernel v.2.6.23 when experimenting
with the Multi-User workload and different schedulers.

95
%

 H
eu

r.

W
A

S(
A

nd
r.

)

W
A

S(
C

ol
d)

D
ea

dl
in

e

C
FQ

L
A

SFC
FSMB/Sec

15

20

25

30

Throughput of DB workload

Fig. 21. Throughput delivered by the Linux kernel v.2.6.23 when experimenting
with the DB workload and different schedulers.

Table 1
Anticipation scheduling (AS) performance metrics

Metric Symbol Description

Anticipated requests A Number of times the anticipation scheduler has
been triggered.

Successful
anticipations

AS Number of times an anticipated request
occurred.

Failed anticipations AF Number of times an anticipation failed.
Anticipation time T Time the anticipation scheduler spent in

anticipation.
Successful

anticipation time
TS Time the anticipation scheduler spent in

successful anticipations.

K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291 285
discipline; when I/O requests ‘‘expire” the scheduler ceases antici-
pation and gets into deadline mode. When measuring throughput
we inadvertently assess the efficiency of disk-scheduling, prefetch
as well as caching mechanisms combined. Hence, the exclusive use
of throughput to determine the effectiveness of I/O scheduling dis-
ciplines might not provide much information as far as deceptive
idleness is concerned. Nevertheless, we should ensure that the em-
ployed scheduling policies do not deteriorate throughput as this
would certainly question the value of the policies at hand.

Through experimentation with AS-based schedulers, we estab-
lished that all deliver comparable throughput rates, for all work-
loads in question. Minor throughput deviations among them are
not the product of the heuristics used to set the anticipation inter-
val but rather of the way the kernel dynamically triggers prefetch,
exploits caches and/or follows the Deadline discipline for block-de-
vices. Figs. 18–21 depict the throughput rates attained by Linux
operating under four of the workloads described in Section 4.3.
The scheduling policies presented here are the First Come First Serve
(Noop), the Deadline, the Complete Fair Queue and the Anticipation
configured with four different setups: the 95%-heuristic, LAS with
the fixed anticipation period, and the two WAS (Cold-Boot) and
WAS (Andrew’s-like) configurations. Overall, AS-based schedulers
provide higher throughput rates for all workloads we worked with,
with the only notable exception being that of the DB workload
where long sequential reads are better served by traditional disk-
scheduling disciplines. For the majority of the workloads where
the AS-based schedulers fare best, it becomes a challenge to expose
the benefits of anticipation exclusively via the reading of through-
put rates. Here, there is a real need to offer additional measure-
ments to more accurately quantify performance and better
ascertain gains obtained in dealing with deceptive idleness. To this
end, we introduce the metrics listed in Table 1.

From all the requests that the scheduler anticipates on (A), some
do eventuate and others do not. The numbers of successful and
failed anticipations are AS and AF respectively. The entire time that
the disk is kept idle during anticipation is T. The time spent that re-
sulted in successful anticipations is denoted TS, while the penalty
time for keeping the disk idle without success is TF . Of course,
equations A ¼ AS þ AF and T ¼ TS þ TF hold. The most notable of
the metrics in Table 1 are AS and TF as AS is a reliable way to mea-
sure the effectiveness of AS-schedulers and TF can successfully cap-
ture the penalty time. We use the fraction TF=AS to measure the
average penalty sustained for every successful anticipation; this
fraction reflects the accuracy with which AS-based disciplines
work. Apparently, the lower the fraction TF=AS becomes the better
we deal with deceptive idleness. Furthermore, since the penalty we
pay for a successful anticipation essentially corresponds to the
time the hard-disk stays idle, TF=AS offers a fruitful way to measure
application responsiveness and disk utilization overhead. Below,
we provide a few guidelines on how to interpret the obtained
experimental results.
W
AS

(A
nd

r.)

W
AS

 (C
ol

d)

LA
S

MB/Sec

15
17.5

20
22.5

25

Throughput of KVA workload

C
FQ

D
ea

dl
in

e

95
%

 H
eu

r.

FC
FS

Fig. 18. Throughput delivered by the Linux kernel v.2.6.23 when experimenting
with the KVA workload and different schedulers.

Failed anticipation
time

TF Time the anticipation scheduler spent in failed
anticipations.
1. The current Linux kernel with its constant anticipation period
serves as a point of reference.

2. Our prime goal is to decrease the penalty time TF while per-
forming equally well in terms of successful anticipations with
the current Linux kernel. Our secondary objective is to increase
the number of successful anticipations while maintaining TF

constant when possible.
3. As selective workloads produce scattered I/O requests through-

out the disk, they have little to gain from AS-based scheduling.
The goal here is to diminish the penalty time which calls for the
use of the shortest possible anticipation intervals.

Table 3
Results of the Cold Boot benchmark

Anticipation 95%-Heuristic Static 6 ms WAS
(Cold Boot)

WAS
(Andrew’s-like)

A 2752 2749 3540 3633
AS 2558 2501 3256 3333
AF 194 248 284 300
T 3583 ms 3641 ms 5495 ms 6076 ms
TS 2383 ms 2153 ms 4054 ms 4539 ms
TF 1200 ms 1488 ms 1441 ms 1537 ms
TF=AS 0.469 0.595 0.442 0.461

286 K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291
In what follows, we outline the results produced by running the
four AS-scheduler variations on a number of workloads. As the
experimentation occurred on a real system, all experiments were
repeated many times to warrant confidence in the results
presented.

4.3. Experimental results using diverse workloads

� The KVA-Synthetic Workload: exposes the weak points of the cur-
rent LAS scheduler and reveals the enhanced quality in terms of
timing penalties and missed anticipations that WAS offers. KVA
comprises of two phases: in its first phase, a large file with ran-
dom data is created. The file is large enough so that it does not fit
in main memory entirely—more than 2 GB for our system setup.
In the second phase of KVA, the file is read by two processes.
Each process reads in 4 KB blocks from different areas of the file
to avoid cache hits. These processes place successive requests
that are 128 KB apart, in order to disable the prefetch mecha-
nism and force the requests to certainly go to the block device
for service. In addition, one out of every eight requests is not
issued immediately as the calling process stalls for more than
6 ms. This waiting period is just enough to make the anticipation
interval expire and artificially introduce a number of anticipa-
tion fails in the Static 6 ms LAS configuration.

Table 2 presents the results under this synthetic workload.
The second column presents the results of the 95%-heuristic
described in Iyer and Druschel (2001). The third column holds
the observed values for the Static 6 ms LAS scheduler. The fourth
and fifth columns display the values of WAS using configurations

derived with the help of the Cold Boot and Andrew’s-like work-
loads. The number of failed anticipations drops by approxi-
mately 70%; from 5438 in the Static 6 ms case to 1724 and
1893 for the WAS schedulers. Reduced anticipation failures les-
sen the penalty time by around 60% from the penalty sustained
during the constant 6 ms operation. The 95%-heuristic performs
better than the Static 6 ms as it sustains less penalty time and
also anticipates more requests. However, the average penalty
for a successful anticipation of the 95%-heuristic is greater com-
pared to either of our implementations. Moreover, in the KVA-
workload the WAS schedulers, apart from avoiding anticipation
fails, they also introduce new anticipation successes. This is pos-
sible by assigning longer anticipation periods to promising clas-
ses in the classification scheme. In summary, the much reduced
values in the TF=AS underlines overall enhanced handling of the
deceptive idleness as far as the WAS schedulers is concerned.

� The Cold Boot Workload: involves the initiation of services at boot
time that include acpi, system log daemons, sshd, cupsys, dbus
and kde. Many of these services are launched concurrently in
distinct batches. For instance acpid, powernowd.early, sysklogd
and xserver-xorg-input-wacom are grouped together. As soon as
the X-server starts, KDE automatically launches a number of
applications that entails xmms, Konsole, ten different files are
opened with Kwrite, eight instances of the Konqueror browser
Table 2
KVA-benchmark results

Anticipation 95%-Heuristic Static 6 ms WAS
(Cold Boot)

WAS
(Andrew’s-like)

A 84,483 83,851 85,341 84,407
AS 81,165 78,413 83,448 82,683
AF 3318 5438 1893 1724
T 24,817 ms 37,487 ms 21,316 ms 17,994 ms
TS 5711 ms 4859 ms 7846 ms 4814 ms
TF 19,106 ms 32,628 ms 13,470 ms 13,180 ms
TF=AS 0.23 0.41 0.16 0.15
are started pointing at different locations of the file-system
and lastly Open Office(v.2.3) is used to open a text document.
The simultaneous launch of the above processes forces succes-
sive block requests and as a result the anticipatory scheduling
plays a significant role.

Table 3 shows the measurements obtained for Cold Boot using
the four scheduler configurations. The number of anticipations
increased for the WAS-schedulers compared to those of Static
6 ms LAS. The reason behind this is that a good number of
adopted classes are promising for anticipation and the WAS-
schedulers decide to assign longer anticipation periods to them.
This decision led the WAS (Cold Boot)-scheduler in increasing TS,
from 2153 ms in Static 6 ms LAS to 4054 ms – a 47% increase –
and the WAS (Andrew’s-like)-scheduler in increasing TS to
4539 ms – a 53% increase. The two WAS-schedulers show simi-
lar results with the one using the Cold Boot configuration having
the advantage. Clearly, this happens due to the fact that the
workload examined was also used for the production of the clas-
sification scheme for WAS(Cold Boot). As depicted by the total
number of anticipations A and the amount of time spent T, the
95%-heuristic provides similar results to the Static 6 ms LAS,
yet, when it comes to failed anticipations AF and penalty time
TF the 95%-heuristic shows enhanced performance (19%
decrease in penalty time over LAS). Although the 95% rule is
an improvement over LAS, the TF=AS factor ranks the WAS
schedulers higher.

� The Andrew’s-like Benchmark: has been the standard benchmark
for measuring file-system performance for many years (Howard
et al., 1988). The workload involves the creation of both files and
directories, compilations, and searching through the content of
the files. In our variation termed Andrew’s-like, we used eight
processes which start concurrently with each one sequentially
executing 150 Andrew’s benchmarks. Table 4 shows the results
of our experimentation. As is the case of Cold Boot, Andrew’s-
like workload also incorporates short access patterns from dif-
ferent processes. Responding to such access patterns, the WAS
schedulers avoid waiting for I/Os that are less promising and
help lower the number of anticipations by 2–6%. The failed
anticipations AF dropped from 8324 in the Static to 7846–7797
in the WAS settings which represents a sizable reduction. Conse-
Table 4
Results with an Andrew’s-like benchmark

Anticipation 95% Heuristic Static 6 ms WAS
(Cold Boot)

WAS
(Andrew’s-like)

A 23,790 40,389 39,439 39,731
AS 15,138 32,065 31,593 31,934
AF 8652 8324 7846 7797
T 48,510 ms 128,801 ms 126,774 ms 129,389 ms
TS 20,377 ms 78,857 ms 77,936 ms 80,185 ms
TF 28,133 ms 49,944 ms 48,838 ms 49,204 ms
TF=AS 1.858 1.557 1.545 1.540

Table 5
Results from the kernel compile workload

Anticipation 95%-Heuristic Static 6 ms WAS
(Cold Boot)

WAS
(Andrew’s-like)

A 4183 5654 3792 3544
AS 3684 5083 3406 3171
AF 499 571 386 373
T 10,075 ms 10,411 ms 6701 ms 6567 ms
TS 7616 ms 6985 ms 4549 ms 4673 ms
TF 2459 ms 3426 ms 2152 ms 1894 ms
TF=AS 0.66 0.67 0.63 0.59

Table 6
Results of testing with Bonnie++ benchmark

Anticipation 95%-Heuristic Static
6 ms

WAS
(Cold Boot)

WAS
(Andrew’s-like)

A 23,790 40,923 39,939 40,731
AS 15,138 33,080 32,093 32,934
AF 8652 7843 7846 7797
T 48,510 ms 99,258 ms 124,774 ms 126,389 ms
TS 20,377 ms 52,200 ms 77,936 ms 80,185 ms
TF 28,133 ms 47,058 ms 46,838 ms 46,204 ms
TF=AS 1.85 1.42 1.45 1.40

Table 7
Results of experimenting with the Multi-User workload

Anticipation 95%-Heuristic Static 6 ms WAS
(Cold Boot)

WAS
(Andrew’s-like)

A 957 1980 1489 1522
AS 385 791 765 747
AF 572 1189 724 775
T 6854 ms 10,3843 ms 7830 ms 8279 ms
TS 2332 ms 3249 ms 2692 ms 2849 ms
TF 4522 ms 7134 ms 5138 ms 5430 ms
TF=AS 11.74 9.02 6.71 7.27

K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291 287
quently, the WAS-schedulers managed to attain a smaller pen-
alty time per successful anticipation when compared with their
Static counterpart. As expected, the WAS (Andrew’s-like)-sched-
uler achieves a higher number of successful anticipations AS

than its WAS (Cold Boot) counterpart as it obtains its calibration
with the help of the Andrew’s-like workload. In this workload,
the 95%-heuristic cannot be directly compared with any of the
other schedulers. The penalty time is only half the one we get
with Static 6 ms, but the number of anticipations is less by
40%. The large number of failures in 95% heuristic render the
anticipation policy ineffective and the scheduler works mostly
in deadline mode. Indeed, the penalty per success of the 95%
heuristic performs clearly the poorest of the four schedulers.

� The Kernel Compilation Workload: is not a typical workload for
numerous small files are accessed by different processes. This
workload would nominally call for no anticipation as most
of the files are read in their entirety in just one I/O. Even when
the files are larger than the block size, the read ahead policy of
the disk-scheduler is most probably able to prefetch the remain-
ing blocks of the file. This workload is generated by calling make
on the kernel source tree with the ‘‘-j” option, in order to spawn
multiple processes for concurrent compilation of the source. In
our case, we use four (4) processes, which in turn start children
processes for the compilation of different parts of the kernel
source tree. This workload offers a good example where WAS
is helpful as it places requests to classes that are not given long
anticipation intervals. This minimizes the penalty times
involved.

Table 5 shows the results of experimenting with the kernel
compile workload. Compared with Static LAS case, where the0
penalty time TF is 3426 ms, the WAS-schedulers decrease TF

significantly: WAS (Cold Boot) lowers TF to 2152 ms by 37%,
while WAS (Andrew’s-like) drops TF even more to 1894 ms by
45%. Obviously, WAS (Andrew’s-like) configuration uses a more
suitable classification scheme for the kernel compile as the
Andrew’s-like and this workload share similar processes such
as gcc, ld, etc. In general, WAS appears to be able to identify
many I/O requests as not good candidates for anticipation.
Indeed, out of the 10,075 ms spent in request anticipation, 32%
of time is lost. WAS-schedulers reduce their respective total
anticipation times T to 6701 ms and 6567 ms, for they identify
anticipation is not beneficial in this workload. The 95%-heuristic
is unable to ‘‘recognize” the characteristics of this workload. The
TF=AS factor shows that WAS (Andrew’s-like) configuration does
best in dealing with the deceptive idleness of this workload.

� The Bonnie++ Workload: consists of many sequential reads and
writes confined in 2 GB of disk space. Contemporary multi-
threaded information retrieval systems or database engines
are systems that may yield such I/O behavior. In this sense,
the workload produced by Bonnie++ benchmark can directly
benefit from anticipation. In Table 6, we present the results of
our testing with the four schedulers. We observe that the Static
scheduler is running with a failure rate of 19%. The WAS-sched-
ulers improve the time spent on successful anticipations TS by
approximately 50%. This is because WAS invests in stalling cer-
tain process classes that appear promising. Moreover, the pen-
alty time TF is unaffected when compared with the Linux
default disk scheduler. The 95%-heuristic is unable to accom-
plish the same results as the Static scheduler and works in dead-
line mode most of the time hence the reduced anticipations A.

� The Multi-User Workload: tries to emulate the I/O activity pro-
duced in a multi-user environment (Seltzer and Stonebraker,
1991). To this end, eight processes are executed simultaneously
placing 3000 I/O requests each of which 60% of are reads and
40% writes. Every read request fetches from disk 16 KB of data
whereas with each write 4 KB of data are stored. Each process
operates on its own workspace containing 10,000 files. Of those
10,000 files 7500 have size between 128 KB and 256 KB and the
rest 2500 files are sized between 256 KB and 384 KB. To the
extend the file-system allows it, all the files are clustered
together according to the workspace they belong to. This is
achieved by sequentially creating each and every workspace in
a de-fragmented disk partition. Consequently, anticipation on
a process will result in a request that is in the vicinity of its
workspace. Additionally, we have enhanced this workload by
inserting a random delay after each request leading to some
anticipation failures.

Table 7 shows the experimentation results with the four
schedulers. The 95%-heuristic comes one step behind the other
three configurations. Its attempts for anticipation are limited
when compared to the Static configuration. The two WAS-
schedulers show improved TF=AS values. They both sustain
lower penalty time but the successful anticipations are barely
decreased compared to the Static configuration. The overall pen-
alty per successful anticipation criterion renders WAS
(Andrew’s-like) the best calibration choice for this frequently-
encountered workload environment.

� The DB Workload: tries to create traces that resemble those gen-
erated by a database engine (Seltzer and Stonebraker, 1991). In
this respect, DB features three types of files: large files from
where all processes read data, one application log per process
where each process records its actions and finally, one database
log file which is used as a universal log by all processes. In our
implementation, we used one large file with size of 200 MB,

Table 8
Results of experimenting with the DB workload

Anticipation 95%-Heuristic Static 6 ms WAS
(Cold Boot)

WAS
(Andrew’s-like)

A 2815 2559 7801 7583
AS 1985 1931 5938 5772
AF 830 628 1863 1811
T 7631 ms 9284 ms 25,479 ms 26,530 ms
TS 3395 ms 5516 ms 16,823 ms 18,383 ms
TF 4236 ms 3768 ms 8656 ms 8147 ms
TF=AS 2.13 1.95 1.45 1.41

Table 9
Results of experimenting with the Scientific workload

Anticipation 95%-Heuristic Static 6 ms WAS
(Cold Boot)

WAS
(Andrew’s-like)

A 1243 1242 1213 1160
AS 840 856 900 846
AF 403 386 313 314
T 8132 ms 10,744 ms 9905 ms 8085 ms
TS 5446 ms 8428 ms 7820 ms 5958 ms
TF 2686 ms 2316 ms 2085 ms 2127 ms
TF=AS 3.19 2.70 2.31 2.51

Table 10
KVA-benchmark results with prefetch disabled

Anticipation 95%-Heuristic Static 6 ms WAS
(Cold Boot)

WAS
(Andrew’s-like)

A 86,465 88,411 85,958 90,338
AS 81,128 83,043 83,386 87,653
AF 5337 5368 2572 2685
T 25,375 ms 37,177 ms 20,307 ms 19,758 ms
TS 5137 ms 4969 ms 4867 ms 4924 ms
TF 20,238 ms 32,208 ms 15,440 ms 14,834 ms
TF=AS 0.24 0.38 0.18 0.16
Throughput 22,851 KB/s 22,561 KB/s 22,851 KB/s 22,657 KB/s

Table 11
Andrew’s-like benchmark results with prefetch disabled

Anticipation 95% Heuristic Static 6 ms WAS
(Cold Boot)

WAS
(Andrew’s-like)

A 56,745 77,005 78,121 76,756
AS 46,174 68,235 70,246 68,997
AF 10,571 8770 7875 7759
T 69,762 ms 149,971 ms 158,774 ms 152,912 ms
TS 35,923 ms 97,351 ms 107,087 ms 104,711 ms
TF 33,839 ms 52,620 ms 51,687 ms 48,201 ms
TF=AS 0.73 0.77 0.74 0.7
Throughput 8014 KB/s 9574 KB/s 9563 KB/s 9540 KB/s

Table 12
Multi-User workload results prefetch disabled

Anticipation 95%-Heuristic Static 6 ms WAS
(Cold Boot)

WAS
(Andrew’s-like)

A 51,052 55,335 54,852 54,535
AS 43,628 45,789 45,872 45,842
AF 7424 9546 8980 8693
T 92,308 ms 100,049 ms 92,763 ms 93,849 ms
TS 43,121 ms 42,773 ms 41,863 ms 42,119 ms
TF 49,187 ms 57,276 ms 50,900 ms 51,730 ms
TF=AS 1.12 1.25 1.10 1.12
Throughput 26,877 KB/s 26,812 KB/s 26,650 KB/s 27,009 KB/s

288 K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291
the universal log is set to 100 MB and there are five processes
each of which uses a 50 MB application log.

Table 8 shows the results of our experimentation with the
four configurations. In DB, every process repeatedly reads parts
from the data file and then writes into its two log files. Evi-
dently any attempt to anticipate an I/O request should ‘‘take
into consideration” whether another process will soon place a
nearby request. The 95%-heuristic and LAS do not take this risk
and do not conduct enough anticipations. On the other hand
the WAS configurations follow a different approach. They man-
age to conduct more anticipations than LAS and 95%-heuristic
by assigning shorter anticipation periods (in the average about
4.5 ms per anticipation) and thus serve more requests before
they start expire. The later in turn allowed WAS to stay in
deadline mode for a greater period of time and anticipate more
requests. The success of our configurations is depicted by a
reduction of 28% in TF=AS if compared with the standard Static
6 ms LAS.

� The Scientific Workload: tries to mimic block-device access
behavior of scientific applications (Seltzer and Stonebraker,
1991). We enhanced this workload in a way that involves con-
currency and would thus call for anticipation. Five processes
post read and write I/O requests in ratio 6 to 4 with a variable
idle period in between to simulate CPU processing bursts. These
requests are equally distributed to three types of files large
(500 MB) medium (100 MB) and small (10 MB). The chunks of
data accessed are either 512 KB or 32 KB long. Although we
used 1 large file 3 medium and 10 small ones the I/O requests
are still scattered throughout the disk.

Table 9 shows the results of our experimentation with the four
schedulers on the Scientific workload. Scattered requests is a fea-
ture of scientific applications as they tend to exactly ‘‘know”
where to fetch data from, read it in one seek and finally carry
out the requisite processing. WAS is able to identify those pro-
cess classes that provide high prospect for anticipation. As a
result the successful anticipation attempts are slightly increased
when compared to LAS and the 95%-heuristic configurations. In
addition, the failed anticipations along with the penalty time
(TF) decrease. This 18% decrease in failed anticipations of WAS
over LAS is depicted by TF=AS.
4.4. Disabling the prefetch mechanism of the file-system

We have experimented with all the workloads and present here
results obtained while the prefetching mechanism of the file-sys-
tem was disabled. Our goal has been to better understand and
quantify the effect of read-ahead when it comes to disk-schedul-
ing. Although we have experimented with the entire range of the
workloads used, for brevity we only report results from the KVA,
Andrew’s-like, Multi-User and DB benchmarks in Tables 10–13,
respectively.

In all cases – except KVA – we see that disabling prefetch signif-
icantly increases the anticipation attempts conducted by the
scheduler. The reason for this is that since read-ahead is disabled
a lot of anticipations will be successful given the fact that most
processes place successive I/O requests for successive disk sectors.
Both prefetch and anticipatory scheduling are mechanisms to com-
bat deceptive idleness: On the one hand prefetch chooses to read
some blocks ahead of the requested in hope that the same process
will ask for successive sectors; on the other hand anticipatory
scheduling chooses to stall the disk in hope that the just serviced
process will soon request some of the blocks the hard disk head
is over, that is sectors that follow the just serviced request. There-
fore, when one of the two mechanisms, prefetch or anticipation, is

Table 13
DB workload results with prefetch disabled

Anticipation 95%-Heuristic Static 6 ms WAS
(Cold Boot)

WAS
(Andrew’s-like)

A 51,377 56,755 55,961 56,514
AS 50,238 54,880 54,086 54,624
AF 1139 1875 1875 1890
T 28,356 ms 34,795 ms 43,273 ms 37,304 ms
TS 17,483 ms 23,545 ms 32,486 ms 26,371 ms
TF 10,873 ms 11,250 ms 10,787 ms 10,933 ms
TF=AS 0.22 0.20 0.19 0.20
Throughput 29,539 KB/s 27,749 KB/s 28,321 KB/s 28,032 KB/s

Table 15
Results of Kernel Compile and Bonnie++ benchmarks on older hardware

Anticipation Kernel Compile Bonnie++

Static
6 ms

WAS
(Cold
Boot)

WAS
(Andrew’s)

Static
6 ms

WAS
(Cold
Boot)

WAS
(Andrew’s)

A 199 139 97 13,027 13,575 13,299
AS 59 47 64 12,737 13,335 13,074
AF 140 92 33 290 240 225
T 947 ms 464 ms 223 ms 6857 ms 6980 ms 6899 ms
TS 107 ms 34 ms 43 ms 5117 ms 5616 ms 5549 ms

Table 14
Results of KVA and Andrew’s-like benchmarks on older hardware

Anticipation KVA Andrew’s-like

Static
6 ms

WAS
(Cold
Boot)

WAS
(Andrew’s)

Static
6 ms

WAS
(Cold
Boot)

WAS
(Andrew’s)

A 4717 4638 4711 17,535 16,521 17,100
AS 4251 4517 4577 12,224 11,910 12,502
AF 466 121 134 5311 4611 4598
T 4851 ms 5247 ms 5293 ms 51,205 ms 46,604 ms 47,039 ms
TS 2055 ms 4158 ms 4147 ms 19,341 ms 19,542 ms 19,802 ms
TF 2796 ms 1089 ms 1146 ms 31,864 ms 27,062 ms 27,237 ms
TF=AS 0.66 0.24 0.25 2.60 2.27 2.18

K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291 289
absent the other one takes over and tries to fill the absence of the
missing one. This is what we precisely saw in all the above exper-
iments with the only exception being that of KVA. The latter was
specifically build so as to by-pass kernels read-ahead (Section 4).
Consequently, when we compare Tables 10 and 2 we do not see
any considerable increase in the amount of the anticipations. The
TF=AS factor overall points the WAS schedulers as very promising
in terms of timing delays.

The last line in each of the above tables presents the average
throughput of each workload when prefetch is disabled. When
comparing these corresponding rates in Figs. 18–21 we see a slight
decrease. Although both anticipatory scheduling and prefetch tar-
get deceptive idleness, prefetch is more ‘‘aggressive” in its actions.
Prefetch does not leave the disk idle at no time so when a process
places a successive I/O it is served by data that are already pre-
fetched in RAM.

4.5. WAS operating on slower hardware

Our objective in testing WAS with a slower computing system is
twofold: first, to establish the utility of our enhanced scheduler
and second, to show that the produced classification scheme does
reflect the hardware and system software under testing. We used a
Pentium-M machine at 1.3 GHz with 512 MB of main memory and
30 GB of disk running Suse 9.1 patched with the 2.6.4 kernel using
WAS. We produced two classification schemes based on the An-
drew’s-like benchmark and Cold-Boot – termed Slow Andrew’s
and Slow Cold Boot – as Figs. 16 and 17 show. We can readily
see from these two graphs that although slow and fast hardware
yield similar spatial anticipation prospect functions their temporal
counterparts are very different. In combination, the respective
prospect functions for fast/old hardware do provide two distinct
classification schemes.

We experimented with all workloads/configurations6 and
Tables 14 and 15 show some of the results. The table also shows
TF 840 ms 430 ms 180 ms 1740 ms 1364 ms 1350 ms
TF=AS 14.23 9.15 2.81 0.14 0.10 0.10

6 Shorter versions of workloads were produced to match the hardware capabilities
.
the corresponding results, should we use the standard LAS-sched-
uler. In all our experiments and in comparison with the LAS 6 ms val-
ues, we see that the penalty time TF values are reduced while the
number of successful anticipation AS attempts either improves a lit-
tle or remains unchanged. The combined effect of TF and AS renders
our implementation as most promising.

Lastly, we should point out that there is no benefit in directly
comparing the results obtained with the slower hardware to those
derived from the faster. This has to do with the fact that slower re-
quest service causes the I/Os to be scheduled differently. Moreover,
the total number of anticipated requests is also related to the size
of the main memory each system has.
4.6. Discussion of results and overheads

Table 16 summarizes the TF=AS measurements for both LAS and
WAS schedulers across all the workloads used. From the two con-
figurations we deploy for WAS, we depict for each case the one that
better suits the workload in question. WAS offers time savings for
successful anticipations for all workloads that in some workloads
may halve the respective rates of the Linux standard disk-
scheduler.

The overheads involved in WAS are rather minimal when com-
pared to the milliseconds gained. In its regular operational mode,
WAS does work in kernel and initially for each I/O updates the his-
tory of the process and then determines the anticipation interval
that the process should impose on the block-devices. As the history
is a short cyclic list with a pointer to its last record (Section 3.2),
updating this structure requires no list traversal. Consequently,
the pertinent overhead in carrying out history update is indeed
minimal. When WAS has to determine the class a process belongs
to all elements of the process history have to be traversed (Section
3.3). As soon as WAS determines the specific class, it then carries
out an array look-up to find out the anticipation interval to be
used. Should we consider that an ever increasing number of
instructions per second (IPS) (Patterson and Hennessy, 2007) are
performed by modern CPUs, the above in-kernel overheads are
rather negligible especially if compared to milliseconds saved for
each successful anticipation. Even when WAS enters its observa-
tion phase, it does call for minimum computational resources as
this phase (Section 3.6) is equivalent to simply increasing an ele-
ment in matrix A of Section 3.6 every time an anticipation is carried
out. The v.2.6.23 kernel offers no tools for measuring such extre-
mely short time periods and any attempt of our own to instrument
the code would certainly provide inaccurate measurements at this
fine granularity level.

WAS user-space components may impose notable overheads.
However, both classification and designation subsystems are
meant to be used infrequently and only when the overall require-
ments of the computing system allow for the extra overhead. More

Table 16
Penalty per successful anticipation for each workload tested

Workload KVA Cold Boot Andrew’s Kernel Comp Bonnie++ Multi-User DB Scientific

LAS 0.41 ms 0.595 ms 1.557 ms 0.67 ms 1.42 ms 9.02 ms 1.95 ms 2.70 ms
WAS 0.15 ms 0.442 ms 1.540 ms 0.59 ms 1.40 ms 6.71 ms 1.41 ms 2.31 ms

290 K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291
specifically, classification subsystem is invoked only once during
the system installation (Section 3.4) and the designation subsys-
tem (Section 3.6) only once per workload. Taking into account that
workloads with similar characteristics are often recurring (Dilley,
1996), overheads imposed by the two subsystems could be better
handled by more effective use of available computing system re-
sources. For instance in a server environment, workloads may re-
cur every 24-hours and the type of the workloads may change
every week or month. Here, WAS can rapidly adapt to incoming
workloads by using existing scheduler configurations that character-
ize the anticipated I/O traffic through a cron-job. In this way, the
system sustains no downtime. Only if no appropriate scheduler con-

figuration exists, WAS may work harder to compile all the required
statistics and yield viable process classes and assignments of antic-
ipation intervals per process class.

5. Related work

There have been numerous efforts to improve the performance
of block devices and in particular disks by mostly conserving on
the work that mechanical parts carry out (Finkel, 1986; Tanen-
baum, 2001). Disciplines including the shortest-seek-latency-first
(SSF), SCAN, Look and C-Look attempt to minimize the distance
traveled by the disk arm. The careful placement of files on the disk
based on their expected locality has been suggested in McKusick
and Neville-Neil (2003) while the adaptive re-arrangement of data
blocks on the surface of the disk plates (Vongsathorn and Carson,
1990; Akyurek and Salem, 1997) have been used as ways to en-
hance the I/O throughput of storage devices. In Riska and Riedel
(2003), a novel storage architecture subsystem is outlined in which
more than one requests can be placed within the actual device at
any given time providing chances for a more opportune disk sched-
uling. Data compression (Cormen et al., 2001; Linux Weekly News,
2005) could be helpful in increasing the ‘‘effective” disk-transfer
rates regardless of the choice made as far as the device scheduler
is concerned.

In Iyer and Druschel (2001), it was shown that AS works well in
conjunction with the Apache web-server with respect to I/O-inten-
sive workloads, for file-system benchmarks, as well as for variations
of the TPC-B benchmark. As AS combats the deceptive idleness of a
process, it was shown that better facilitates workloads where multi-
ple synchronous I/Os are present. In contrast, workloads of random
and scattered I/Os may induce high penalties for the AS.

Modern kernels offer a range of policies for disk scheduling in
order to accommodate for the different types of traffic a block-de-
vice may handle (Mauro and McDougall, 2000; McKusick and Nev-
ille-Neil, 2003; Vahalia, 1996). Combining the characteristics of the
block-device at hand and the expected workload, system adminis-
trators may select an appropriate scheduling policy. The Linux
anticipatory disk-scheduler occasionally anticipates I/O requests
merely using a fixed-length wait period (Love, 2005). For the Free-
BSD implementation of AS, the anticipation period is determined
with statistics only related to the arrival times of the I/Os of a pro-
cess (Iyer, 2001). The stall period is set so that there is a 95% chance
for successful anticipation. Although this heuristic has been shown
to outperform traditional disk-scheduling policies, it has two lim-
itations: firstly, it does not capture the spatial relationships of I/
Os deemed essential in characterizing process behavior and sec-
ondly, the above estimation of the successful percentile is compu-
tationally intensive while working in the kernel space.

A number of alternative policies have also emerged in order to
address requirements for specialized applications. For example, a
wide range of environments with real-time needs have spurred
the development of scheduling techniques for requests to either
devices or systems based on deadlines (Bestavros and Braoudakis,
1994; Biyabani et al., 1988; Chen et al., 1991; Abbott and Garcia-
Molina, 1992). A deadline-based scheduler accepts requests with
a maximum wait time and tries to always fulfill the largest number
of those processes present in its queue. Evidently, this is not always
feasible leading to either aborted or resubmitted requests. In mul-
timedia environments where quality-of-service requirements have
to be observed at all times for the avoidance of jitter, the fair queue
scheduling has been suggested (Stiliadis and Varma, 1998; Demers
et al., 1989). Here, the scheduler tends to many processes that re-
quire substantial service from disks in a fair way while preventing
a subset of the competing processes from monopolizing the use of
the devices in question.

6. Conclusions and future work

Effective disk scheduling is required to obtain not only good
overall performance for block-devices but more importantly to
continually attain good responsiveness for applications. The antic-
ipatory scheduling (AS) works in this direction with a unique ap-
proach: as soon as a process I/O request has been served, it stalls
the block-device for a period of time. Stalling is introduced in hope
that a new request – from the just serviced process – for a nearby
block will soon arrive; in this case, the follow-up request is effi-
ciently serviced without ‘‘expensive” disk seeks. The rationale of
AS is to generate fewer and/or less expensive seeks and in this
way to contribute to shorter handling periods for I/Os.

In this paper, we build on the success of AS scheduling and seek
to provide schedulers that use varying-length anticipation inter-
vals. We argue that the types of workloads a file system is called
to tend, in conjunction with the hardware/software computing
system configurations should be taken into consideration to offer
a more flexible and effective anticipation discipline. We propose
an approach named workload-dependent anticipation scheduler
(WAS), in which the anticipation interval is a function of both spa-
tial and temporal characteristics exhibited by requesting I/Os. Our
approach uses minimal auxiliary structures and negligible CPU-
overheads in the kernel. Its operation depends on two subsystems
– classification and designation – that run only infrequently in
user-space. The role of the classification subsystem is to produce
a viable classification scheme of process classes based on a calibra-
tion phase. The designation subsystem considers the set of finally
adopted classes and assigns to them anticipation intervals of vary-
ing length by solving a linear optimization problem. On one hand,
the classification scheme is highly dependent on physical and/or
logical characteristics of the computing system at hand. On the
other, major workload changes may trigger the optimization pro-
cess of the designation subsystem that re-evaluates the assign-
ment of anticipation intervals for each process class identified
during the execution of the classification.

We have incorporated our WAS approach into the Linux kernel
v.2.6.23 and experimented with a wide range of workloads. During

K. Tsakalozos et al. / The Journal of Systems and Software 82 (2009) 274–291 291
our experimentation, we placed emphasis in investigating the pen-
alty time imposed by failed anticipations and the responsiveness of
the system defined by the number of successful anticipations. Our
testing involved I/O activity produced by the Andrew’s benchmark,
Bonnie++, Cold Boot, the compilation of the Linux kernel as well as
the synthetic KVA, Multi-User, DB and Scientific workloads. Our re-
sults show an overall reduction in penalty time while the numbers
of successful anticipations remain at the same or higher levels to
those attained by the conventional LAS-scheduler.

It is worth pointing out that both classification and designation
need to be invoked only on major workload changes and/or hard-
ware updates. Here, WAS has to get adapted to better serve the
new I/O patterns. Our choice for placing these two subsystems in
the user-space enables them to function online without having
special requirements in place such as to either recompile the ker-
nel or reboot the system. We believe this choice is appealing as
system administrators may ‘‘load” in the kernel a classification
scheme and corresponding assignments (i.e., scheduler configura-

tions) of their own choice. For instance, as the workload of a work-
station may change over regular periods of time, the administrator
may employ a cron-job to re-designate WAS classes of I/Os and
respective anticipation interval assignments on the fly. In the fu-
ture, we intend to develop mechanisms that would allow for the
unsupervised execution of the classification phase. In this context,
we plan to investigate the effectiveness of cluster analysis in creat-
ing improved classification schemes of I/O requests. We will also
examine sampling techniques in order to render the binding of
anticipation intervals to classes more CPU-lightweight as far as
the linear optimization is concerned.

Acknowledgement

We are very grateful to the anonymous reviewers for their valu-
able comments that helped us significantly improve our work and
its presentation.

References

Abbott, R., Garcia-Molina, H., 1992. Scheduling real-time transactions: a
performance evaluation. ACM Transactions on Database Systems 17 (3).

Akyurek, S., Salem, K., 1995. Adaptive block rearrangement. ACM Transactions on
Computer Systems 13 (2), 89–121.

Akyurek, S., Salem, K., 1997. Adaptive block rearrangement under UNIX. Software
Practice and Experience 27 (1), 1–23.

Bestavros, A., Braoudakis, S., 1994. Timeliness via speculation for real-time
databases. In: Proceedings of the IEEE Real-Time Systems Symposium, San
Juan, Puerto Rico.

Biyabani, S., Stankovic, J., Ramamritham, K., 1988. The integration of deadline and
criticalness in hard real-time scheduling. In: Proceedings of the Real-Time
Systems Symposium, Huntsville, AL, pp. 152–160.

Bovet, D.P., Cesati, M., 2005. Understanding the Linux Kernel, 3rd ed. O’Reily,
Sebastopol, CA.

Bruno, J.L., Brustoloni, J.C., Gabber, E., Ozden, B., Silberschatz, A., 1999. Disk
scheduling with quality of service guarantees. In: Proceedings of the 1999 IEEE
International Conference on Multimedia Computing and Systems, Florence,
Italy, pp. 400–405.

Carothers, C.D., 2007. Lecture Notes on CPU History. Rensselaer Polytechnic
Institute, Troy, NY. <www.cs.rpi.edu/~chrisc/COURSES/CSCI-4250/SPRING-
2004/slides/cpu.pdf>.

Carr, R., Hennessy, J., 1981. WSCLOCK – A simple and effective algorithm for virtual
memory management. In: Proceedings of the 8th ACM Symposium on
Operating System Principles, Pacific Grove, CA.

Chen, S., Stankovic, J.A., Kurose, J.F., Towsley, D.F., 1991. Performance evaluation of
two new disk scheduling algorithms for real-time systems. Real-Time Systems.
3 (3), 307–336.

Chen, Z., Delis, A., Bertoni, H.L., 2004. Radio-wave propagation prediction using ray-
tracing techniques on a network of workstations (NOW). Journal of Parallel and
Distributed Computing 64 (10), 1127–1156.
Coker, R., 2008. Bonnie++ file system benchmark. URL: <http://www.coker.com.au/
bonnie++/>.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2001. Introduction to Algorithms,
second ed. MIT Press–McGraw Hill, Cambridge, MA.

Demers, A.J., Keshav, S., Shenker, S., 1989. Analysis and simulation of a fair queueing
algorithm. In: Proceedings of the ACM-SIGCOMM Symposium, Austin, TX, pp.
1–12.

Denning, P.J., 1968. The working set model of program behavior. Communications
of the ACM 11 (5), 323–333.

Dilley, J., 1996. Web server workload characterization. Technical report. Hewlett-
Packard Laboratories. URL <http://www.hpl.hp.com/techreports/96>.

Faloutsos, C., Ng, R.T., Sellis, T.K., 1995. Flexible and adaptable buffer management
techniques for database management systems. IEEE Transactions on Computers
44 (4), 546–560.

Finkel, R.A., 1986. An Operating Systems Vade Mecum. Prentice, Englewood Cliffs,
NJ.

Haritsa, J., Livny, M., Carey, M., 1990. On being optimistic about real-time
constraints. In: Proceedings of the 9th ACM Symposium on Principles of
Database Systems, Nashville, TN.

Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A., Satyanarayanan, M.,
Sidebotham, R.N., West, M.J., 1988. Scale and performance in a distributed file
system. ACM Transactions on Computer Systems 6 (1), 51–81.

Iyer, S. 2001. FreeBSD Patch for Anticipatory Scheduler. <http://www.cs.rice.edu/
ssiyer/r/antsched/antsched/>.

Iyer, S., Druschel, P. 2001. Anticipatory scheduling: a disk scheduling framework to
overcome deceptive idleness in synchronous I/O. In: Proceedings of the 18th
ACM Symposium on Operating Systems Principles, New York, NY.

Kernel Traffic, 2008. <http://www.kerneltraffic.org>.
Kontos, D., Megalooikonomou, V., 2005. Fast and effective characterization for

classification and similarity searches of 2D and 3D spatial region data. Pattern
Recognition 38 (11), 1831–1846.

Lazowska, E.D., Zahorian, J., Graham, G.S., Sevcik, K.C., 1984. Quantitative System
Performance. Prentice Hall, Englewood Cliffs, NJ.

Leffler, S.J., McKusick, M.K., Joy, W.N., Fabry, R.S., 1984. A fast file system for UNIX.
ACM Transactions on Computer Systems 2 (3), 181–197.

Linux Weekly News. 2005. <http://www.lwn.net>.
Love, R., 2005. Linux Kernel Development, second ed. Developer’s Library Sams

Publishing/Novel.
Mandel, J., 1984. The Statistical Analysis of Experimental Data. Dover Publications,

Inc., Mineola, NY.
Mauro, J., McDougall, R., 2000. Solaris Internals: Core Kernel Architecture. Sun

Microsystems Press, Mountain View, CA.
McKusick, M.K., Neville-Neil, G.V., 2003. The Design and Implementation of the

FreeBSD Operating System. Addison-Wesley, New York, NY.
Özden, B., Biliris, A., Rastogi, R., Silberschatz, A., 1994. A low-cost storage server for

movie on demand databases. In: Proceedings of the 20th International
Conference on Very Large Data Bases, Santiago, Chile.

Papadimitriou, C.H., Steiglitz, K., 1982. Combinatorial Optimization Algorithms and
Complexity. Dover Publications, Inc, Mineola, NY.

Patterson, D.A., Hennessy, J.L., 2007. Computer Organization and Design: the
Hardware/Software Interface. Elsevier Science & Technology, San Francisco, CA,
USA. third revised edition.

Riska, A., Riedel, E., 2003. It’s not fair-evaluating efficient disk scheduling. In: 11th
IEEE/ACM International Symposium on Modeling, Analysis and Simulation of
Computer Telecommunication Systems (MASCOTS), Orlando, FL.

Rosenblum, M., Ousterhout, J.K., 1991. The Design and implementation of a log-
structured file system. In: Proceedings of the 13th ACM Symposium in
Operating System Principles, vol. 25. Pacific Grove, CA, pp. 1–15.

Ruschitzka, M., Farby, R.S., 1977. A unifying approach to scheduling.
Communications of the ACM 20 (7), 469–478.

Seltzer, M., Stonebraker, M., 1991. Read optimized file system designs: a
performance evaluation. In: Proceedings of the 7th IEEE International
Conference on Data Engineering, Kobe, Japan.

Silberschatz, A., Galvin, P.B., Gagne, G., 2003. Operating System Concepts, sixth ed.
John Wiley & Sons, New York, NY.

Stiliadis, D., Varma, A., 1998. Efficient fair queueing algorithms for packet-switched
networks. IEEE/ACM Transactions on Networking 6 (2), 175–185.

Stoupa, K., Vakali, A., 2006. QoS-oriented negotiation in disk subsystems. Data and
Knowledge Engineering Journal 58 (2), 107–128.

Tanenbaum, A.S., 2001. Modern Operating Systems, second ed. Prentice Hall, Upper
Saddle River, NJ.

Theodoridis, S., Koutroumbas, K., 2005. Pattern Recognition, third ed. Academic
Press, New York, NY. Chapters 2–4.

Vahalia, U., 1996. UNIX Internals – The New Frontiers. Prentice Hall, Inc., Upper
Saddle River, NJ.

Vongsathorn, P., Carson, S., 1990. A system for adaptive disk rearrangement.
Software Practice and Experience 20 (3), 225–242.

Worthington, B.L., Ganger, G.R., Patt, Y.N. 1994. Scheduling algorithms for modern
disk drives. In: Proceedings of the 1994 ACM SIGMETRICS Conference, Nashville,
TN, pp. 241–251.

http://www.cs.rpi.edu/~chrisc/COURSES/CSCI-4250/SPRING-2004/slides/cpu.pdf
http://www.cs.rpi.edu/~chrisc/COURSES/CSCI-4250/SPRING-2004/slides/cpu.pdf
http://www.coker.com.au/bonnie++/
http://www.coker.com.au/bonnie++/
http://www.hpl.hp.com/techreports/96
http://www.cs.rice.edu/ssiyer/r/antsched/antsched/
http://www.cs.rice.edu/ssiyer/r/antsched/antsched/
http://www.kerneltraffic.org
http://www.lwn.net

	Adaptive disk scheduling with Workload-dependent Anticipation Intervalsworkload-dependent anticipation intervals
	Introduction
	Disk-scheduling in the Linux kernel
	TheWAS The WAS adaptive anticipation approach
	Initialization aspects of WAS
	WAS foundation elements
	The Classifier classifier element
	The Classification classification subsystem
	Ascertaining the choice of the APFs
	The designation subsystem

	Experimental evaluation
	Methodology
	Evaluation metrics
	Experimental results using diverse workloads
	Disabling the prefetch mechanism of the file-system
	WAS operating on slower hardware
	Discussion of results and overheads

	Related work
	Conclusions and future work
	Acknowledgement
	References

