
1

Live VM Migration under Time-Constraints in
Share-Nothing IaaS-Clouds

Konstantinos Tsakalozos, Vasilis Verroios, Mema Roussopoulos, and Alex Delis

Abstract—Live VM migration helps attain both cloud-wide load balancing and operational consolidation while the migrating VMs
remain accessible to users. To avoid periods of high-load for the involved resources, IaaS-cloud operators assign specific time windows
for such migrations to occur in an orderly manner. Moreover, providers typically rely on share-nothing architectures to attain scalability.
In this paper, we focus on the real-time scheduling of live VM migrations in large share-nothing IaaS clouds, such that migrations are
completed on time and without adversely affecting agreed-upon SLAs. We propose a scalable, distributed network of brokers that
oversees the progress of all on-going migration operations within the context of a provider. Brokers make use of an underlying special
purpose file system, termed MigrateFS, that is capable of both replicating and keeping in sync virtual disks while the hypervisor
live-migrates VMs (i.e., RAM and CPU state). By limiting the resources consumed during migration, brokers implement policies to
reduce SLA violations while seeking to complete all migration tasks on time. We evaluate two such policies, one based on task
prioritization and a second that considers the financial implications set by migration deadline requirements. Using our MigrateFS
prototype operating on a real cloud, we demonstrate the feasibility of performing migrations within time windows. By simulating large
clouds, we assess the effectiveness of our proposed broker policies in a share–nothing configuration; we also demonstrate that our
approach stresses 24% less an already saturated network if compared to an unsupervised set up.

Index Terms—Distributed Systems, Cloud Computing, IaaS Clouds, Virtual Machine Migration

F

1 INTRODUCTION

Large IaaS cloud providers offer high quality services by
constantly adjusting resource usage and balancing the load
in their infrastructure [1], [2]. Since IaaS providers predom-
inantly offer virtual machines (VMs), load-balancing is usu-
ally achieved through VM migration, i.e., transferring a VM
from one physical machine (PM) to another. VM movement
helps offload congested physical nodes, can enhance the
utilization of the underlying resources, and can ultimately
achieve an improvement in the quality of provided services.

In this paper, we focus on live VM migrations for IaaS
cloud providers that rely on a share-nothing infrastruc-
ture. In a share-nothing infrastructure, PMs use their re-
sources (e.g., memory, disk storage) independently, instead
of accessing common resources via synchronization layers
(e.g., common storage layer). The main advantage of share-
nothing infrastructures is scalability, as less synchronization
means fewer bottlenecks (more in Section 2).

A live VM migration is performed while the migrating
VM remains on–line and involves a short downtime hardly
noticeable by users interacting with the VM [3]–[5]. Practi-
cally, in a share-nothing infrastructure, a live VM migration
requires that a virtual disk on the order of multiple GBytes
be transferred from the source to target PM (used for hosting
the VM), while the VM remains fully accessible to its users.

Furthermore, VM migrations should not coincide with
high-load periods for the involved VMs and network re-
sources. To this end, IaaS-cloud providers rely on usage

• Konstantinos Tsakalozos is with Canonical Ltd, London, SE1 0SU, UK.
E-mail: konstantinos.tsakalozos@canonical.com

• Vasilis Verroios is with Stanford University, Stanford, CA 94305-9040.
E-mail: verroios@stanford.edu

• Mema Roussopoulos and Alex Delis are with the University of Athens,
Athens, GR15703, Greece.
E-mail: {mema, ad}@di.uoa.gr

statistics to decide upon a time window for each migration
to take place. Failing to complete a migration within the
time window will most likely degrade the QoS experienced
by the affected users and may lead to a number of Service
Level Agreement (SLA) violations.

The problem we study in this paper, is the real–time
scheduling of live VM migration tasks in share-nothing
IaaS-clouds. Given a new PM host and a time window for
each VM migration (decided by a cloud reallocation policy),
a real–time scheduling mechanism must:

• control the resources allocated to each migration task,
based on the QoS degradation and the SLA violations
that any affected VM may experience. For example,
the network bandwidth consumed by a migration task
can lead to an SLA violation for a VM hosted on
the migration’s target PM: an efficient scheduler must
adjust the network resources allocated to the migration
task, to avoid such SLA violations.

• limit the migration side-effects experienced by the users
of a migrating VM. Ideally, there should be no restric-
tions on the usage of a migrating VM. However, letting
a migrating VM constantly write on blocks that need
to be re-transferred to the target PM, can extend the
migration’s duration beyond its assigned time window.
To prevent a migration from extending beyond its time
window, a real-time scheduler may have to limit the
VMś write rate. An efficient scheduler should take into
account the tradeoff between side-effects and the migra-
tion’s duration and be as non-interventional as possible
while still preventing a migration from running beyond
its window.

• prioritize concurrent migrations and impose limitations
that minimize the overall cost, taking into account
potential SLA violations and implications on the QoS.

Prior work on on-demand virtual disk synchronization [6]–

2

[9] focused on synchronizing individual virtual disks. In
contrast, we focus on the multiple simultaneous migrations
setting, as discussed above, and we leverage results from
prior work to form the foundation of our approach.

Our approach consists of MigrateFS, a low-level special-
purpose file system, and higher-level resource allocation
policies, designed to accommodate large numbers of simul-
taneous migration tasks.

The MigrateFS file system runs on every PM: instances
of MigrateFS communicate over the network and jointly
control the transfer of a virtual disk image between any two
PMs. MigrateFS continuously adjusts the consumption of
both VM and migration resources based on hints provided
by performance monitoring tools [10], [11]. In particular, Mi-
grateFS tunes two rates during VM–disk shipment: a) disk
throughput available to the VM’s internal processes that
access the virtual disks during migration, and b) network
throughput used for the purposes of migration. In this way,
MigrateFS is able to accurately estimate the completion time
of a migration. Estimates also allow MigrateFS to delay a
migration (while still completing it before the end of the
assigned time window) when the cloud experiences heavy
workloads.

Resource allocation policies are implemented by a co-
ordinating Migrations Scheduler and a distributed network
of Brokers. Essentially, resource allocation policies allow for
prioritization of migration tasks while taking into account
the network status so that “hot” physical network links are
not further stressed by virtual disk shipments. Brokers apply
such policies and drive the operation of MigrateFS instances
by indicating how the network and disk throughput must
be restricted, in each case.

Our evaluation, based on both a MigrateFS prototype
and simulation of large infrastructures, shows up to 24%
less stress on saturated PMs during migration. The main
cost in our approach comes from the need to keep track of
I/O operations. In our evaluation, we show how MigrateFS
is outperformed by local file systems, yet it is more efficient
than network storage solutions that enable VM migration.

For large cloud providers, there are cases where the
SLAs of different VMs vary widely: violating the SLA of
one VM will impose a financial cost that may be orders
of magnitude greater if compared to the SLA violation
of another VM. For such cases, we propose a simplified,
yet general, model that quantifies the cost different SLA
violations entail. This model inspires a cost-driven resource
allocation policy that runs across the distributed network of
Brokers assisting MigrateFS to deliver substantial gains: our
experiments indicate a 2x–improvement over the baseline
approach that is unaware of the differences among SLAs.

The rest of the paper is organized as follows: I) we
provide an overview of VM migration in IaaS clouds: we
discuss different architectures with respect to VM migration
and how our approach fits in this space (Section 2), II) we
suggest a comprehensive solution based on brokering of
migration resources which is empowered by our MigrateFS;
the latter offers the means to control resource consumption
(Sections 3 and 4), III) we propose two resource allocation
policies based on migration task prioritization and cost-
based SLA compliance (Section 5), IV) we demonstrate
through prototype and simulation experimentation that our
MigrateFS-based approach offers significant gains in ship-
ping VMs with diverse SLAs in real-time (Section 6).

2 LIVE VM MIGRATION – MOTIVATION

We first discuss suspend-resume and live VM migration
and then we offer an overview of how different cloud
architectures support VM migration. In the end of this
section, we describe how the proposed approach addresses
the high-level challenges in supporting large-scale live VM
migration.

2.1 VM Migration

Virtualization enables cloud administrators to migrate VMs
across the physical nodes and control the resources the
clients of the cloud provider can access. VM migration is
a key operation in current cloud installations as it assists
administrative tasks (e.g., remove VMs from a failing phys-
ical machine) and serves high level resource management
policies such as load balancing (i.e., moving VMs of stressed
physical nodes to under-loaded ones).

There are two alternatives to VM migration: suspend-
resume and live migration. When the suspend-resume
method is used, the operation of the VM is stopped (sus-
pended), the contents of the VM’s RAM, the virtual disks
and the virtual devices’ state are copied from the source
physical machine to the target and, finally, the operation
of the VM is resumed on the target physical node. The
main drawback in this VM migration method is the VM
downtime; the downtime period is typically dominated by
the time to copy the virtual disks across physical nodes.

Live migration reduces downtime to a degree that is
hardly noticeable to humans interacting with the VM. Dur-
ing live migration, RAM contents are copied progressively
from the source PM to the target while the VM remains
online. In a single short step, the VM’s operation is sus-
pended, any remaining dirty RAM pages along with the
virtual devices’ state are copied to the target PM, and the
VM’s operation is resumed. This short downtime is on
the order of milliseconds [3]. Live migration is currently a
task undertaken by VM Monitors (VMMs) [11]–[13] alone.
Therefore, the two hosting physical systems should be set
up with the same VMM, trusting each other and, most
importantly, sharing the same persistence layer (storage) in
which the virtual disks of the VMs reside. In other words,
the architecture and setup of the IaaS-cloud largely affect
the ability to support live migration.

Next, we discuss in more detail the shared-storage-layer
and shared-nothing architectures with respect to live VM
migration:

Dedicated Shared Storage Systems: Current IaaS-clouds
that support live VM migration often use dedicated shared
storage systems. Such storage solutions offer enhanced relia-
bility and availability features through RAID arrays and hot
swappable disks. However, having PMs clustered around
powerful storage pools has the following drawbacks:

1) As storage nodes are used to serve multiple VMs they
become a single point of failure.

2) The storage nodes may become a performance bottle-
neck as they may not be able to effectively (in terms of
disk and network bandwidth) handle high load peaks.

3) To address the high performance and reliability require-
ments of the storage nodes, non-commodity hardware
must be utilized. This, however, is not aligned with

3

the use of commodity hardware across the cloud that
allows large cloud providers to be cost-efficient.

4) Storage nodes only partially solve the problem of load
balancing. Load can only be exchanged amongst PMs
accessing the same storage node. Consequently, this
approach does not scale to the number of PMs found
in typical large data centers.

Distributed File Systems over a Share-Nothing Archirec-
ture: Clouds will typically have to follow a share-nothing
architecture and exploit commodity hardware so as to scale
in a cost-effective way. To tackle inefficiencies of the dedi-
cated shared storage approach, cloud providers can employ
distributed file systems such as GFS [14] and GlusterFS [15].
Such file systems allow for several PMs to collectively form a
persistence layer, while at the same time enhance resistance
to node failures through data replication. Yet, scalability
issues are also present here. In addition, highly scalable file
systems are forced to relax their semantics (e.g., offer non-
POSIX API) and thus are inappropriate for hosting VMs.
On-demand Virtual Disk Synchronization over a Share-
Nothing Archirecture: The requirements driving the design
decisions of distributed file systems differ from those of a
file system targeting only live migration. A general purpose
distributed file system aims to present the same view of
all files to all PMs at all times. Instead, a special-purpose
file system built solely to assist migration, needs to keep a
virtual disk synchronized only during the respective VM’s
migration [6]–[8].

2.2 MigrateFS over a Share-Nothing Archirecture
We conclude this section by briefly discussing how the
approach we propose, addresses the challenges for live VM
migration on large-scale cloud infrastructures.

Essentially, attaining load balancing and resource consol-
idation in a large-scale IaaS cloud is a challenging task due
to mainly two factors: a) the size of the physical substrate
calls for solutions that scale horizontally in an cost–effective
manner and b) the complexity of task orchestration can
effectively render other known solutions impractical [8],
[16]. Our approach builds on the success of on-demand
disk synchronization [7], as this migration solution fits the
scalability requirements of large clouds. MigrateFS is a
special purpose file system that empowers our on-demand
disk synchronization and so, it enables live migration be-
tween any pair of PMs in a cloud infrastructure; this design
characteristic allows clouds to be based on a share-nothing
architecture. Through our own MigrateFS implementation,
we offer key performance tuning mechanisms that can be
used to implement high level, migration-oriented, resource
allocation policies.

To accommodate the high level goal of load balancing
and timely migrations, MigrateFS can monitor and limit
resource consumption. In effect, our approach works to-
wards real-time scheduling of migrations in IaaS-clouds by
respecting deadlines on copying disk images and limiting
the impact on the network and VM operation. Brokers sched-
ule migrations under deadlines and try to ameliorate any
resource shortages that may appear. The resource consump-
tion policies enforced by the brokers reduce SLA violation.
In addition, as migration tasks are on-going, resource con-
sumption is continuously tuned so as both the deadlines
and the VM SLAs are met.

The decisions regarding which VMs should be migrated
and the time window for each migration, are taken at a level
where a view of the entire physical infrastructure -and its
performance- is available. We consider such decisions as
input to MigrateFS and we do not discuss them in detail,
in the rest of the paper.

3 OVERVIEW OF OUR APPROACH

Each migration task is defined by: a) the VM to be mi-
grated, b) the source and target PMs involved, and c) the
time window within which the migration has to complete.
Policies [1], [2], [17] that help determine whether, when,
and where a VM should migrate, typically consider the
average and current load in both PMs and VMs, projections
on future VM resource consumption, and the SLAs to be
satisfied.

In most cases, the migration of a VM is scheduled in
low activity periods for all involved VMs. As a toy example,
consider a migrating VM va that migrates from a source
PM that also hosts a second VM vb to a target PM that
also hosts a third VM vc. In addition, consider that all three
VMs interact with thousands of users per minute, however,
these users are located in different geographical areas: most
users of va are located in California, most users of vb are
located in Europe, and most users of vc are located in China.
Because of the time difference, we can expect that the low
activity period for the three VMs will be a window of a few
hours or minutes. In practice the number of involved VMs
may be much larger. Thus, the low activity window may
be extremely limited and a migration extending beyond this
window may critically affect the QoS for the involved VMs.

Our approach assumes the existence of a queue where
all migration tasks arrive. We aim to manage resources in
a way that all migrations complete within their respective
time-constraints while not failing the offered SLAs.

Figure 1 shows the key components of an IaaS-cloud
that our approach deploys. At the top of Figure 1 lays the
Cloud Middleware such as OpenStack or OpenNebula [18],
[19]. Migration Tasks produced by a Load Balancing Policy [1],
[2], [17] in the context of the middleware, are dispatched
to the underlying physical infrastructure. In Figure 1, there
are three physical systems, each one featuring its own
local physical disk and a VM hypervisor [12], [13]. The
VMs hosted on each system place their data on virtual
disks stored as files on physical disks. All physical systems
communicate through a networking layer represented as a
switch/router at the bottom of Figure 1.

Our approach entails three components: the Migrations
Scheduler, the Brokers, and a special-purpose file system
MigrateFS. MigrateFS offers resource management facilities
-denoted as Disk and Network Throughput Control Points in
Figure 1- exploited by the Brokers during VM migration.
Next, we describe the three components in more detail.

3.1 The Migrations Scheduler and its Brokers
The Migrations Scheduler takes as input a number of mi-
gration tasks along with their respective time-constraints.
Tasks can be prioritized based on the cost of violating
their time-constraints. The distributed network of Brokers
oversees the resource consumption for the transfer of the
VMs’ disk images. A low cost communication policy is

4

Migrations SchedulerLoad Balancing Policy

VM VM

Hypervisor Broker

VM VM VM

Hypervisor Broker

VM VM VM

Hypervisor Broker

MigrateFS MigrateFS

Virtual

Disks

MigrateFS

Virtual

Disks

Virtual

Disks

Network Throughput Control Point

Disk Throughput Control Point

Migration Tasks
Cloud Middleware

.........

.........

Physical DiskPhysical DiskPhysical Disk

Switch/Router

Fig. 1. High level view of our approach.

used for the interaction between Brokers so as to ensure the
scalability of our approach. As soon as the virtual disks are
transferred across the PMs, the Migrations Scheduler contacts
the hypervisor and initiates the last stage of the migration;
which seamlessly passes the control for the migrated VM to
the new PM host. The synergy of the Migrations Scheduler
and the Brokers ensures the timely movement of all VMs
pending action.

To honor the migration time constraints, while respect-
ing the SLAs offered, the Brokers have to manage two types
of resources. First, the network bandwidth consumed for
transferring virtual disk images must not hamper the per-
formance of other VMs. Second, the virtual disk I/O band-
width (available to the migrating VM) must be limited since
this disk I/O translates to dirty disk pages that ultimately
have to be (re-)transferred over the network. The usage
of both resources (disk and network) can be constrained
through the facilities offered by MigrateFS. The consump-
tion of these two resources is continuously adjusted so that
no SLAs fail in the dynamic cloud environment where the
migrations take place (details in Section 5).

3.2 MigrateFS and Resource Consumption Restrictions

Constraining resource consumption, so as to comply with
time restrictions on migration tasks, has to be assisted
by low-level cloud facilities. Such facilities must function
outside the VMs as the abstractions enforced by the cloud,
hide the VM’s internal operations from the cloud adminis-
tration. In our approach, migration is assisted by a special
purpose file system, MigrateFS, that traps all I/O operations
targeting the virtual disk images of the migrating VMs.
MigrateFS introduces a layer between the VM Monitor
(VMM)/hypervisor and the physical device where the VM’s
virtual disks are stored (Figure 1). Instances of MigrateFS
collaborate in moving VM disk images without interrupting
the operation of the VMs. During migration, blocks of the
migrating VM’s disk images are copied to the target PM.
When all blocks are transferred, the two copies of virtual
disk images -in both the source and target PMs- are kept
synchronized while the VM hypervisor completes the mi-
gration task by moving RAM contents and devices’ states. It

is in the context of MigrateFS, where the bandwidth of disk
and network, are placed under restrictions.
• Disk bandwidth: As MigrateFS transfers blocks from the
source to the target PM, the still on-line VM may write
over already transferred blocks. These dirty blocks need
to be transferred again. If the rate at which virtual disk
blocks get dirty is higher than the rate blocks are transferred
through the network, the migration task will not finish.
Yet, the migration task must come to its completion under
certain time constraints. To this end, an authorized Broker
may contact MigrateFS and limit the rate at which the VM
writes to its virtual disk. The decision on when and if such
an I/O rate must be limited is based on the migration time
constraints and the current network and disk I/O rates
reported by MigrateFS (details in Section 5).
• Network bandwidth: We need to ensure that no migration
task will deplete the network resources of the IaaS-cloud.
MigrateFS enables the Brokers to limit the network band-
width consumed during migration. In this way, saturated
network links, shared among migrating and non-migrating
VMs, do not cause network SLA failures. By effectively
limiting the network bandwidth, we are able to distribute
resource consumption throughout the entire migration’s
time window (details in Section 5).

4 OPERATIONAL ASPECTS OF MigrateFS
The I/O operations trapped by the MigrateFS layer can
be replayed on remote PMs so as to create and maintain
synchronized copies of virtual disk images. To this end, an
instance of MigrateFS has to be installed on each PM that
plays the role of either the source or target hosting node in
a migration.

Each MigrateFS instance listens on a port for connections
from either three sources: a) the Migrations Scheduler request-
ing the transfer of a VM, b) another MigrateFS instance
sending data blocks and remotely replaying I/O operations,
or c) a Broker overseeing the resource consumption of a
migration task. MigrateFS presents an interface through
which a Broker can query the progress of a migration task
and set limits on the disk and network bandwidth. Table 1
summarizes the functionality MigrateFS offers for handling
and monitoring a migration task.

TABLE 1
MigrateFS network API for a VM migration task

Operation Input/Output
Start a Migration In: Target PM, disk image
Set Network Limit In: Bandwidth in KB/sec

Set Disk Limit In: Bandwidth in KB/sec
Query Progress In: Selectively query the Network or Disk rate

Out: The respective bandwidth in KB/sec
Query Completion Out: True or False

As we show in Figure 2, MigrateFS is a user-space file
system functioning as an intermediate between the Linux
kernel and any underlying file system on the physical disk.
MigrateFS is thus mounted over an already existing file
system and mirrors its contents. The underlying file system
is used to store virtual disk images. When an I/O request is
issued by a process within a VM (I/O op. in Figure 2) it is
forwarded through the virtual file system (VFS) API of the
hypervisor to the file system mounted on the path where

5

glibc

libfuse

MigrateFS

ext3

NFS

FUSE

........ VFS

VM

glibc

libfuse

ext3

NFS

........

FUSE

U
s
e
r S

p
a
c
e

K
e
rn

e
l S

p
a
c
eVFS

U
s
e
r

S
p
a
c
e

K
e
rn

e
l
S

p
a
c
e

Disk Disk

Physical Node #2Physical Node #1

MigrateFS
I/
O

 O
p
e
r.

Network
Connection

Fig. 2. Routing I/O calls through the layers of our approach.

the virtual disks are stored. The response to the I/O call is
routed from the underlying file system through MigrateFS
and the hypervisor to the VM. Our decision to mirror an
already existing path in the physical disk storage greatly
reduces the effort to set up MigrateFS on an already oper-
ational IaaS-cloud. An in-kernel file system implementation
might yield higher performance but does so at the expense
of a more intrusive and less deployable approach.

The main operation of MigrateFS is to synchronize a
virtual disk image across any two PMs. To initiate a VM
migration, the Migrations Scheduler has to contact the Mi-
grateFS instance of the source PM where the VM is currently
hosted and specify: a) the hostname of the target PM,
b) the port on which the MigrateFS instance of the target
PM listens, and c) the filenames of the disk images of the
migrating VM. As soon as the request for a VM migration
is received, the MigrateFS instance deployed on the source
PM contacts the MigrateFS instance on the target and starts
sending blocks of the virtual disk image over the network.
Synchronizing a virtual disk across two PMs is a three-phase
process:

• Phase 1: Iterate once over all blocks of the virtual disk
and send them to the target PM. As the VM remains
on-line, in-VM processes may write over a portion of
the blocks already transferred; these blocks are marked
as dirty.

• Phase 2: Dirty blocks are transferred through the net-
work. Here, the operating VM may continue to alter the
content of blocks already transferred, thus rendering
them dirty again. Sending blocks stops (phase 2 ends)
as soon as all dirty blocks are transferred. For this to
happen, the rate at which blocks get dirty must be less
than the rate at which blocks are transferred through
the network.

• Phase 3: During this phase, the virtual disks remain
synchronized across the target and source PMs. Each
write operation performed on the virtual disk residing
in the source PM is replayed on the one residing on the
target PM.

The purpose of this 3-phase copy of the virtual disks is to
ameliorate the performance penalties of migration. The VM

can operate with no restrictions during the first and second
phases. In these two phases, the disk addresses of dirty
blocks are kept in a thread-safe array protected through
proper locking mechanisms. Dirty blocks are cleaned out
during the second phase by sending them over the network.
To reduce the high network latency penalty, the transfer
block size (512 KB) is larger than the block size used by
the local disk file systems.

In phase 3, we have no dirty blocks. Each write operation
is performed in both replicas of the virtual disk. During this
phase, there is a significant impact on the I/O performance
of the VM due to the network latency. Here, the block
size is equal to the size of the I/O request. We expect the
third phase to be short. During this phase, the hypervisor
completes the live migration task by transferring the VM’s
memory and devices’ state. The details of moving the VM’s
RAM and devices’ state from the source to the target PM
while minimizing the downtime are hypervisor-specific.
With respect to the file system, the hypervisor sends a sync
I/O system call as the last I/O operation right before the
VM starts operating in the target PM. When the sync call is
received, MigrateFS flushes all buffers (network and disk)
so that the VM on the target PM will find the virtual disk in
a consistent state.

The Broker overseeing the migration process tunes the
consumed network and disk resources through MigrateFS.
In the following sections we show how the network of Brokers
collectively coordinates action towards attending outstand-
ing migrations and thus, adjusts the cloud load in a timely
fashion.

5 VM-MIGRATION RESOURCE MANAGEMENT

Management of cloud resources during migrations ensures
that VM movements are fulfilled within the specified time-
constraints. Efficient resource handling should impose min-
imal overheads so that it can be applied to large, share-
nothing clouds. In addition, resource handling should not
impose special hardware requirements as the scalability
of large infrastructures is based on the use of commodity
hardware. We achieve the above through the distributed
network of Brokers that interact using a low communication
cost policy.

Pending VM migrations -produced by VM placement
policies [1], [2], [17]- are delivered to the Migrations Sched-
uler. As soon as the latter decides that a migration task
should start, it instantiates a Broker on the migration’s source
PM; the task of resource handling in shipping the VM is
assigned to that Broker. The Broker aims at keeping the rate
at which blocks are moved (Net Rate) from the source to
the target PM greater than the rate at which blocks get
dirty (Dirty Rate), so that the virtual disk network copy
completes within the designated time frame (finish time)
and still leaves enough time (VMM time) for the hypervisor
to successfully complete the migration. In other words,
the Broker acts so that Expression 1 remains true for the
designated migration task:

Disk size
(Net Rate−Dirty Rate)

+ VMM time ≤ finish time (1)

Both the Dirty Rate and the Net Rate are periodically
queried from MigrateFS. Increasing the querying frequency

6

comes at the expense of higher overhead in the CPU, mem-
ory and network resources.

5.1 Priority-Based Resource Brokers

The network of priority-based Brokers requires two types of
cloud operational information: 1) Real-time notification of
saturated network switches (hot-spots): such notifications
can be provided by cloud-monitoring tools [10] that detect
stressed network links of the fixed (often tree-based) phys-
ical network topology [20]. 2) The path of VM shipment: it
is straightforward to compute such paths in a fixed network
topology with static routing rules. The Migrations Scheduler
computes migration paths and marks path sections shared
among multiple migration tasks.

The Migrations Scheduler provides the VM shipment path
upon the Broker’s instantiation. The Broker registers for noti-
fications on saturated switches to the corresponding cloud
monitoring tools. As soon as the Broker projects that the des-
ignated migration time-constraint will be violated, it needs
to request other Brokers to release (if possible) some of the
network bandwidth they occupy1. As the Migrations Sched-
uler is aware of all migrating VM disks sharing network
paths any Broker can exploit this information to notify only
those Brokers with which it shares saturated network links.
Since Brokers exchange messages directly with each other in
a peer-to-peer fashion there is no single message exchange
hub. The distributed nature of Broker communication allows
our approach to scale to the size of large cloud installations.

The cloud administration is allowed to specify which
of the migrating tasks are important. Brokers responsible
for such tasks should be the first to a) ignore network
congestion and b) signal other Brokers to temporarily sus-
pend their migration tasks whenever they face the danger
of violating the migration’s time frame. There are two
thresholds, termed danger and warning, that are used in task
prioritization. Both thresholds are percentages expressing
the ratio between the time the migration has to be finished
(timetodeadline) and the projected time the migration task
will actually last (timeleft). Both threshold percentages are
expected to be greater than 100% and the danger percentage
to be less than the warning percentage as we first get a warn-
ing and then we face the danger of violating a constraint.

The operation of a Broker is described in Algs 1 and 2.
Alg. 1 shows when the Broker chooses to limit the disk and
network resources in the context of a single migration task,
while Alg. 2 shows how this network limit is set. Network
bandwidth consumption due to migration may cause other
VMs to fail to uphold their SLAs. To address failing network
SLAs, we should limit the network resources used by the
migration process. When limiting the disk transfer rate,
we ensure that SLAs will not fail due to the resources
consumed for migration, but we do not commit to any
migration time frame. Constraints on the migration time –
given the available network bandwidth does not decrease–
are honored when we limit the disk bandwidth available
to the processes inside the VM. Limiting both transfer and
disk rates enables us to offer Deadline Scheduling for the
migration. Deadline Scheduling can be achieved even if we
unbound the network transfer usage. In this case, we take

1. Network congestion may not be caused by Brokers. Nevertheless,
Brokers can only release resources they alone reserve.

the risk of failing network SLAs, yet, we potentially reduce
the migration time.

Alg. 1 estimates the timeleft and the timetodeadline (lines
3 and 4) based on the disk blocks (task.diskleft) and two rates
(diskrate and netrate) queried through the Query Progress call
of MigrateFS (Table 1). Should a warning of no compliance
with a designated time-constraint be received (line 9), we
limit the available disk bandwidth. setDiskLimit uses Ineq. 1
to compute the Dirty Rate based on the current network
utilization and remaining disk blocks. In line 6, we assess
the danger of failing to migrate the VM on time and if
so, we limit the used network rate (setNetworkLimit call in
line 7). Similarly, in line 9, we get a warning of violating
a time constraint if the ratio of timeleft to timetodeadline is
greater than the warning. The higher the values of the danger
and warning parameters, the sooner our algorithm will take
action to secure the time constraints.

Algorithm 1 PriorityBasedMigrationsManagement
Input: task: The migration operation
period: Time between monitoring iterations
danger: Threshold indicating high chances of loosing the
migration deadline
warning: Threshold indicating miss of the migration dead-
line

1: while (task.completed == false) do
2: sleep(period);
3: timeleft := computeTimeLeft(task.diskleft, task.netrate,

task.diskrate);
4: timetodeadline := task.deadline - now;
5: backoff := shouldBackOff (task.source, task.target);
6: if ((timetodeadline/timeleft ≥ danger)

and (backoff == true)) then
7: setNetworkLimit(backoff, task);
8: end if
9: if timetodeadline/timeleft ≤ warning then

10: setDiskLimit(task);
11: end if
12: end while

Limiting the network bandwidth is not based only on
the danger threshold. We also limit the network usage rate
if we detect a network contention, as indicated by the
backoff flag. This flag is set to true under two conditions:
a) the migration process causes a network SLA failure of a
running VM, b) the network bandwidth consumed should
be given to another migration task that is about to violate
its time constraint. The shouldBackOff function detects sat-
urated network links on the path between the source and
target hosting PMs.

Alg. 2 depicts how this network limit is set. The Bro-
ker takes into account the current network rate available
through the input parameter task, the backoff flag and the
number of consecutive periods with no backoff request
indicating no network congestion. Inspired by TCP, our ap-
proach reduces the limit of the network bandwidth usage by
dividing the current network rate by two and increases the
network limit linearly. Two factors influence our decision:
the last decision to increase or decrease the network limit
(outer if-then-else statement), and any request for releasing
bandwidth made through the backoff flag. If we had limited
the network usage and we still observe network congestion

7

(if statement in line 2), we use the task.netrate divided by
two as the new limit. If we had previously reduced the
network rate and we now have no back off request, we
mark the current network rate as one that causes no network
congestion (line 5). This mark, stored in task.lastOKnetlimit,
is used in line 10 where we have previously increased our
network limit and we just got a back off request. Assuming
that our migration task caused the network congestion,
we quickly revert back to a network rate that did not
cause any congestion in a previous period. Further backoff
requests will cause lowering even more the network limit.
The else clause of lines 11 to 18 handles the case where
we continuously increase our network limit. We raise the
network limit linearly, yet, there might be the case that a lot
of bandwidth has become unexpectedly available due to an
event that we are not informed of (e.g., another migration
task has just finished). In this case, we need to probe the
network availability and quickly take advantage of the extra
bandwidth (lines 13 to 15).

Algorithm 2 setNetworkLimit
Input: task: The migration task
backoff: True, if we are to reduce the network bandwidth,
False otherwise
n: # of consecutive periods with no backoff request indicating
no network contention
C: Step of network rate increase, in MB
Output: The network limit

1: if task.lastAction == “reduce bandwidth” then
2: if backoff == true then
3: return task.netrate / 2;
4: else
5: task.lastOKnetlimit := op.netrate
6: return task.netrate;
7: end if
8: else if task.lastAction == “increase bandwidth” then
9: if backoff == true then

10: return task.lastOKnetlimit;
11: else
12: task.lastOKnetlimit := task.netrate
13: if consecutivePeriodsWithoutBackOff(task,backoff) > n

then
14: return +∞ /*no network limit*/
15: else
16: return task.netrate + C
17: end if
18: end if
19: end if

Alg. 2 implements a policy that requires no communica-
tion with the other consumers of the network bandwidth.
Priority is given to VMs failing their SLAs and to migration
tasks in danger of violating their time constraints. In this
context, we opt for a low-cost communication policy among
Brokers as we target large cloud infrastructures. Brokers need
only to announce the danger of violating the time constraint
of a VM migration to a well specified subset of other Brokers
so that the shouldBackOff call yields valid back-off requests.

5.2 Cost-Driven Brokers
Cloud providers often have to deal with very diverse SLAs.
As a consequence, the eventual cost due to an SLA violation

considerably varies depending on the VM type and/or the
customer. Imposing the same network or disk rate restric-
tions on diverse VMs may significantly affect the quality of
services delivered. For instance, consider a VM supporting
hundreds of database transactions per minute. The financial
cost incurred when restricting the dirty page production rate
of such a VM (as defined in the respective SLA) can be much
greater than the cost of limiting the bandwidth of a group of
(other) VMs. Similarly, violated time constraints of different
migrations, incur different end results.

In our cost-driven policy, the network of Brokers is en-
hanced to take into account the financial penalty inflicted
by the resource restriction decisions. Cost-driven Brokers aim
at cloud providers that can largely benefit from fine-tuning
the migrations’ disk/network-rate restrictions, based on the
different SLAs. To this end, we use a simple model (Eqn. 2)
applicable to any type of SLA and cloud infrastructure. The
factors involved in our cost model are similar to the ones
involved in the model used in papers [21] and [22].

Eqn. 2 captures the costs involved in a migration task:
a) the impact on the QoS due to slowing down the “dirty”
data rate of the migrating VM (DiskCost), b) the overhead
of the migration traffic to the network (NetCost), and c) the
consequences of a possible violation of the migration’s time-
constraint (MissRisk).

Cost = DiskCost + NetCost + MissRisk (2)

Our rationale for the three cost factors is as follows:
1) SLA violations occur when limiting the disk band-

width available to the migrating VM (disklimit)
below the requested bandwidth (requestedrate). We
model the DiskCost to be proportional to the ratio
requestedrate/disklimit.

2) The more network bandwidth a migration consumes,
the greater the NetCost should be.

3) The probability of missing a migration deadline in-
creases rapidly as the projected time left (timeleft)
becomes greater than the time-to-deadline (time-
todeadline). Thus, MissRisk is based on the ratio
timetodeadline/timeleft.

DiskCost
We model the DiskCost as a polynomial function of the ratio
requestedrate/disklimit:

DiskCost(disklimit) = Cdisk × (
requestedrate

disklimit
)q, q ≥ 0 (3)

In most cases, a linear function, i.e., using an exponent
q = 1, is sufficient. (In rare cases where the service offered
by the migrating VM is very sensitive to limiting the avail-
able disk bandwidth, a q greater than 1 should be selected.)
The constant Cdisk normalizes the cost in financial terms.

NetCost
The NetCost is modelled as a polynomial function of the
network bandwidth a migration consumes (netlimit):

NetCost(netlimit) = Cnet × netlimitp, p ≥ 1 (4)

As in the DiskCost, a linear function (p = 1) is sufficient
in most cases. The normalizing constant Cnet depends on
the network SLA violations due to migration traffic. In
practice, Cnet can be proportional to the “saturation” of the

8

switches involved in the migration; where the saturation of a
switch reflects how much of the overall switch’s bandwidth
is consumed.

MissRisk

The MissRisk depends on how critical the migration’s dead-
line is and how likely it is to miss that deadline. When
the timetodeadline is much higher than the timeleft, the
MissRisk should approach zero. On the other hand, when
timetodeadline is much lower than the timeleft, the MissRisk
should approach the cost incurred by the (inevitable) dead-
line miss. Hence, we model the MissRisk as:

MissRisk(timeleft) = Crisk × e
− timetodeadline

timeleft (5)

Note that as

timetodeadline
timeleft

→∞, e
− timetodeadline

timeleft → 0

and as

timetodeadline
timeleft

→ 0, e
− timetodeadline

timeleft → 1

The constant Crisk expresses the consequences of the
deadline miss in financial terms. As discussed in Section 5.1,
the projected timeleft is a function of netlimit and disklimit.
That is, timeleft = task .diskleft/(netlimit− disklimit).

Minimize Total Cost Algorithm

Finding the netlimit and disklimit that minimize the total cost
in Eqn. 2 is an optimization problem. In fact, we need to find
the optimal netlimit and disklimit for each migration task
and the solution must be periodically adjusted to reflect
incidents like changing workloads and/or arrival/depar-
ture of customers. As the cost function of Eqn. 2 is convex,
we use the steepest descent numerical solution and more
specifically, the Projected Gradient Descent method. Such
a numerical method may pose a computational overhead
on the operation of the scheduler. However, the network
of Brokers allows us to distribute the computations across
all involved PMs, while using the selected cost formula
allows a fast convergence to the optimum. Our evaluation
shows that our approach does not hamper the scalability of
the infrastructure as the selected method requires less than
30 ms to converge on a Intel(R) Core(TM)2 Duo E8400 CPU
at 3.00 GHz.

Alg. 3 is the equivalent to Alg. 1 for the Cost-driven
Broker; in the context of a single migration task (task). Param-
eters Cnet, Cdisk, Crisk and p, q are computed periodically
at runtime (line 4) by cloud’s administration; taking into
account SLA failures, the scarcity of the resources consumed
during migration, and the impact of violating the migra-
tion’s time-constraint. Note that this estimation necessitates
the communication of the Broker at hand with the network
of Brokers and the Migrations Scheduler. In each period, the
Broker computes the netlimit and disklimit rates for task in
lines 5-7. In line 6, the netlimit and disklimit rates are re-
adjusted based on the gradient of the cost (∇Cost), until
they converge to the optimum values. Parameter η is the
step size for the Projected Gradient Descent method.

Algorithm 3 Cost–Driven Broker
Input: task: The migration operation
period: Time between monitoring iterations

1: while (task.completed == false) do
2: sleep(period);
3: timetodeadline := task.deadline - now;
4: (Cnet,Cdisk,Crisk, p, q) := EstimateCostImportance();
5: while notConverged do
6: (netlimit, disklimit) := Projection[(netlimit, disklimit)

– η ∗ ∇Cost(timetodeadline,Cnet,Cdisk,Crisk, p,q];
7: end while
8: end while

Proof on the Convexity
Here we provide the proof on the convexity of Eqn. 2. To
avoid clutter, we switch to a more compact notation:

• we use y instead of disklimit, x instead of netlimit, rr
for the requestedrate, ttd for timetodeadline, and dl for the
task.diskleft.

• we use D(y) instead of DiskCost(disklimit), N(x) in-
stead of NetCost(netlimit), and M(x, y) instead of
MissRisk(timeleft).

Hence, Eqn. 3, 4, and 5, become:

D(y) = Cdisk × (
rr

y
)q, q ≥ 0

N(x) = Cnet × xp, p ≥ 1

M(x,y) = Crisk × e
− ttd∗(x−y)

dl

Lemma 1. Functions N(x), D(y) and M(x, y) are convex for
x ≥ 0, y ≥ 0 when p ≥ 1, q ≥ 0.

PROOF. For each function, we examine its Hessian:(
∂2

∂x2
∂2

∂x ∂y

∂2

∂y ∂x
∂2

∂y2

)
The Hessian of N(x) is

H1 =

(
κp(p− 1)xp−2 0

0 0

)
where κ = Cnet. The leading principal minors of H1 are
κp(p−1)xp−2 and 0. Since κp(p−1)xp−2 ≥ 0 for x ≥ 0 and
p ≥ 1, H1 is positive semidefinite and N(x) is convex.

The Hessian of D(y) is

H2 =

(
λq(q + 1)y−q−2 0

0 0

)
where λ = Cdisk ∗ rr

q . The leading principal minors of H2

are λq(q + 1)y−q−2 and 0. Since λq(q + 1)y−q−2 ≥ 0 for
y ≥ 0 and q ≥ 0, H2 is positive semidefinite and D(y) is
convex.

The Hessian of M(x, y) is

H3 =

(
µξ2eξ(x−y) −µξ2eξ(x−y)

−µξ2eξ(x−y) µξ2eξ(x−y)

)
where µ = Crisk and ξ = − ttddl . The leading principal
minors of H3 are µξ2eξ(x−y) and 0. Since µξ2eξ(x−y) ≥ 0,
H3 is positive semidefinite and M(x, y) is convex.

9

Theorem 2. The cost function of Eqn. 2 is convex for x ≥ 0,
y ≥ 0 when p ≥ 1, q ≥ 0.

PROOF. The cost function of Eqn. 2 is the sum of three
convex functions based on Lemma 1. Thus, it is a convex
function as well.

6 EVALUATION

We evaluate our approach in two ways. First, we use the
MigrateFS prototype to quantify the overheads involved
in hosting VMs in our file system. For this, we use a
real cloud infrastructure setup in our lab using Xen 3.2-
1 [12] and OpenNebula [19]. The evaluation on real hardware
involving a limited number of nodes shows the feasibility
and performance of our approach (Section 6.1). Second, we
simulate large infrastructures and show the effectiveness of
combining MigrateFS with our resource management poli-
cies. Based the principles discussed in [23], we implemented
our own cloud simulator in Java using the proposed priority-
based and cost-driven management policies introduced in
Sections 5.1 and 5.2 and provide their evaluation in Sec-
tions 6.2 and 6.3 below. The simulation allows us to assess
the performance of an IaaS cloud given that our proposal is
used throughout the physical realm. The simulated scenar-
ios involve contemporary hardware under use cases only
enabled through our approach in handling live migration.
We set key parameter values following an extensive sensitiv-
ity analysis. Our simulation-driven experimentation shows
how clouds can handle the -potentially extreme- overhead
involved in infrastructure–wide load balancing.

6.1 MigrateFS Overheads

The MigrateFS prototype is implemented in C using
FUSE [24] and pthreads. As source and target hosting nodes
of migrating VMs we use two physical systems connected
with a 1 Gbps Ethernet switch. Each physical node is
equipped with 8 GB of RAM and an Intel(R) Xeon(R) CPU
X3220 at 2.40GHz. The VM disk images are stored in an ext3
file system.

File system benchmarking during normal operation – no
migration: Using the Bonnie++ [25] benchmark, we measure
the performance overhead introduced by the additional
layer of MigrateFS. The benchmark is executed within a
paravirtualized VM featuring 2 GB of RAM and a single
CPU core. We compare MigrateFS against three methods of
accessing the virtual disk:

• Local: This method routes I/O system calls through the
hypervisor’s kernel directly to the file system (ext3)
where the virtual disk image resides.

• GlusterFS: Virtual disks are stored in a distributed file
system setup with GlusterFS [15]. GlusterFS is config-
ured to use two nodes in RAID-1 configuration. With
this setup, each write operation is performed on the
local file system and on the remote node.

• Mirror: This method routes I/Os through the hypervi-
sor to a FUSE file system. The FUSE file system traps
and relays all I/O operations to the underlying file
system holding the virtual disk images. In this manner,

we quantify the penalty our design incurs by trapping
I/O.

Figure 3 shows the read, write, and write-after-read,
performance of MigrateFS as far as block I/O operations are
concerned. Local shows the performance attained through
sole use of local storage resources; in this configuration,
migration is not supported. Here, the performance of Mi-
grateFS is evidently almost identical to the one we measure
for the Mirror file system. This shown that the performance
overhead introduced by our approach file system is mainly
due to its inherent need to trap I/O operations. Imple-
mented at user-space, the MigrateFS prototype uses FUSE
for monitoring I/O activity2. The performance impact of
trapping I/O operations is noteworthy if compared to a
Local setup. In light of non-cached operations we measured
a performance penalty of 25% and 22% for read and writes
respectively. However, such penalties are significantly less
than the ones involved in of network storage solutions that
enable VM migration. The write performance of GlusterFS
is significantly hampered by the network latency as all files
are replicated in a remote physical node (RAID-1 configura-
tion). In this type of I/O call, MigrateFS proves superior.
In the case of read operations, GlusterFS uses caching at
the expense of RAM consumption and thus, it surpasses
MigrateFS.

20,000

40,000

60,000

80,000

100,000

Reads Writes Read-write

K
B

y
te

s
/S

e
c

Local
GlusterFS

Mirror
MigrateFS

Fig. 3. Comparing block I/O performance of MigrateFS to other disk
access methods.

Performance during migration: In this experiment, we mi-
grate a virtual disk of 10 GB while a process performs write
operations on it. The in-VM process tries to write blocks
at a rate of 20 MB/sec. The time constraint we set for the
migration is 550 seconds. This forces MigrateFS to reduce
the disk throughput to 6 MB/sec during the first and second
disk transfer phases. Figure 4 shows how our approach
reduces the disk I/O rate to comply with the designated
time constraint. During phase three, each write operation
is duplicated in both the target and source PMs, while the
hypervisor consumes bandwidth to transfer mainly RAM
contents. Note that our goal in this experiment is not to
measure any potential downtime. This is due to mainly two
reasons: a) our work is hypervisor agnostic, while downtime
during live VM migration is a hypervisor specific property,
and b) the downtime is in a different scale (milliseconds)

2. The performance of FUSE has improved in versions newer than
the one used, yet, these improvements were not available in our testing
environment.

10

from the operations MigrateFS performs (minutes). The
interested reader can find measurements of downtime for
live migration in [12], [26].

Phase 2 Phase 3Phase 1

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500

K
B

y
te

s/
S

ec

Time (in Seconds)

Fig. 4. Limiting virtual disk throughput during migration.

6.2 Priority Based Management of Migration Tasks

Impact of scheduling migrations on SLA failures: In the
following two experiments, we simulate an infrastructure
made of 500 PMs. Each PM features a 10 Gbps network
link towards all other physical nodes. The VMs hosted by
this physical infrastructure are evenly distributed among the
PMs. Each VM has a 50 GB virtual disk and writes into
it at a rate of 30 MB/sec. This 50 GB virtual disk has to
be transferred during migration. We choose to ignore the
migration overhead involved in copying memory contents
as the data volume factor is taken into account through the
virtual disk size.

In our simulation we focus only on network bandwidth
consumption and we ignore hardware properties that are
largely irrelevant to our approach (e.g., CPU architecture).
For the disk transfer operation we have the 10 Gbps of the
PM network links at our disposal. However, the operating
VMs need to use some of the available bandwidth for their
normal operation. As we cannot account for the workload of
all VMs collocated with the migrating ones, we set the avail-
able network bandwidth to follow a Gaussian distribution.
With this approach we simulate the behaviour of the end
physical node and we are not concerned with the network
topology.

The evaluation scenario we present here consists of
1, 000 migration tasks. We trigger one migration operation
every 100 seconds. Consuming network resources for mi-
grating VMs will stress the cloud resources. To quantify the
effectiveness of our approach we use two metrics:

• SLA violations occur due to network bandwidth short-
age. Bandwidth shortage may occur on any randomly
selected PM as we cannot predict the behavior of each
VM running. The duration of the resource shortage
is set to 300 seconds (five 60 second periods). This
shortage (marking an SLA violation) is extended for
additional periods in case the migration operations
consume the entire 10 Gbps bandwidth available to the
PM under stress.

• The load of the network is represented by the frequency of
violations. That frequency is expressed as the percent-
age of PMs where a shortage occurs within a 60 second
period.

Increasing the load of the network causes more SLA violations.
Our goal is to limit the network utilization over stressed
links used during migration.

We show how our resource management approach han-
dles migrations with different time constraints. We compare
our approach against the currently available cloud setup,
denoted as “No Scheduling”, where there are no constraints
on the resources consumed. The danger and warning thresh-
olds of Alg. 1 are set to 300% and 400% respectively. The
network and disk limits are updated once every 60 seconds
(the period in Alg. 1).

In Figure 5, we present our policy operating under three
different migration completion time values, 200, 350 and
800 seconds, and the “No Scheduling” approach. We mea-
sure the periods (y-axis) we observe network SLA violations
as we gradually increase the network load from 5% to
25%. High values indicate that we further stress the already
limited network resource. The 25% load is an extreme case
where in each minute (60 second period), 25% of the PMs
links fail to satisfy the VM’s SLAs and they continue to
display high load for the next five minutes.

 1000

 1500

 2000

 2500

 3000

 5 10 15 20 25

P
e
ri
o
d
s
 w

it
h
 S

L
A

 f
a
ilu

re
s

Percentage of network load

No Scheduling
Completion time: 200 secs
Completion time: 350 secs
Completion time: 800 secs

Fig. 5. Evaluating our approach under different time constraints set on
migrations.

This experiment shows an important aspect of our work:
by limiting the network and disk bandwidth, our policy
waits for the “hot” spots (PMs) of the infrastructure to
cool down before performing the migration. Reducing the
acceptable migration time, forces the scheduler to use “hot”
PMs instead of waiting.
Failing SLAs vs violating time constraints: In this evalua-
tion scenario we reuse the setup of the previous experiment.
We have 500 PMs, each with a 10 Gbps network link. Each
VM writes into its 50 GB virtual disk at a rate of 30 MB/sec.
We schedule 1, 000 migration tasks, one every 100 seconds,
while we assume a Gaussian network traffic.

However, in this experiment, we set the time frame for
migration to 350 seconds, we vary the network load, and
we report the performance of our policy for three danger
thresholds, 100%, 150%, 200%. We measure the time con-
straint violations and the periods where we have stressed
network SLAs. The danger threshold affects the time at
which our scheduler decides that a time constraint is about
to be violated and thus the network bandwidth of already
saturated PMs should be used.

Figure 6 shows how the amount of time constraint
violations reduces as we increase danger. The reduction
of the time constraint violations comes at the expense of

11

stressing “hot” PMs. We expect the administration of the
IaaS-cloud to set both the danger and warning thresholds
according to the size of the infrastructure, the load it serves,
and the requirements in terms of SLA satisfaction and load
balancing.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5 10 15 20 25 30

V
io

la
te

d
 t
im

e
 c

o
n
s
tr

a
in

ts

Percentage of cloud load

Danger 100%
Danger 150%
Danger 200%

Fig. 6. Time constraint violations as we increase the danger threshold
property.

Bandwidth shared between two migration tasks: In this ex-
periment, we let two VMs of equal size migrate between two
PMs. As a result, both migration tasks use the same network
links and share the same network bandwidth. In total, the
bandwidth available to the two VMs have is 40 MB/sec and
each migration should complete in less than 2, 500 seconds.
The period of 2, 500 seconds is enough for the two tasks
to reach the equilibrium points of resource sharing in this
experiment. We expect long migration time constraints to be
set for large VMs that have to be transferred using limited
resources (e.g., nightly load balancing operations).

In Figure 7, we show the throughput consumed by each
task during migration. VM-0 starts migrating first and thus
it uses the entire bandwidth. After 100 seconds the second
task starts causing the bandwidth to be shared evenly
between the two VMs. After 1, 000 seconds we initiate a
process inside VM-0 that writes on the disk producing dirty
blocks. This causes the danger threshold to be surpassed on
VM-0 and thus it gets a greater portion of the bandwidth.
At the same time the I/O is limited and thus the rate of the
dirty pages is reduced. From 1, 000 to almost 2, 400 seconds
VM-0 cycles through the following states: it gets a warning
and it reduces the available disk bandwidth, but this is not
enough to migrate VM-0 within the designated time frame
so the danger threshold is exceeded. Under danger, VM-0
consumes some of the bandwidth of VM-1. This causes VM-
0 to instantly exit the warning and danger “zones” and our
policy tries to balance the network usage between the two
VMs. As the constraints on the disk throughput in VM-0
are lifted and we further reduce the available bandwidth,
the warning and danger thresholds are surpassed again. This
continuous cycle causes the throughput of VM-0 to revolve
around the average of 28 MB/sec and that of VM-1 to
revolve around 10 MB/sec. Finally, the migration of VM-
1 completes before that of VM-0 and VM-0 gets the entire
bandwidth.
Impact of prioritizing migration tasks on throughput:
The danger and warning thresholds are used to prioritize
migration tasks as they reflect when our resource sharing
policy will take action to ensure a timely migration. In

 0

 10000

 20000

 30000

 40000

 50000

 0 500 1000 1500 2000 2500

K
B

y
te

s
/S

e
c

Time (in Seconds)

Migration throughput of VM-0
Migration throughput of VM-1

Fig. 7. Throughput of two VM migrations sharing the same network links.

this experiment, we have three migration tasks, each one
with a different set of danger and warning thresholds. The
danger thresholds are 200%, 300%, 400% and the warning
thresholds are 250%, 350%, 450% respectively for the VMs
with IDs 0, 1, 2. All migration tasks have the same source
and target PMs and thus use the same network links and
share the same network bandwidth. The migrating VMs are
idle throughout the migration period.

In Figure 8 we present the network throughput con-
sumed by each migration task over time. All three tasks
start in a danger state according to the throughput they have
available and their danger threshold. In the period of 500 to
1, 700 seconds first VM-0, then VM-1 and finally VM-2 exit
the danger “zone” leaving more bandwidth available. A time
period of equal bandwidth share follows (1, 700 to 2, 200).
After that, the migration tasks finish in the order their
thresholds dictate. We do not see the remaining tasks take
up the available bandwidth immediately after a migration
finishes because as a migration nears its end, it often enters
the danger state leading the rest of the migrations to release
some of the network resources they occupy. This is because
in the third phase of the migration, the network bandwidth
consumed is affected by the short block size of the I/O
requests.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 500 1000 1500 2000 2500 3000

K
B

y
te

s
/S

e
c

Time (in Seconds)

Migration throughput of VM-0
Migration throughput of VM-1
Migration throughput of VM-2

Fig. 8. Prioritize migration requests.

6.3 Cost Driven Management of Migration Tasks
Here, we assume that the infrastructure expresses in finan-
cial terms ($) the cost of a) missing a specific migration time
constraint, b) limiting the disk bandwidth of a migrating

12

VM and c) experiencing a lower network bandwidth than
the one guaranteed in the corresponding VM’s SLA.

We simulate the migration of 2, 000 VMs, hosted across
1, 000 PMs. The period is 60 seconds and a migration starts
every 100 seconds. Each VM owns a disk of 50 GB and all
migrating VMs are uniformly distributed across PMs. We
have a three-level tree network. The lowest level consists
of 100 switches, each one serving 10 PMs. These switches
are networked using 10 switches of the next level and,
finally, there is a single root switch. Each switch assumes
that a bandwidth of Bm is available for the total migration
traffic. Bm is fixed at 1.6 GBps. For each such switch we
compute a saturation ratio Sr = Ba/Bm, where Ba is the
actual bandwidth consumed by the migration tasks routed
through that switch. The saturation ratio Sr is computed
in every period and is used to specify the coefficient Cnet
of Eq. 4. As the cost of using a network switch is higher
when its saturation ratio is high, we let Cnet be proportional
to the sum of the saturation ratios of the switches across
the path of the disk transfer. Also, the NetCost of Eq. 4
is assumed to increase linearly with the used bandwidth
(degree p is 1). The disk cost coefficient Cdisk of Eq. 3
is chosen randomly in each period based on a uniform
distribution. The lower bound of the distribution is fixed at
$0.5. The upper bound varies. We use one of the following
values for the upper bound, in each experiment: $5, $60,
$125, $250, and $500. As in the case of the network cost, the
DiskCost of Eq. 3 grows linearly with bandwidth use, i.e., q
is set to 1. A violated time constraint of a migration incurs a
cost (penalty) for the cloud provider. Moreover, when a time
constraint is violated we compute a new deadline based on
the remaining disk size. Similar to the disk cost coefficient,
parameter penalty is randomly selected using a uniform
distribution, with $0.5 as the lower bound and an upper
bound with one of the following values: $5, $60, $125, $250
and $500. In fact, in each experiment, we use the same upper
bound for the distributions of penalty and Cdisk. Crisk of
Eq. 5 is proportional to penalty ∗ e−timetodeadline. The factor
e−timetodeadline increases the value ofCrisk, as we approach
the end of the corresponding migration’s time-window.

We compare the cost of serving the 2, 000 migration tasks
using the two Broker policies: a) The priority-based resource
management with the danger threshold set to 100%, 150%
and 200%. The warning threshold is set to be 50% higher
than the danger (e.g., for danger 150% the warning becomes
200%). b) The cost-driven resource management, denoted by
CostAware. The total cost for the 2, 000 migrations, incurred
by the violated migration time-constraints, the restrictions in
the migrating VMs disk rate, and the network congestion,
appears on the y-axis, in Fig. 9. The upper bound for the
distributions of penalty and Cdisk appears on the x-axis. As
Fig. 9 depicts, there is an, at least, 2x improvement for any
upper bound on penalty and Cdisk, when using CostAware
Brokers over priority-based Brokers; which are unaware of the
actual cost of violated time-constraints and network/disk
rate restrictions. In Figs. 10a and 10b, we zoom-in to the
total cost plotted in Fig. 9, for CostAware and Danger 150%,
respectively. In particular, Figs. 10a and 10b show how much
of the total cost is due to network congestion (Network-
Cost), disk-rate restrictions (Disk-Cost), and missed time
constraints on migrations (Time-Missed-Cost). We plot one
stack for each upper bound value of penalty and Cdisk (x-

axis). Fig. 10a shows that the effectiveness of CostAware
is achieved through the restriction of the dirty rate for
migrating VMs with costly time constraint violations. Based
on the values of the cost formula parameters used in this
experiment, stressing the network or violating certain mi-
gration time constraints, are less cost-effective options than
restricting certain VMs’ disk bandwidth. The CostAware
Brokers are able to detect the most cost-effective options and
give a substantial improvement over Danger 100%, Danger
150%, or Danger 200%.

 0

 20

 40

 60

 80

 100

 120

 140

5 60 125 250 500

T
o
ta

l
C

o
s
t
(i
n
 t
h
o
u
s
a
n
d
 $

)

Max Deadline & Disk Cost (in $)

 CostAware
 Danger 100%
 Danger 150%
 Danger 200%

Fig. 9. Cost as we increase the disk and time constraint penalty.

7 RELATED WORK

Live OS migration was shown [3] to have the potential
to reduce downtime to tens of milliseconds by first copy-
ing RAM content and only afterwards the remaining VM
state including virtual devices (e.g., CPU, network). VM-
Monitors (VMMs) [12], [13] are not concerned with migrat-
ing the VM persistence layer (i.e., the “virtual disk(s)”).
In this direction, the cloud design may actually assist and
its administration can explicitly replicate disk images at
the block level [27], [28]. For small to medium-size clouds,
designers and administrators can resort to SANs or de-
ploy distributed file systems [15] (DFSs). The incremental
transfer of virtual systems to different locations presents
an alternative that avoids scalability issues often hinder-
ing DFSs. However, transferring large amounts of data is
not always possible [29]. In [7], [8], live VM migration in
WANs is advocated as a way to relieve overloaded PMs.
A workload-driven migration of virtual storage is discussed
in [30]. VMware ESX 5.0 [9] is capable of live migrating VMs
including the persistence layer using IO Mirroring; here, all
write operations are performed concurrently in both source
and target PMs during a VM migration.

Modelling and predicting the performance of VMs dur-
ing a migration operation, is essential in maintaining the
SLA agreed between the cloud provider and the users.
The migration impact on VM’s performance is examined
in [26], where modelling of the migrating behaviour allows
accurate predictions in 90% of the cases. While [26] focuses
on the hypervisor’s performance, our work tries to timely
migrate the storage resources as well. Dynamic resource
provisioning has been employed in [31] to reduce the rate
of SLA violations. Reducing SLA violations and enhancing
quality-of-service is the goal in [32]; a multi tier hybrid
storage is assumed in that context. Compared to [31], [32]

13

 0

 20

 40

 60

 80

 100

 120

 140

5 60 125 250 500

T
o

ta
l
C

o
s
t

(i
n

 t
h

o
u

s
a

n
d

 $
)

Max Deadline & Disk Cost (in $)

Disk-Cost
Network-Cost
Time-Missed-Cost

(a) CostAware resource management.

 0

 20

 40

 60

 80

 100

 120

 140

5 60 125 250 500

T
o

ta
l
C

o
s
t

(i
n

 t
h

o
u

s
a

n
d

 $
)

Max Deadline & Disk Cost (in $)

Disk-Cost
Network-Cost
Time-Missed-Cost

(b) Cost of the priority based policy.

Fig. 10. Evaluation of the financial cost under the two Broker policies.

our work assumes the existence of a resource allocation
target and works towards reaching it.

Autonomic and load-balancing systems are often em-
ployed to schedule VM migrations. In such systems [33]–
[37] the performance of the cloud is continuously mon-
itored and proper action is taken to handle bottlenecks
and resource shortages. Our approach can work in tan-
dem with such autonomic systems and can extend their
effectiveness. Time-warranties are typically used to enhance
the quality of service offered by real-time systems [38],
[39]. I/O throttling during VM migration enables for time
and performance warranties and ultimately for migration
completion. VMware ESX 5.0 IO Mirroring [9] reduces the
transfer rate to the slowest medium of the source or target
PM and guarantees migration convergence.

MigrateFS complements the above approaches by pro-
viding both disk I/O and network throttling while syn-
chronizing on demand virtual disk images across PMs.
The feasibility of on-demand disk synchronization is shown
in [7], [8], [40] where VMs are live migrated over WANs
and AZs. Similarly to DFSs, MigrateFS provides a POSIX
API, yet, it differs in that data (i.e., VM disk images) are
not available to all nodes; rather, they can be pair-wise
synchronized on-demand. This synchronization places no
limits on scaling and so, our MigrateFS-based approach be-
comes an attractive choice for live-migration in large share-
nothing clouds. Also, as there is no single point of failure
in MigrateFS, we introduce no discernible performance bot-
tlenecks. Our work presents a comprehensive, scalable and
distributed VM migration approach that is predominantly
weaved around time-constraints. The above features set our
work apart from the related efforts [7]–[9].

8 CONCLUSIONS

Migrating VMs in live fashion is of key importance to IaaS-
clouds as it helps accomplish major operational and ad-
ministrative objectives including effective load-sharing and
improved utilization of physical machinery. The movement
of VMs over the network inevitably consumes significant
cloud resources, thus such tasks should be scheduled during
periods of low load. In this work, we focus on emerging
highly-scalable share-nothing cloud installations and em-
ploy on-demand virtual disk synchronization across PMs

to attain live migration under explicit time-constraints. Our
approach is empowered by the combined use of a network
of Brokers and the MigrateFS file system. MigrateFS effec-
tively synchronizes disk images between physical comput-
ing systems, while the Brokers manage the resources of the
share-nothing cloud elements. The joint objective of the two
components is to offer a scheme that gracefully deals with
time-constrained VM migration requests and at the same
time, does not deplete cloud resources.

The resource management policies we developed apply
on both clouds with uniform SLAs across VMs and clouds
with widely varying SLAs. Our lightweight priority-based
policy adjusts the network and virtual disk bandwidth in
time using a simple, yet effective, protocol. In cases where
the cloud provider needs to differentiate among the opera-
tion of different VMs, our cost-driven policy offers a general
model to capture different costs and intelligently adjust the
network and disk rates.

Our prototype experimentation demonstrates the I/O
performance gains compared to network storage solutions,
and the significantly reducing SLA violations due to heavy
network traffic. Moreover, the extension of the cost-driven
policy offers a 2x improvement in the cases where it ap-
plies. In the future, we plan to examine statistics-driven
VM migration scheduling algorithms in settings consisting
of interoperating IaaS-clouds and SDNs and investigate
how our approach can be applied to PaaS-clouds so that
real-time service migration is realized. We also intend to
extend the SLA monitoring mechanism of our approach
to take corrective action not only when the network is
stressed but also when disk I/O spikes [41]. Finally, we
shall investigate how our approach fares in conjunction with
a resource–reallocation algorithm capable of determining
VMs requiring migration so that cloud efficiency rates are
further improved.

ACKNOWLEDGMENTS

A preliminary version of the paper appeared in [42]. This
work has been partially supported by i-Marine and Sucre
EU FP7 projects as well as ERC Starting Grant # 279237.

REFERENCES
[1] C. Weng, M. Li, Z. Wang, and X. Lu, “Automatic Performance

Tuning for the Virtualized Cluster System,” in Proc. of the 29th IEEE

14

Int. Conf. on Distributed Computing Systems, Montreal, Canada, June
2009.

[2] VMware, “VMware DRS - Dynamic Scheduling of System Re-
sources,” www.vmware.com/products/drs/overview.html, Oct.
2009.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live Migration of Virtual Machines,”
in Proc. of the 2nd Symposium on Networked Systems Design &
Implementation, Boston, MA, May 2005.

[4] Z. Liu, W. Qu, W. Liu, and K. Li, “Xen Live Migration with
Slowdown Scheduling Algorithm,” in Proc. of the 2010 Int. Conf.
on Parallel and Distributed Computing, Applications and Technologies,
ser. PDCAT ’10, Wuhan, China, Dec. 2010, pp. 215–221.

[5] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of
Virtual Machine Live Migration in Clouds: A Performance Evalua-
tion,” in Proc. of the 1st Int. Conf. on Cloud Computing (CloudCom’09),
Beijing, China, Dec. 2009.

[6] Y. Luo, B. Zhang, X. Wang, Z. Wang, Y. Sun, and H. Chen, “Live
and Incremental Whole-System Migration of Virtual Machines Us-
ing Block-Bitmap,” in Proc. of IEEE Int. Conf. on Cluster Computing,
Tsukuba, Japan, September 2008.

[7] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg, “Live
Wide-Area Migration of Virtual Machines Including Local Per-
sistent State,” in In VEE ’07: Proc. of the 3rd Int. Conf. on Virtual
Execution Environments, San Diego, CA, June 2007.

[8] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe,
“CloudNet: Dynamic Pooling of Cloud Resources by Live WAN
Migration of Virtual Machines,” SIGPLAN Not., pp. 121–132,
March 2011.

[9] A. Mashtizadeh, E. Celebi, T. Garfinkel, and M. Cai, “The Design
and Evolution of Live Storage Migration in VMware ESX,” in Proc.
of the 2011 USENIX Annual Technical Conference, Portland, OR, 2011.

[10] D. Josephsen, Building a Monitoring Infrastructure with Nagios.
Upper Saddle River, NJ: Prentice Hall PTR, 2007.

[11] VMware, “vSphere,” www.vmware.com/products, May 2012.
[12] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” in SOSP, New York, NY, 2003, pp. 164–177.

[13] Kernel Based Virtual Machine, “www.linux-kvm.org,” May 2012.
[14] Red Hat, “Global File System,” http://www.redhat.com/gfs/,

May 2012.
[15] ——, “GlusterFS,” www.gluster.org, May 2012.
[16] R. N. Calheiros, R. Ranjan, and R. Buyya, “Virtual Machine Pro-

visioning Based on Analytical Performance and QoS in Cloud
Computing Environments,” in 40th Int. Conf. on Parallel Processing,
Taipei, Taiwan, Sept. 2011.

[17] P. Pradeep, H. Kai-Yuan, S. K. G., Z. Xiaoyun, U. Mustafa,
W. Zhikui, S. Sharad, and M. Arif, “Automated Control of Multiple
Virtualized Resources,” in Proc. of the 4th ACM European Conf. on
Computer Systems, Nuremberg, Germany, 2009.

[18] OpenStack, “www.openstack.org,” May 2012.
[19] OpenNebula, “www.opennebula.org,” May 2012.
[20] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Com-

modity Data Center Network Architecture,” in Proc. of the ACM
SIGCOMM Conf., Seattle, WA, August 2008.

[21] V. Mann, A. Vishnoi, A. Iyer, and P. Bhattacharya, “VMPatrol:
Dynamic and automated QoS for virtual machine migrations,”
in 8th Int. Conf on Network and Service Management (CNSM), Las
Vegas, NV, USA, Oct. 2012, pp. 174–178.

[22] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Pod-
dar, and A. Iyer, “Remedy: Network-aware Steady State VM
Management for Data Centers,” in 11th Int. IFIP TC 6 Conference
on Networking, Prague, Czech Republic, May 2012, pp. 190–204.

[23] R. Jain, The Art of Computer Systems Performance Evaluation: Tech-
niques for Experimental Design, Measurement, Simulation and Model-
ing. New York, NY: John Wiley & Sons, 1991.

[24] FUSE, “Filesystem in Userspace,” fuse.sourceforge.net, May 2012.
[25] R. Coker, “Bonnie++ file system benchmark,” www.coker.com.au/

bonnie++, May 2012.
[26] S. Akoush, , R. Sohan, A. Rice, A. W. Moore, , and A. Hopper,

“Predicting the Performance of Virtual Machine Migration,” in
Proc of 2010 IEEE Int. Symp. on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, Miami, FL, Aug. 2010.

[27] “Disrtibuted Replicated Block Device,” www.drbd.org, Sept. 2012.
[28] D. T. Meyer and B. Cully, “Block Mason,” in Proc. of the First

Workshop on I/O Virtualization, ser. WIOV ’08, San Diego, CA, Dec.
2008.

[29] J. Taheria, A. Y. Zomayaa, H. J. Siegelb, and Z. Taric, “Pareto
frontier for job execution and data transfer time in hybrid clouds,”
Future Generation Computer Systems, vol. 37, pp. 321–334, 2014.

[30] J. Zheng, T. Ng, and K. Sripanidkulchai, “Workload-Aware Live
Storage Migration for Clouds,” in Proc. of the 7th ACM Int. Conf. on
Virtual Execution Environments, Newport Beach, CA, 2011.

[31] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic Placement of
Virtual Machines for Managing SLA Violations,” in Proc. of 10th
IFIP/IEEE Symp. Integrated Management, Munich, Germany, May
2007.

[32] J. Tai, B. Sheng, Y. Yao, and N. Mi, “Live Data Migration For
Reducing SLA Violations In Multi-tiered Storage Systems,” in Proc.
of 2014 Cloud Engineering Int. Conf., Boston, MA, March 2014.

[33] A. Danak and S. Mannor, “Resource Allocation with Supply Ad-
justment in Distributed Computing Systems,” in Proc. of the 30th
IEEE Int. Conf. on Distributed Computing Systems (ICDCS), Genoa,
Italy, June 2010.

[34] K. Tsakalozos, M. Roussopoulos, V. Floros, and A. Delis, “Nefeli:
Hint-based Execution of Workloads in Clouds ,” in Proc. of 30th
IEEE Int. Conf. Distributed Computing Sytems (ICDCS), Genoa, Italy,
June 2010.

[35] R. Calheiros, R. Ranjan, and R. Buyya, “Virtual Machine Pro-
visioning Based on Analytical Performance and QoS in Cloud
Computing Environments,” in Proc. of 2011 Parallel Processing Int.
Conf., Taipei, Taiwan, Sept 2011, pp. 295–304.

[36] M. Menzel, R. Ranjan, L. Wang, S. U. Khan, and J. Chen, “Cloud-
Genius: A Hybrid Decision Support Method for Automating the
Migration of Web Application Clusters to Public Clouds.” IEEE
Trans. Computers, vol. 64, no. 5, pp. 1336–1348, 2015.

[37] M. Jayasinghea, Z. Taria, P. Zeephongsekulb, and A. Y. Zomayac,
“Task assignment in multiple server farms using preemptive
migration and flow control,” Journal of Parallel and Distributed
Computing, vol. 71, no. 12, p. 1608–1621, 2011.

[38] S. Biyabani, J. Stankovic, and K. Ramamritham, “The Integration
of Deadline and Criticalness in Hard Real–Time Scheduling,” in
Proc. of the Real–Time Systems Symposium, Huntsville, AL, Dec.
1988.

[39] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silberschatz,
“Disk Scheduling with Quality of Service Guarantees,” in Proc. of
the IEEE ICMCS, Florence, Italy, June 1999, pp. 400–405.

[40] Z. Shen, Q. Jia, G.-E. Sela, B. Rainero, W. Song, R. van Renesse,
and H. Weatherspoon, “Follow the Sun through the Clouds:
Application Migration for Geographically Shifting Workloads,” in
Proc of the ACM Symposium on Cloud Computing 2016 (SoCC’16),
Santa Clara, CA, Oct. 2016.

[41] D. Trihinas, G. Pallis, and M. D. Dikaiakos, “Monitoring Elastically
Adaptive Multi-Cloud Services,” IEEE Trans. on Cloud Computing,
2015, DOI: 10.1109/TCC.2015.2511760.

[42] K. Tsakalozos, V. Verroios, M. Roussopoulos, and A. Delis, “Time-
Constrained Live VM Migration in Share-Nothing IaaS-Clouds,”
in 7th IEEE Int. Conf. on Cloud Computing (CLOUD 2014), Alaska,
USA, June 2014.

Konstantinos Tsakalozos is a Member of the Technical Staff
at Canonical Ltd. and has been a a Software Engineer
with Microsoft in London, United Kingdom. His research
interests are in cloud computing, distributed systems and
software engineering. He holds a PhD in Computer Science
from the University of Athens.

Vasilis Verroios is a doctoral candidate in Computer Science
at Stanford University in Stanford, CA. His interests are in
data management, machine learning, distributed systems
and crowd-sourcing. He holds both MS and BS degrees in
Computer Science from the University of Athens.

Mema Roussopoulos is an Associate Professor of Computer
Science at Univ. of Athens in Athens, Greece. Her research
interests are in networking and distributed systems. She
received her PhD in Computer Science from Stanford Uni-
versity.

Alex Delis is a Professor of Computer Science at Univ.
of Athens in Athens, Greece. His interests are in cloud
computing, management of data and distributed systems.
He holds a PhD in Computer Science from the Univ. of
Maryland at College Park.

