
Tossing NoSQL–Databases out to Public Clouds
Alexandros Antoniadis, Yannis Gerbessiotis, Mema Roussopoulos and Alex Delis

University of Athens, Athens, Greece
Email: {a.antoniadis, j.gerbesiotis, mema, ad}@di.uoa.gr

Abstract—Cloud-Service Providers (CSPs) can now handle
heavy workloads by occasionally renting resources from public
clouds. The capabilities and respective lease prices of such infras-
tructure may significantly vary over time. In this environment,
two distinct types of SLAs have to work in tandem: a) the SLA
furnished by the private cloud to the end user of the application
(or database), and b) the SLA offered by the public cloud to
the application through its host private cloud. This dual and
continuously evolving relationship inherently complicates the
computation of the operation of cloud applications. In this paper,
we present a cost-aware resource provisioning algorithm for
NoSQL-databases that aims to meet Quality of Service (QoS)
requirements while minimizing the total cost incurred by its
deployment on multiple cloud tiers. Our method is based on look-
ahead optimization and takes into account the costs incurred
by potential database transitions to new configurations in a
heterogeneous multi-cloud environment. Experimentation with
a prototype shows that our approach reflects the total cost
of a cloud application more accurately than the conventional
technique of minimizing SLA violations. More importantly, it
avoids thrashing of resources.

Keywords—resource provisioning; NoSQL–databases; look-
ahead optimization

I. INTRODUCTION

Cloud-Service Providers (CSPs) dynamically offer compu-
tational and storage resources so that users can experience
timely execution of their applications regardless of the load
and queued jobs the infrastructure has to handle [1]. CSPs
have the freedom to calibrate both type and number of
allotted resources at different points in time so that incoming
workloads are successfully handled. In such settings, QoS
guarantees regarding performance aspects such as response
time, throughput, and service availability can be provided to
both user applications and launched databases through the use
of SLAs. When SLA violations occur, monetary penalties are
accrued for the CSP directly affecting not only its revenue but
more importantly, its reputation [2].

Untimely provisioning by a CSP of its own internal (or
private) resources can lead to depressed leasing costs that
ultimately prevent application QoS-requirements from being
met. Resources needed by an application might change either
periodically (i.e., high peak hours or days) or irregularly
(i.e., flash crowds that cause sudden, significant depletion of
resources). A CSP could address internal resource shortages
by soliciting additional resources that are available just-in-time
from external or public CSPs. Dynamic allocation/deallocation
of cloud resources might help, but frequent workload changes
may lead to deployment thrashing as overheads incurred by
the additions/removals of resources may outweigh any short-

term benefits gained. To complicate matters further, pricing for
leasing equivalent resources from public CSPs continuously
fluctuates. The latter has to be taken into consideration to
identify a resource allocation with minimum cost. It becomes
evident that resource allocation is not a straightforward task
and so it has recently attracted considerable attention [3]–[5].
In this paper, we investigate the problem of provisioning a pop-
ular class of cloud applications collectively known as NoSQL-
databases [6], [7]. Their key characteristic is that they can scale
their performance as they offer horizontal partitioning of data
in a shared-nothing fashion through sharding [8].

NoSQL-databases are typically designed to provide avail-
ability and fault tolerance by replicating their data multiple
times on different nodes across Gbps-interconnected cluster(s).
The notion of cluster here is that of a set of network-connected
machines possibly having different hardware features. As
nodes arrive at or depart from the cluster, (e.g., because of
energy concerns), replicas have to be expanded or contracted
respectively so that availability remains intact. Such “transi-
tions” however expend computational, storage, and network
resources and thus, do not occur instantly. This is a key aspect
that one has to consider when it comes to NoSQL-database
provisioning and possibly soliciting resources from external or
public CSPs.

We present a resource provisioning approach that exploits
the pricing models of available resources as well as the
costs imposed by potential movements of shards. We aim
to minimize the total cost of running a cloud application
by using look-ahead optimization for a limited time-window.
Fig. 1 depicts the key aspects of our approach. The private
CSP delegates the selection of resources needed to run an
application to the provisioning algorithm based on look-ahead
optimization that oversees the minimization of the total cost.
As a result, parts of the database may be “tossed out” to
public CSPs to expedite processing. Our approach has two
phases: the first phase consists of profiling the application
so that a performance model for its execution in a specific
sample of cluster configurations is built; a cluster configuration
consists of a specific combination of machines that form
a cluster. Several executions of the application on different
cluster configurations are needed to stress the application and
build a respective performance model. The performance model
is required to estimate the behavior of the application on future
cluster configurations. Although the creation of a performance
model is a costly task in terms of time, it is carried out
just once. The second phase requires the following pieces of
information (Fig. 1): i) the derived performance model, ii) the

Fig. 1: Our approach considers application profiling, SLAs, and hints on
upcoming workload to potentially “toss out” portions of NoSQL-database(s)
to resources from public CSPs.

application SLAs, iii) the prediction of the upcoming workload,
and iv) the available resources from the private and/or public
CSPs. Using the above information, the resource provisioning
algorithm designates which of the available resources should
be either added or dropped so that the cost of operating the
private CSP remains at a minimum.

We make the following contributions:

1) We expose key factors that should be considered in
provisioning as they affect the private CSP cost either
directly or indirectly. We develop a comprehensive cost
model to account for all expenses involved including
penalties that have to be “paid back” by public CSPs
should they violate their own SLAs. We also introduce
the transition cost needed to re-host a portion of an
application and examine how this affects the total cost
through experiments.

2) We address the NoSQL-databases provisioning problem
taking into account the perspective of the private CSP
hosting database shards. Thus, we focus on minimizing
the private CSP’s cost and compare this with the widely-
accepted approach of reducing penalties incurred by SLA
violations.

3) We introduce a look-ahead optimization–based provision-
ing approach and investigate its effectiveness in com-
parison with competing approaches including resource
thrashing avoidance [4], [9].

The paper is organized as follows: Section II, outlines the
salient factors that affect the provisioning problem. Section III
discusses both our profiling and the techniques we use to create
a predictive model for the cluster. Section IV presents our
look-ahead provisioning algorithm and Section V presents key
experimental results. Finally, Sections VI and VII respectively
describe related work and concluding remarks.

II. FACTORS IN CLOUD PROVISIONING

We outline key factors that should be considered while
provisioning for NoSQL-databases in the private/public CSP
context.

A. Opportunistic Use of Public Cloud

When private CSPs rent additional machines from public
CSPs to auto-scale NoSQL-databases, they form “clusters” of
virtual infrastructures that go beyond what they have available
locally. This may transparently offer substantial benefits to
users as they see their applications “grow” without necessi-
tating the purchase of new machinery but only the occasional
leasing of resources. This leasing highly depends on i) the
specification of the machine(s) needed, and ii) the SLA that
the public CSP offers for the request. Differences between
nodes that belong to public clouds and nodes in a private CSP
include the following: 1) public CSP nodes have a rental/lease
cost while private nodes have an operational cost that entails
both energy and maintenance costs, and 2) a public cloud
has to compensate the private cloud in the form of monetary
penalty or pay-back anytime an SLA is violated. Imposed
penalties on public CSPs indirectly affect the cost calculation
that a NoSQL-database host has to pay to a user should SLA
violations be certified. Thus, the entire amount of penalty is not
exclusively paid out by the private CSP running an application.
This is a critical factor that should be taken into account when
designing a resource provisioning algorithm.

B. Transitions

Every node addition to or removal from a NoSQL-database
does not happen instantly. The time it takes for a new node
to become operational in a cluster or an operating node to
cease operation may range from a few milliseconds to several
minutes or hours. A newly instantiated node might need to
deploy software artifacts, edit property files and/or start groups
of services. Also, in NoSQL-databases, a node addition means
that data will typically be shipped and replicated over the
network. Apart from any requisite data transfer, the cluster
may need to update its own internal data structures and
indices to reflect the new state. The above requisite operations
consume resources from both new and old nodes and may
entail major overheads in terms of CPU-cycles, memory, disk
and occasionally, network bandwidth. If these operations are
not carefully considered, they could easily push the cluster
into an unstable state.

C. Cluster Heterogeneity

Cloud infrastructure typically exhibits significant hetero-
geneity in terms of CPU, memory, disk(s) and NICs of
cloud infrastructure nodes [2], [10]. This is due to private
CSPs incrementally upgrading their internal machinery as
well as public CSPs competing against each other and fre-
quently changing their rental offerings to better match client
requests [11]. An adaptive cloud-based application that aims to
exploit the best out of the available resources should leverage
the heterogeneity of cloud machines accordingly. In our work,
we handle this problem by profiling NoSQL-databases such as
the ELASTICSEARCH [6] under different cluster configurations.
We use linear regression and support vector regression to pre-
dict performance metrics of future deployment outcomes such

as estimated throughput and expected percentage of operations
with latencies that violate the SLA of the application.

III. BUILDING AN APPLICATION PERFORMANCE MODEL

To effectively decide which nodes will be part of a cluster,
we want to successfully estimate the behavior of the purported
configuration once provisioning takes place. We accomplish
this by creating a performance model for the NoSQL-database
under deployment, so we use this model to estimate the cost
of a newly introduced configuration as SLA violations can be
traded off with leasing costs from public CSPs. Predicting
the performance of the NoSQL-databases with reasonable
accuracy is key to our provisioning method. As queueing an-
alytic based models cannot deliver viable solutions [12], [13],
we resort to an empirical modeling approach. Our approach
initially carries out selective stress tests on different cluster
configurations for the NoSQL-database at hand [14]. As this
process is carried out offline, no penalties are imposed during
the normal execution of the NoSQL-database. It then creates a
forecasting model to offer configuration suggestions based on
data collected. We use linear regression and support vector
regression to predict the performance of potential cluster
configurations to determine whether tossing NoSQL-databases
out to public CSPs is beneficial.

A. Profiling Experiments

We use a modified version of the Yahoo! Cloud Serving
Benchmark (YCSB) [15] to profile ELASTICSEARCH V0.20.6,
a popular NoSQL-database that uses sharding [8] to distribute
horizontal partitions of data to different Virtual Machines
(VMs). ELASTICSEARCH V0.20.6 tends to distribute its shards
equally to all of nodes that participate in the cluster; to this
end, we seek to ascertain how ELASTICSEARCH behaves under
variable number of CPU–cores, CPU–frequency, memory, and
VMs.

In the standard YCSB edition, a client either creates or
joins an existing cluster of nodes. Hence, it is likely that at
least a portion of the requested data may reside in a shard
located on the client’s VM. This is surely an unusual setting
for a cloud setup as in cloud environments, the back-end
components handling data are often separate from application
clients. ELASTICSEARCH features non-data nodes that can
function as load-balancers. In our modified YCSB, a client
simply connects to a load-balancer node to access data from
all shards dispersed throughout the network. This layout better
reflects realistic deployments of NoSQL-databases.

We perform a number of YCSB runs on ELASTICSEARCH
with different targeted throughput in clusters with up to 6
nodes and a single load-balancer node while varying the num-
ber of CPU–cores, CPU–frequency, memory, and VMs of the
cluster. We added 3,000,000 records to the ELASTICSEARCH
database and then performed 500,000 GET operations fol-
lowing a uniform distribution based on the record ID. We
measured the following:

- throughput of each cluster configuration,

- percentage of operations per time unit that violates SLAs;
we term this as DROP: delayed response operations
percentage,

- transition cost and delay for data–node addition/removal.
We assume that a request completing in more than 5ms
generates an SLA violation. For brevity, we omit showing the
profiling experiments for CPU–frequencies. In general, the
CPU–frequency profiling results follow similar trends with
those of RAM. Below, we outline the key findings from
profiling the above NoSQL-database in a private CSP.
• Throughput: Fig. 2a shows that as VMs are added,

throughput increases almost linearly. The same behavior
is observed for CPU–cores as more GET operations can
be handled. Similar trends are depicted in Fig. 2b, where
the size of RAM varies. We find that throughput is
affected less by RAM and CPU–frequency as GET oper-
ations scale out better (i.e., adding more VMs) than scale
up (i.e., by increasing memory and CPU–frequency).

• DROP: Results for requests missing their SLAs are not
as clear cut as those of throughput. Fig. 3a reveals that
the resulting DROP maintains high margins between the
average value and the maximum and minimum values
attained as we increase the number of VMs. Similar ob-
servations hold for DROP rates while varying CPU–cores
and RAM in Figs. 3b and 3c; they demonstrate behavior
with no clear trends. Thus, the above three profiling view-
graphs cannot lead to any strong conclusions regarding
DROP prediction. Consequently, we resort to machine
learning techniques to more effectively forecast DROP
values.

• Transition Cost and Delay: We have performed experi-
ments where we add or remove data–nodes and monitor
how the throughput of the cluster is affected. In these
profiling experiments, we ascertained that the transition
cost (i.e., transporting shards) is almost independent of
the configuration of the nodes that participate in the
cluster. Although bandwidth linearly affects costs and
delays, in an environment where multi-Gbps networks
connect private and public CSPs, this factor becomes an
invariant for modeling purposes.

B. Forecasting Models

Our forecasting model takes as input a set of VMs to be
possibly incorporated into the operational cluster along with
a number of parameters that include: i) public CSPs from
which to lease the VMs, ii) CPU–cores, iii) CPU–frequency,
iv) size of RAM, v) number of VM nodes. The outcome of
the forecasting model states how the re-aligned cluster would
perform should the additional VMs from the public CSPs be
included as part of the cluster. The output of the model consists
of the following anticipated rates and/or values: I) throughput
rate, II) DROP rate, as well as III) transition cost, duration,
and delay. Below, we discuss how we deliver these three rates
and costs.

The outcome of our black-box profiling yields selected mea-
surements for specific coordinate values in a multidimensional

 2
 3

 4
 5

 6 2
 4

 6
 8

 10
 12

 14
 16

 10500

 11000

 11500

 12000

 12500

 13000

Operations/Time

VMs #

CPU cores

Operations/Time

 10500

 11000

 11500

 12000

 12500

 13000

 13500

(a) Throughput: Operations per second over VMs # and CPU–cores

 10000

 10500

 11000

 11500

 12000

 12500

 13000

 5 10 15 20

O
p
e

ra
ti
o
n

s
 p

e
r

s
e

c
o

n
d

RAM (GB)

Operations per second

(b) Throughput: Operations per second over RAM

Fig. 2: ELASTICSEARCH throughput

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 3 4 5 6

d
e

la
y
e

d
 r

e
s
p

o
n

s
e

 o
p

e
ra

ti
o

n
s
 %

VMs #

Min delayed response oper. %

Max delayed response oper. %

Avg delayed response oper. %

(a) DROP over VMs #

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

d
e

la
y
e

d
 r

e
s
p

o
n

s
e

 o
p

e
ra

ti
o

n
s
 %

CPU cores

Min delayed response oper. %

Max delayed response oper. %

Avg delayed response oper. %

(b) DROP over CPU–cores

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4 6 8 10 12 14 16 18 20 22

d
e

la
y
e

d
 r

e
s
p

o
n

s
e

 o
p

e
ra

ti
o

n
s
 %

RAM (GB)

Min delayed response oper. %

Max delayed response oper. %

Avg delayed response oper. %

(c) DROP over RAM

Fig. 3: Percentage of operations missing their SLA (DROP) in ELASTICSEARCH

space. If we knew every possible value in this space, we would
be able to derive the best solution for a given provisioning.
However, this is infeasible, so we use approximate estimation
methods to produce the output rates/values of the model.
In particular, we use predictive techniques [16] to estimate
expected rates for throughput and DROP. These techniques
need an adequate size of training data to be well calibrated.
Moreover, the training set has to consist of a representative
sample of cluster configurations to both accurately predict
the future and remove outliers. We experimented using the
RapidMiner [17], a software platform for machine learning,
to ascertain pros and cons of various predictive techniques
and we have identified the following options (cases I and II
below) to respectively estimate throughput and DROP rates:

I) Linear Regression for Throughput: Fig. 2a clearly shows
that the cluster throughput increases linearly with the
number of VMs and/or CPU–cores. Consequently, using
linear regression to estimate throughput rates for cluster
configurations that have not been evaluated in the stress-
test profiling phase is the intuitive choice. In contrast, the
addition of RAM in the cluster leads to less discernible
gains for throughput (Fig. 2b). A similar trend to that of
RAM occurs with CPU–frequency as well. While using
linear regression for throughput estimation, we place
less importance on the RAM and CPU–frequency values
than the number of VMs and CPU–cores used by using
appropriate weights; the latter are computed during the
fitting process.

II) Support Vector Regression (SVR) for DROP Rate: Fig. 3
collectively reveals that although the average DROP rate
decreases as the values of input variables increase, the
minimum-to-maximum range for resulting DROP values
remains large. There are undoubtedly complex relation-
ships between the five input variables and the expected
DROP rate that are impossible to capture using linear
estimation techniques. The presence of multidimensional
variables along with their complex relationships makes
the SVR approach suitable for our case as it can more
effectively predict the DROP rate.
SVR maps data from their own original space into a
higher–dimension feature space and then computes an
optimal regression function in this new feature space [18].
This data transformation is carried out through the map-
ping: v → ϕ(v), where v = (v1, v2, . . . , vn) is a vector
of independent variables; in our case, v represents the n
values of our input variables1 making up a single data
point. The mapping is assisted by kernels that essentially
bypass the explicit use of ϕ(.) to transform data to
the new feature space. Kernels are realized as the dot
product of two vectors i and j in the feature space as
follows: k(vi, vj) = ϕ(vi) · ϕ(vj) Among popular non–
linear kernels, we use the Gaussian Radial Basis Function
(RBF) as the DROP rate depicts non-linear behavior and

1In particular, five values corresponding to (i) public CSPs used, (ii) CPU-
cores, (iii) CPU-frequency, (iv) size of RAM and (v) number of VMs.

RBF proves to be the most accurate. The RBF kernel is:
k(xi, xj) = ϕ(xi) · ϕ(xj) = e−γ‖xi−xj‖2 , where γ is an
adjustable positive variable.

III) Transition Cost and Delay: Using additional VM(s) from
possibly different public CSPs involves a delay that is
required to ship a shard to the designated VM(s). This
transition can be expressed as a function over time as
follows:

transition(t) =

{
0 t ∈ [0, delay]

tr overhead t ∈ (delay, T]

where delay = Dstartup|shutdown,
T = delay + tr duration,
tr duration = duration per shard * moved shards,
tr overhead = overhead per shard * moved shards

and moved shards = max(
added nodes * (total shards / new cc nodes),
removed nodes * (total shards / cc nodes)).

Here, Dstartup|shutdown represents the fixed time that a
VM takes to either start up or shut down, moved shards
is the number of shards to be moved when the cluster
configuration changes, added nodes and removed nodes
are the number of the nodes added to or removed from
the cluster configuration respectively, new cc nodes and
cc nodes are the number of the nodes in the new and
current cluster configurations respectively, total shards is
the number of shards involved in the NoSQL-database,
duration per shard is the overhead, in seconds, that
each moved shard adds and overhead per shard is the
overhead in operations per second that each moved shard
generates. Table I shows observed average values of rep-
resentative factors involved in the estimation of Transition
Cost and Delay. Multiple experiments yield invariable
values indicating constant overhead behavior.

TABLE I: Transition cost values

Variable Value

Dstartup 3 secs

Dshutdown 2 secs

duration per shard 4 secs

overhead per shard 1000 oper/sec

total shards 10

IV. LOOK-AHEAD OPTIMIZATION FOR CSPs

Our main objective is to identify the least expensive com-
bination of nodes that collectively satisfies the constraints
imposed by the cloud applications(s). These constraints can
be either strong (i.e., calling for SLA penalty minimization)
or weak (i.e., seeking to lower the CSP expenses). Either
way, the selection of VMs and the identification of a “cluster”
to be used highly depend on the current configuration on
which the application runs as well as its anticipated workload
characteristics. [10] showed that service provisioning is NP-
hard and suggested heuristics to prune the solution space by

limiting either the depth of the ensued search tree or the time
period within which a viable solution is sought.

We employ Look-Ahead Optimization (LAO) to identify
a (sub)optimal selection of a new cluster configuration by
examining all possible paths that are feasible at a specific
point in time. Our approach uses the current state of affairs
within the cluster and seeks to optimize future states. As
in [5], we assume a relatively accurate predictor for workload
characterization to predict the outcome of a future cluster
configuration.

A. Receding Horizon Control (RHC)
is a LAO–method that iteratively solves an optimization

problem for a fixed time interval while taking into account
current and future constraints; it has been successfully used
for resource provisioning [4]. RHC functions in a recurrent
fashion as follows:
S1) At time k, find an optimal solution for the specific and fixed–

period [k, k + T] while considering current allocations and
forthcoming constraints.

S2) Apply only the first element of the above optimal sequence.
S3) Shift time t to k + 1 and repeat the process for the interval

[k + 1, . . . , k + T + 1].
Should there be no (other) external factors that affect the

cost computation of the solution sought in step S1 above, the
RHC finds the optimal solution for the given time-window T .
We assume the following:
A1) J represents the sum of the current2 operational/leasing cost

of the VM resources placed in a cluster from both private and
public CSPs, the costs of incurred SLA violations and public
CSP pay-backs, and the imposed transition cost for a unit of
time,

A2) xt represents the state of the cluster in terms of the set of
allotted resources at time t,

A3) ut entails all feasible transitions to reach a new cluster config-
uration at time t; this set of transitions involves additions or
removals of VMs,

A4) {xt} is the sequence of all states generated in the period k. . . t,
A5) {ut} is the sequence of all transitions that have taken place

within period k. . . t,
A6) xi+1 = f(xi, ui) for i = k, . . . , k+T , where f is the function

that maps a state xt to the next xt+1 according to ut input
choices available at time t,

A7) cost({xi}, {ui}) =
∑i=k+T

i=k
J(xi, ui) represents the cumula-

tive cost incurred while following the {xi} sequence with the
corresponding {ui} sequence and J is the cost function defined
above in A1.

In step S1 of the RHC, we identify the optimal solution as
the one that provides as costopt = min cost({xt}, {ut}). The
solution of the above optimization problem leads to a sequence
of suggested cluster configurations {xk, ..., xk+T } and a re-
spective sequence of transitions {uk, ..., uk+T } that eventually
take place. The sequence {xk, ..., xk+T } corresponds to a
path having the minimum cumulative cost in the time–window
elapsed between k . . . k + T .

B. Selecting the Time-Window Period

The time-window is a fundamental RHC parameter as it
designates the depth in which a solution is to be searched
and presents a number of trade-offs. On the one hand, a short

2based on time t.

window might miss a number of good long-term changes if
it cannot capture significant future workload changes. On the
other hand, a long time-window affects the execution time
of the algorithm as it may introduce exponential complexity.
A viable choice for time-window length should be able to
capture at least a few complete transitions in the make up
of a cluster as well as pertinent overheads. Any benefits in
the operation of a re-aligned cluster will be reaped after the
transition eventuates. Hence, it is also imperative that the time-
window be a function of the average duration of the transitions.

C. Resource Provisioning Algorithm

Algorithm 1 recursively determines the cost as well as
the entire sequence of cluster configurations generated within
the time-window [start time, end time] that imposes mini-
mum cost for the private CSP (best configs). Starting from
the initial cluster configuration (cc), the algorithm exam-
ines all possible configurations that can be reached while
trying to identify the next configuration possibly involving
VMs from public CSPs as well. The invocation of POSSI-
BLE CLUSTER CONFIGS() produces feasible configurations by
taking into account the replication factor of the NoSQL-
database. The replication factor designates the number of
redundant copies of shards, and so, it limits the number of VMs
that can be removed from a cluster during a single transition.

Algorithm 1 Provisioning Best-Plan

procedure BEST PLAN(cc, start time, end time, best cost, best config)
for all cl in POSSIBLE CLUSTER CONFIGS(cc) do

tr delay, tr duration, tr overhead = TRANSITION(cc, cl)
time = start time
if tr delay + tr duration + time > end time then

cost = 0
tr delay = 0
tr duration = end time - start time

end if
cost = PARTIAL COST(

cc, cl, tr duration, tr delay,
tr overhead, start time)

time += tr delay + tr duration
configs = []
if time < end time then

p cost, configs = BEST PLAN(
cl, time, end time, best cost, best configs)

cost += p cost
end if
if cost < best cost then

best cost = cost
best configs = cl + configs

end if
end for

return (best cost, best configs)
end procedure

A possible change in cluster configuration implies transition
costs for resource re-alignment that may require non-negligible
operations and takes a duration interval to unfold. Moreover,
the transition may have a latency, termed delay, before it ac-
tually completes. TRANSITION() estimates for transition delay,
duration and overhead based on the suggested performance
model of Section III. These three values, along with current
and a feasible new cluster configuration, are furnished to
Algorithm 2 (PARTIAL COST) to assess the cost of a proposed
transition; the latter is essentially the factor J defined in A1
above. Subsequently, Algorithm 1 shifts the start time of the

time-window by as much as the time required to complete the
suggested transition. The algorithm then moves to compute the
rest of the optimal cluster configuration sequence in a recur-
sive manner always using the first element of the remaining
sequence as the pivot for its exploration. In this regard, the
recursive calls along with the loop over the set produced by
POSSIBLE CLUSTER CONFIGS(), build a tree with all feasible
configuration sequences within the sought time-window. While
this tree is traversed, the loop keeps the sequence(s) with the
minimum partial cost, which effectively results in the optimal
cluster configuration sequence for the time-window.

Algorithm 2 realizes the operation of PARTIAL COST() and
computes the entire cost including transitioning, violation of
SLA, pay-backs from public CSPs, and operational overheads,
for a suggested new configuration. PARTIAL COST() takes as
input the current configuration (old cl config), the proposed
new configuration (cl config), the estimated transition duration
(tr duration), delay (tr delay) and overhead (tr overhead) as
well as the start time (start time) and returns the total cost of
the transition period. The additional work that a private CSP
has to undertake to bring the cluster to its new suggested state
is designated by the tr delay interval. The latter corresponds to
the latency of the transition and through this period, the cluster
appears as operating its prior configuration (old cl config).
When VMs are moved in and out of a configuration, they
remain idle during this process –no service is provided– and
tr delay accounts for the effort required to accomplish this
re-alignment of resources. As soon as tr delay is accounted
for, the transition is in progress. In this transition phase, the
operating VMs of the cluster involve elements from both old
and new configurations as: 1) newly introduced VMs become
fully functional after the completion of the transition, and
2) VMs to be removed are released immediately after tr delay.

Algorithm 2 Partial Cost

procedure PARTIAL COST(old cl config, cl config, tr duration, tr delay,
tr overhead, start time)

op cl config = UNION(cl config, old cl config)
// the total nodes allocated during tr delay

tr cl config = INTERSECT(cl config, old cl config)
// the fully functional cluster during the transition

cost = 0
time = start time
tr end time = start time + tr delay + tr duration
while time < tr end time do

wl = workload[time]
// workload is the array of predicted future workload
// (operations per time unit)

if time - start time < transition delay then
p cost = CLUSTER CONFIG COST(

op cl config, old cl config, wl, 0)
else

p cost = CLUSTER CONFIG COST(
cl config, tr cl config, wl, tr overhead)

end if
cost += p cost

end while

return cost
end procedure

For a specific point in time, CLUSTER CONFIG COST() com-
putes the operational and penalty costs incurred by possible

TABLE II: VM specifications

CSP CPU CPU freq RAM Penalty Cost

cores (GHz) (GB) per SLA violation (per sec)

(in monetary units)

prv 4 3.2 8 − 35

prv 2 2.4 6 − 40

pub1 4 2.4 3 0.3 55

pub1 4 2.4 4 0.15 60

pub2 4 3.2 8 0.25 65

pub2 4 3.4 8 0.2 75

SLA violations. Algorithm 3 takes as input the VMs currently
allotted (op cl config), the cluster configuration (cl config),
the expected workload at this time instance (expressed in
number of operations per time unit) and the transition overhead
(tr overhead); CLUSTER CONFIG COST() returns the opera-
tional cost of the cluster configuration during the time unit
in question. To compute potential SLA violations, we use
linear and support vector regression to gauge the maximum
throughput of a given cluster configuration and the DROP
rate (Section III). The above is accomplished by respectively
invoking PREDICT THROUGHPUT() and PREDICT DROP(). The
fraction of SLA violations accorded to VMs coming off public
CSPs yields pay-backs to the private CSP. OPER CL COST()
determines the sum of the current rental/operational cost of
each node within op cl config depending on whether the VMs
in question belong to either a public or the private CSP.

Algorithm 3 Cluster Configuration Cost

procedure CLUSTER CONFIG COST(op cl config, cl config, workload,
tr overhead)

total workload = tr overhead + workload
cluster throughput = PREDICT THROUGHPUT(cl config)
handled workload = min(cluster throughput, total workload)
drop = PREDICT DROP(cluster config)
violations = max(total workload - handled workload, 0)
// violations due to throughput

violations += handled workload * drop
// violations due to DROP

violations per node = violations / cl config.nodes no
payback = 0
for node in cl config do

if node.belongs to public csp then:
payback += node.sla.penalty * violations per node

end if
end for
total penalty = app sla penalty * violations - payback
// app sla penalty is the penalty for each SLA violation
// in the application

return OPER CL COST(op cl config) + total penalty
end procedure

V. EVALUATION

A. Our Cost Model vs. SLA-Cost Minimization

We present key evaluation results derived with a prototype
that implements our suggested provisioning approach. Our
system is written in Python v.2.7.5 and uses the scikit-learn
library [19] for SVR computing. Table II depicts the key

 7000

 9000

 11000

 13000

 15000

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960

 1

 2

 3

 4

 5

 6

O
p

e
ra

ti
o

n
s
 p

e
r

s
e

c
o

n
d

V
M

s
 #

Time (seconds)

Operations per second

VMs #

Fig. 4: RHC with SLA-Cost Minimization

 7000

 9000

 11000

 13000

 15000

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960

 1

 2

 3

 4

 5

 6

O
p

e
ra

ti
o

n
s
 p

e
r

s
e

c
o

n
d

V
M

s
 #

Time (seconds)

Operations per second

VMs #

Fig. 5: RHC with our Cost Model

features of VMs used in experiments along with respective
costs and SLA violation penalties as advertised by public CSPs.

We set the penalty for each SLA violation of the application
running to 0.3 monetary units and the time-window size to 60
secs. In the beginning of every experiment, a cluster consists
of 2 VMs from the private CSP. For simplicity, we add/remove
1 VM during each transition every 60 secs. We investigate the
following:
• how our cost model (A1) fares with the conventional SLA-

cost minimization approach,
• the effect that the transition cost has on provisioning and
• how our approach reacts in short/long workload spikes.

The workload of the experiment was created using the YCSB
and we employed epochs demonstrating periodic behavior.
Every such epoch has length of 600 secs (i.e., top curves
in Figs. 4, 5, and 6). Within every epoch, the workload is
gradually increased and remains high for about 250 secs.
Then, it is decreased abruptly until a short spike is met on
the 300th sec. After the spike the workload’s trend remains
unchanged until another spike is met on the 480th sec. Then
workload gradually decreases until the end of the epoch.
The random generators used to produce the workload follow
uniform distributions. Although, we run numerous and lengthy
experiments, we only report representative results from a
specific range of 1,000 secs for readability purposes.

We use RHC as the main framework for provisioning and
we compare our cost model with that of the widely-used
SLA-cost minimization approach [3], [16]. Both techniques
are deployed in a private/public CSP infrastructure and we
track the number of allocated VMs over time for the execution
of a synthetic workload, which consists of a diverse number
of GET operations per sec. We also monitor the following
accrued costs as reported by the (YCSB) client: 1) the penalty
cost of the SLA violations, 2) the operational cost of the private
CSP 3) the lease cost of VMs rented from a public CSP
4) the penalty payback, and 5) the transition cost. The SLA-
cost minimization approach involves only the penalty cost due

to SLA violations and it does not include cluster operational
costs, pay-backs from public CSPs as well as transition costs
(i.e., tr overhead is 0).

Figs. 4 and 5 depict the number of VMs used by the SLA-
cost minimization approach and our provisioning approach
respectively. Fig. 4 shows that the SLA-cost minimization ap-
proach tends to allocate more VMs to handle the workload and
to maximize QoS. The conventional SLA-cost minimization
approach does not take into account the operational cost of
the VMs in the cluster and thus, often chooses configurations
with the highest performance capacity. This approach appears
to “encourage” changes in cluster configurations, as there is
no consideration for transitional costs.

In contrast, Fig. 5 shows that our approach requires fewer
VMs for most of the time and releases them as soon as they
are not needed to reduce operational cost. The transition cost
makes our approach more conservative to changes. In our
approach, there are only 4 encountered configuration changes
compared to 13 in the SLA-cost minimization method. By
considering operational/transition costs as well as pay-backs,
our approach tries to balance performance capacity on the one
hand, and the investment in new cluster configurations with
more/fewer resources on the other. This is why our approach
uses only 2 VMs to handle the workload in time interval
240−1,000 while the conventional SLA-cost minimization
method exploits most of available VMs in the experiment.
Note that in our approach the last 2 VMs are different than
the initial. In fact, they both belong to public CSPs and the
reason the algorithm does not decide to move to another cluster
configuration is because the payback from these VMs balances
the total cost. Also, our approach decides the first transition
before the SLA-cost minimization approach. This is due to the
fact that the node selected by our approach is the first that
belongs to a public CSP and hence, the payback from this
node results in a better solution. In the SLA-cost minimization
approach this does not happen since the workload can be
handled by the initial cluster configuration since it is fairly

 7000

 9000

 11000

 13000

 15000

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960

 1

 2

 3

 4

 5

 6

O
p

e
ra

ti
o

n
s
 p

e
r

s
e

c
o

n
d

V
M

s
 #

Time (seconds)

Operations per second

VMs #

Fig. 6: Our Provisioning Approach with Lower Transition Cost

low (less than 11,000 operations per sec).
When it comes to costs, the SLA-cost minimization approach

is on average 475% more expensive than our approach just
for the limited 1,000 secs of observation. Since the SLA-cost
minimization approach ignores the transition cost, it falls into
many situations where the cluster is overloaded, hence the
current throughput drops dramatically. The reduction of the
throughput in the SLA-cost minimization approach results in
41% fewer operations completed in the reported period.

The above results clearly show that the penalty minimization
of the SLA violations does not lead to the minimization of the
total cost. As our approach can better capture the actual costs
involved in the execution of workloads, it is of substantial
value to NoSQL-database owners.

B. The Effect of Transition Cost

We next evaluate how transition cost affects the cluster
configuration changes. When a cluster that runs a NoSQL–
database allocates or deallocates VMs, shards need to be
transported. The overhead of this process is the transition cost,
which is a key factor for provisioning since it indirectly affects
the total cost of the private CSP. Fig. 6 depicts the results of
the same experiment as that of Fig. 5 but with lower transition
cost. Here, we set the tr overhead of Table I at 90% less than
the corresponding values of the first experiment. We find that
the number of transitions increases from 4 (in Fig. 5) to 16
as transition costs decrease. In the original experiment, high-
transition configuration changes are not encouraged by our
approach, as the potential benefits are less than the incurred
cost. More specifically, the provisioner decides to release and
acquire a VM continuously after 240 secs since the transition
cost has been reduced and the cluster can handle the workload
with only 1 VM.

With lower transition costs, our RHC–based provisioning
becomes more aggressive in tracking even rapidly changing
workload trends. For an effective transition to occur, the length
of the time-window used must be longer than the respective

 7000

 9000

 11000

 13000

 15000

 0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960

 1

 2

 3

 4

 5

 6

O
p

e
ra

ti
o

n
s
 p

e
r

s
e

c
o

n
d

V
M

s
 #

Time (seconds)

Operations per second

RHC VMs #

SLA-cost minimization VMs #

Fig. 7: Long and Short Workload Spikes

transition cost. NoSQL-databases occasionally present varying
transition costs. When these transition costs are also high,
these systems are less less effective at handling rapidly chang-
ing workloads. Hence, the transition cost is a key factor
when using a NoSQL-database as it is equally critical to
throughput and DROP attained when the workload displays
abrupt variations.

C. Long vs. Short Workload Spikes

In this experiment, we investigate how our RHC-based
approach compares with SLA-cost minimization when there
are spikes in the workload. Spikes are often met whenever the
user requests are increased for some reason (i.e., flash crowds).

Fig. 7 shows a workload featuring a long and a short spike
at time intervals 120−420 and 720−735, respectively. The
figure also depicts how our RHC-based provisioning and the
SLA-cost minimization approaches behave in both instances.
Our approach handles the long spike by adding VMs while it
essentially ignores the short spike. During the short spike, the
cluster does not move to another configuration to handle this
short-lived demand as the total cost for a possible transition is
greater than the cost of inaction. At the end of the long spike,
the SLA-cost minimization method ends up having 5 out of
6 of the available VMs, which leads to a long deallocation
period as deallocations are not instant. Hence, unnecessary
VMs continue to be allocated for some time after the spike
ceases which results in higher operational cost. During the
short spike, the conventional SLA-cost minimization method
attempts to allocate additional resources being oblivious of
what lies ahead. In this specific instance (i.e., time interval
720−735), the transition costs involved are of similar length to
the spike in question. Thus, additional VMs become functional
beyond the time at which the spike ends yielding a resource
thrashing situation. Our RHC-based provisioning avoids such
thrashing because it continually evaluates the total cost of
every feasible sequence of cluster configurations in a time-
window and picks the best. As for the cost, the SLA-cost

minimization approach costs 92% more than our RHC-based
provisioning approach for the observed period.

VI. RELATED WORK

Resource provisioning for cloud-based systems has recently
attracted considerable attention. Efforts in [12], [13] attempt to
address the problem through the use of queueing theory and
respective model building. As cloud systems are inherently
complex, involve parallel and concurrent aspects and are
built on heterogeneous environments, such queueing theory
models are difficult to extend and quickly become intractable.
The extensive use of caching and locking policies further
exacerbates matters [20]. Sharma et al. [5] present a system
that statically searches for best allocation scenarios and then
picks one that minimizes migration costs. The work also advo-
cates for the adoption of performance model building through
profiling. Roy et al. [4] presented an RHC-based approach
that minimizes the operational cost of a host–cloud while
satisfying all SLAs. However, price variation for resources as
well as penalty pay-backs from public CSPs are not taken into
account in the used price model. Goudarzi et al. [12] outline
a heuristic approach to minimize the total energy cost of a
cloud computing system while keeping the SLA-incurred costs
low. Although this work appears to incorporate multiple costs
into the minimization problem, the use of queueing theory
models entails issues similar to those mentioned above. Barker
et al. [3] presented a migration approach for multi-tenant
databases that utilize a throttling controller; the latter aims to
dynamically vary the migration speed to avoid SLA violations
due to the transition cost imposed by a migration. To the
best of our knowledge there is no work that combines penalty
pay-back from public CSPs, a critical aspect from the private
CSP’s point of view, and only a few [3]–[5] take into account
the transition cost. Our work also takes a holistic approach and
addresses resource provisioning through the occasional leasing
of public resources in a way that minimizes total cost for the
private CSP.

VII. CONCLUSIONS & FUTURE WORK

In this paper, we investigate how NoSQL-databases running
on private Cloud-Service Providers (CSPs) could be partially
“tossed out” to opportunistically exploit resources available
from public CSP counterparts. Such collaborative auto-scaling
helps both minimize total cost for the private CSP–hosted
application and more flexibly address QoS-requirements. We
presented a resource provisioning approach based on look-
ahead optimization that leads to lower CSP costs for a limited
time-window while considering how to best transform the
utilized virtual infrastructure over time. We identify key factors
that contribute to the CSP aggregate cost and propose a cost
model that accounts for both direct and indirect penalties
to avoid SLA violations for the hosted-application(s). Our
evaluation demonstrates the benefits of our cost model over

the conventional approach of simply minimizing SLA cost with
reported gains of up to 475% for the conducted experiments.
Moreover, we show that the use of a look-ahead optimization
technique helps avoid resource allocation thrashing when the
workload changes rapidly. We plan to investigate the relaxation
of the accuracy of the used predictor, examine the respective
ramifications and ascertain the role introduced errors may have
in workload estimation.
Acknowledgment: This work has been partially supported by
iMarine and Sucre EU-FP7 projects, ERC Starting Grant
#279237 and a THALES grant co-financed by EU-ESF and the
Greek NSFR “Education and Lifelong Learning” Program.

REFERENCES

[1] K. Tsakalozos, M. Roussopoulos, V. Floros, and A. Delis, “Nefeli: Hint-
based Execution of Workloads in Clouds ,” in Proc. of the 30th IEEE
ICDCS Conf., Genoa, Italy, June 2010.

[2] C. Stewart, T. Kelly, A. Zhang, and K. Shen, “A Dollar from 15 Cents:
Cross-platform Management for Internet Services,” in USENIX 2008
Annual Tech. Conf. (ATC’08), Boston, MA, June 2008, pp. 199–212.

[3] S. Barker, Y. Chi, H. J. Moon, H. Hacigümüş, and P. Shenoy, “”Cut me
Some Slack”: Latency-aware Live Migration for Databases,” in Proc. of
the 15th Int. Conf. on EDBT, Berlin, Germany, March 2012.

[4] N. Roy, A. Dubey, and A. Gokhale, “Efficient Autoscaling in the Cloud
Using Predictive Models for Workload Forecasting,” in Proc. of the 4th
IEEE CLOUD Conf., Washington, DC, July 2011.

[5] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A Cost-Aware Elasticity
Provisioning System for the Cloud,” in Proc. of the 31st IEEE ICDCS
Conf., Minneapolis, MN, June 2011.

[6] “Elasticsearch,” http://www.elasticsearch.org.
[7] “MongoDB,” http://www.mongodb.org/.
[8] R. Cattell, “Scalable SQL and NoSQL Data Stores,” ACM SIGMOD

Record, vol. 39, no. 4, pp. 12–27, May 2011.
[9] H. N. Van, F. D. Tran, and J.-M. Menaud, “SLA-Aware Virtual Resource

Management for Cloud Infrastructures,” in Proc. of the 9th IEEE
Int. Conf. on Computer and Information Technology (CIT’09)-vol. 2,
Xiamen, China, October 2009, pp. 357–362.

[10] S. Stein, N. R. Jennings, and T. R. Payne, “Provisioning Heterogeneous
and Unreliable Providers for Service Workflows,” in Proc. of the 6th
ACM Int. Joint Conf. on AAMAS, Honolulu, HI, May 2007.

[11] M. Wachs, L. Xu, A. Kanevsky, and G. R. Ganger, “Exertion-based
Billing for Cloud Storage Access,” in Proc. of 3rd USENIX Conf. on
Hot topics in Cloud Computing (HotCloud’11), Portland, OR, June 2011.

[12] H. Goudarzi, M. Ghasemazar, and M. Pedram, “SLA-based Optimization
of Power and Migration Cost in Cloud Computing,” in Proc. of 12th
IEEE/ACM Int. Symp. on CCGrid, Ottawa, Canada, May 2012.

[13] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M. Vahdat, “Model-
based Resource Provisioning in a Web Service Utility,” in Proc. of the
4th USENIX Symp. on Internet Technologies and Systems (USITS’03),
Seattle, WA, March 2003.

[14] J. Rogers, O. Papaemmanouil, and U. Çetintemel, “A Generic Auto-
provisioning Framework for Cloud Databases,” in Workshops Proc. of
the 26th IEEE ICDE. Long Beach, CA: IEEE, March 2010, pp. 63–68.

[15] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in Proc. of the 1st
ACM Symp on Cloud Comp. (SoCC’10), Indianapolis, IN, June 2010.

[16] S. K. Garg, S. K. Gopalaiyengar, and R. Buyya, “SLA-based Resource
Provisioning for Heterogeneous Workloads in a Virtualized Cloud Dat-
acenter,” in Proc. of 11th Int. Conf. on A3PP-Vol. Part I. Melbourne,
Australia: Springer-Verlag, October 2011.

[17] “RapidMiner,” http://rapidminer.com/.
[18] V. Vapnik, The Nature of Statistical Learning Theory. Berlin, Germany:

Springer-Verlag, 1995.
[19] “scikit-learn,” http://scikit-learn.org/.
[20] “Couchbase Server Under the Hood: An Architectural Overview,” White

Paper, couchbase.com, 2013.

