
COEUS: Community Detection via Seed-set
Expansion on Graph Streams

Panagiotis Liakos∗, Alexandros Ntoulas†‡ and Alex Delis∗§
∗University of Athens, Athens, Greece, Email: {p.liakos, ad}@di.uoa.gr

†LinkedIn, Mountain View, CA, Email: ntoulas@gmail.com
§New York University Abu Dhabi, Abu Dhabi, U.A.E.

Abstract—We examine the problem of effective identification
of community structure of a network whose elements and their
respective relationships manifest through streams. The problem
has recently garnered much interest as it appears in emerging
computational environments and concerns critical applications
in diverse areas including social computing, web analysis, IoT
and biology. Despite the already expended research efforts in
detecting communities in networks, the unprecedented volume
that real-world networks now reach, renders the task of revealing
community structures extremely burdensome. The sheer size of
such networks oftentimes makes their representation in main
memory impossible. Thus, processing the developing graphs to
extract the underlying communities remains an open challenge.
In this paper, we propose a graph-stream community detection
algorithm that expands seed-sets of nodes to communities. We
consider a stream of edges and aim at processing them to form
communities without maintaining the entire graph structure.
Instead, we maintain very limited information regarding the
nodes of the graph and the communities we seek. In addition to
our novel streaming approach, we both develop a technique that
increases the accuracy of our algorithm considerably and propose
a new clustering algorithm that allows for automatically deriving
the size of the communities we seek to detect. Our experimental
evaluation using ground-truth communities for a wide range of
large real-word networks shows that our proposed approach does
achieve accuracy comparable or even better to that of state-
of-the-art non-streaming community detection algorithms. More
importantly, the attained improvements in both execution time
and memory space requirements are remarkable.

I. INTRODUCTION

Graph structures attract significant attention as they allow
for representing entities of various domains as well as the
relationships these entities entail. Real-world networks are
commonly portrayed using graphs and are often massive.
Despite their size, such networks exhibit a high level of
order and organization, a property frequently referred to as
community structure [8]. Nodes tend to organize into densely
connected groups that exhibit weak ties with the rest of the
graph. We refer to such groups as communities, whereas the
task of identifying them is termed community detection.

Community detection is a fundamental problem in the
study of networks and becomes more relevant with the preva-
lence of online social networking services such as Twitter and
Facebook. Identifying the social communities of an individual
enables us to perform recommendations for new connections.

This work has been partially supported by the University of Athens
Special Account of Research Grants № 13233.

‡This work was done before author joined LinkedIn.

Moreover, by better understanding the membership of an indi-
vidual to various organizational groups, we can provide more
informative and engaging social network feeds. In addition to
social networks, community detection is successfully applied
to numerous other types of networks, such as biological or
citation networks. In the former, we are particularly interested
in inferring communities of interacting proteins, whereas in the
latter we wish to uncover relationships between disciplines or
the citation patterns of authors [7].

In the last two decades a plethora of community detection
methods has been proposed. Initially, the focus has been on
non-overlapping communities [2], [4], [21], [22]. More recent
approaches, however, allow for nodes to belong to more than
one community [1], [6], [9], [23], [24], [25]. Still, these
approaches are not applicable to the massive graphs of the
Big Data era, as they focus on the entire graph structure
and do not scale with regards to both execution time and
memory consumption. Recent efforts manage to scale as far as
execution time is concerned by focusing on the local structure
and expanding exemplary seeds-sets into communities [12],
[16], [10], [17]. Such a seed-set expansion setting can be
applied to numerous real world applications, e.g., given a few
researchers focusing on Big Data we can use a citation network
to detect their colleagues in the same field. However, the space
requirements of such algorithms rapidly become a concern due
to the unprecedented size now reached by real-world graphs.
The latter have become difficult to represent in-memory even
in a distributed setting [18].

An increasingly popular approach for massive graph pro-
cessing is to consider a data stream model, in which the stream
comprises the edges of a graph [20]. This is a new direction
in the field of community detection and to the best of our
knowledge no prior approach has considered such a setting
without imposing restrictions on the order in which edges are
made available [11], [27]. In this paper, we propose COEUS,
a novel community detection algorithm that is fully applicable
on graph streams. Figure 1 depicts such a graph stream whose
edges arrive at no particular order. COEUS is initialized with
seed-sets of nodes that define different communities, such as
the three sets depicted with the circles of Figure 1. As edges
arrive, we can process them but we cannot afford to keep them
all in-memory. Therefore, COEUS maintains rather limited
information about the adjacent nodes of each edge and their
participation in the communities in question. This information
is kept using probabilistic data structures to further reduce
the memory requirements of our algorithm. In addition to
our original idea for community detection in graph streams,

5

2
8

3

6
4

7

1

9 8

2 3
..
.

Fig. 1: A stream comprising the edges of an undirected graph
and a set of communities initialized with a few seed nodes.
For every edge of the stream we wish to evaluate whether the
adjacent nodes belong to the communities we examine.

we propose two algorithms to enhance the effectiveness of
COEUS. The first one focuses on better quantifying the quality
of each edge w.r.t. to a community. The second one is a novel
clustering algorithm that allows for automatically determining
the size of the resulting communities, in spite of the absence
of the graph structure.

Our experimental results on various large scale real-world
graphs show that COEUS is extremely competitive with regard
to accuracy against approaches that employ the entire graph
structure and cannot operate on graph streams. More specifi-
cally, COEUS can process with just a few MBs, graphs that
prior approaches fail to handle on a machine with 16GB of
RAM. Moreover, COEUS is able to derive the communities
in question inordinately faster. For instance we show that
COEUS is more than 17 times faster for the largest graph
we could process with previously suggested approaches. More
importantly, COEUS is able to return its resulting communities
on demand at any time as we process the graph stream. This is
particularly important, as even if we could afford to use space
linear to the number of a graph’s edges, no other approach
is able to update communities as new edges arrive with no
additional significant computational cost.

In summary, we make the following contributions:

• We propose COEUS, a novel community detection algo-
rithm that can operate on a graph stream. To the best
of our knowledge this is the first community detection
algorithm that uses space sublinear to the number of edges
and does not impose any restrictions on the order in which
edges arrive in the stream.

• We develop a variation of our algorithm to better quantify
the quality of each edge w.r.t. a community and verify that
it improves the accuracy of COEUS impressively.

• We suggest a novel clustering algorithm that allows
for automatically determining the size of the resulting
communities of COEUS.

• We experimentally evaluate the accuracy of our algorithm

and show that it is extremely competitive with prior
approaches that cannot operate on graph streams and
require the presence of the entire graph structure. In
addition, we show that both the execution time and space
requirements of COEUS are astonishingly low.

Our paper is organized as follows: We first formulate our
problem and discuss our approach for graph stream community
detection in Section II. In Section III, we extensively evaluate
our approach and its variations with regard to accuracy, execu-
tion time, and space requirements. Section IV reviews related
work and finally, Section V concludes our paper.

II. COMMUNITY DETECTION VIA
SEED-SET EXPANSION ON GRAPH STREAMS

This section first formulates the problem we target in
this work. Then, we discuss the space requirements of our
algorithm, and present our novel approach for streaming com-
munity detection. Lastly, we propose two enhancements to our
algorithm, that greatly improve its effectiveness and efficiency.

A. Problem formulation

Consider a streaming sequence of unique unordered
pairs e = {u, v} where u, v ∈ V . Such a stream
S = 〈e1, e2, . . . , em〉 naturally defines an undirected un-
weighted graph G = {V,E}, where V is the set of
vertices {v1, v2, . . . , vn} and E is the set of undirected
edges {e1, e2, . . . , em}. Given a community seed-set K =
{k1, k2, . . . , kl} ∈ V , our goal is to extend it to a community
C. Figure 1 shows such a graph stream with two visible
arriving edges, and three seed-sets that are to be extended to
communities.

A community is generally thought to be a set of nodes of
a graph that are tightly connected to each other and maintain
very few ties with the rest of the graph’s nodes [21]. However,
there is no universal definition of what communities are,
and thus, there exists a plethora of different approaches in
detecting them. A widely used [9], [16], [19], [23] quality
function in the field of community detection is the conductance
of a community. More specifically, conductance φ(C) of a
community C is formally defined as:

φ =
adj(C, V \ C)

min(adj(C, V), adj(V \ C, V))
, (1)

where:

adj(Ci, Cj) = |{(u, v) ∈ E : u ∈ Ci, v ∈ Cj}|.

Several methods try to detect communities exhibiting low
conductance, in an effort to come up with a set of nodes with
a limited number of ties to nodes outside of the community.
However, tracking the conductance of all possible communities
as we process the edges of stream is inefficient with regard
to both time and space. Instead, we introduce here community
participation cp(u) of a node u in a community, that measures
a node’s u participation level in a community. In particular the
community participation of node u in community C is defined
as:

cp(u) =
|{(u, v) ∈ E : v ∈ C}|
|{(u, v) ∈ E}|

, (2)

i.e., community participation of a node in a community is the
fraction of its adjacent nodes in the graph that are part of the
community. Our intuition is that including nodes exhibiting
high values of cp to a community C will result to a low value
of conductance for the community. To this end, our approach
employs Eq. (2) to detect communities. We note, however, that
the use of a particular quality function, such as conductance
or community participation, does not hinder in any way
the evaluation of our approach against community detection
methods using different quality functions. Such an evaluation
is possible, as there exist publicly available networks with
ground-truth communities. Our experimental setting features
numerous such networks that allow us to verify the efficiency
of different algorithms.

B. Space complexity

The motivation behind graph stream algorithms lies in the
fact that many real-world networks nowadays reach sizes that
are simply too large. Thus, graph algorithms are unable to
store and process the respective graphs in their entirety [20]. In
contrast, graph stream algorithms process a stream comprising
the edges of the graph in the order in which these edges arrive
over time using limited memory.

Earlier streaming community detection approaches have
successfully revealed the community structure of graphs
streams with limited memory requirements. However, the latter
were minimized at the expense of additional constraints on the
order in which the edges of the stream arrive. In particular,
Yun et al. [27] consider a data stream model in which rows of
the adjacency matrix of the graph are revealed sequentially. In
such a setting we are aware at any moment of all neighbors of
certain nodes. Thus, we can apply community detection with
partial information on the subgraphs as they are revealed to us.
Memory requirements are kept low as we can discard at each
step all information that was made available in earlier steps.
Moreover, SCoDa [11] considers a setting in which the edges
of the graph stream arrive as if we picked them uniformly at
random. This allows for estimating whether a newly arriving
edge is an intra-community or an inter-community edge and
enables SCoDa to achieve space complexity that is linear to
the number of the graph’s nodes. However, picking an edge of
the graph uniformly at random requires that we already possess
the graph in its entirety. The latter assumption is not true for
graph streams.

We consider a more practical scenario of a streaming
setting in which the edges of a graph arrive at no particular
order. Thus, we cannot discard information in ways similar to
the techniques in [11], [27]. We focus instead on estimating
the participation level of each node of the graph in each of the
communities we examine, according to Eq. (2). In this context,
we need to keep track of the following aspects as we process
a graph stream:

1) degrees: the total number of nodes each node in the graph
is adjacent to, i.e., the degree of each node in the graph,

2) community degrees: the degree of each node in the
subgraph of each community, and

3) communities: the nodes that comprise each community
we examine.

+1

+1

+1

+1

h1

h2

hd

...
i : u d

w

count

Fig. 2: COUNT-MIN Sketch update process.

Essentially, if |C ′| is the number of communities we
examine, the above information can be kept in-memory using
|C ′| sets (one set for each community we examine), and
|V |(|C ′|+ 1) integers (|C ′|+ 1 integers for each node of the
graph). More specifically, we need one integer for the degree
of each node in the graph, and one integer for each community
we examine to hold the degree of the node in the subgraph that
comprises the nodes of the community. Given that the number
of communities we examine can be large we decided to use
COUNT-MIN sketches to hold the |C ′|+ 1 integers.

The COUNT-MIN sketch [5] is a well-known sublinear
space data structure for the representation of high-dimensional
vectors. COUNT-MIN sketches allow fundamental queries to
be answered efficiently and with strong accuracy guarantees.
They are particularly useful for summarizing data streams as
they are capable of handling updates at high rates. A COUNT-
MIN sketch uses a two-dimensional array of w columns and d
rows, where w = d eε e, d = d ln(1)δ e, and the error in answering
a query is within a factor of ε with probability δ. A total of
d pairwise independent hash functions is also used, each one
associated with a row of the array.

Figure 2 illustrates the update process of a COUNT-MIN
sketch for our specific problem. Consider that an edge (u, v)
arrives in the stream and as v ∈ C we need to increase
the number of adjacent nodes u has in community C. Thus,
we form a unique id using the indices of the node and the
community and create an update (i : u, 1), indicating that the
count of i : u should be incremented by 1. The array count
is updated as follows: for each row j of count we apply
the corresponding hash function to obtain a column index
k = hj(i : u) and increment the value in row j, column k
of the array by 1, i.e., count[j, k]+ = 1. This allows us to
retrieve at any time an (over)estimation of the count of an
event i : u using the least value in the array for i : u, i.e.,
ˆai:u = minjcount[j, hj(i : u)].

C. Our CoEuS Algorithm for Streaming Community Detection

In this section, we discuss the details of our algorithm
for streaming community detection, termed COEUS.1 The
pseudocode of COEUS is given in Algorithm 1.

Input/Output: COEUS takes as its input two parameters:
The first one is a set of community seed-sets K ′ =
{K1,K2, ...,Ks}, where each Ki = {k1, k2, . . . , kl} ∈ V .

1In Greek mythology Coeus was the Titan of intellect, the axis of heaven
around which the constellations revolved and probably of heavenly oracles.

Algorithm 1: COEUS(S,K ′)
input : A set of community seed-sets K ′,

and a graph stream S.
output: A set of communities C ′.

1 begin
2 foreach K ∈ K ′ do
3 C ← {};
4 foreach k ∈ K do
5 C[k] = 1;
6 C ′.put(C);
7 while ∃(u, v) ∈ S do
8 degreeV [u]+ = 1;
9 degreeV [v]+ = 1;

10 foreach C ∈ C ′ do
11 if u ∈ C then
12 degreeC [v]+ = 1;
13 if v ∈ C then
14 degreeC [u]+ = 1;
15 if u ∈ C then
16 C.put(v);
17 if v ∈ C then
18 C.put(u);
19 processedElements+ = 1;
20 if processedElements mod W == 0 then
21 C ← prune(C, s, degreeV , degreeC);

The second one is a stream S = 〈e1, e2, . . . , em〉, where
ei ∈ E, and E is the set of edges of the undirected graph
G = {V,E} that S defines. COEUS processes the edges
of the graph stream to extend each of the seed-sets in K ′

to a community. Thus, the output of COEUS is the set of
communities C ′ = {C1, C2, ..., Cs}, with community Ci
corresponding to seed-set Ki. This output is available on-
demand at all times as we process the stream.

Initialization: The first step of COEUS is to initialize the
communities using the seed-sets (Lines 2-6). This is a simple
procedure in which we create an additional set for each of
the community seed-sets, to hold the nodes of the respective
communities. The seed-sets and the community sets enable
us to query efficiently at any time whether a node is a
seed or a member of a community. Using Figure 1 as an
example, consider that we wish to detect three communities.
COEUS is initiated with three seed-sets that describe these
communities, namely {2, 5, 8}, {3, 6, 8}, and {1, 4, 7}. In this
setting, COEUS creates three community sets that comprise
these nodes.

Stream processing: After initializing the communities,
COEUS is ready to process the stream (Lines 7-21). Due to the
size of the network, we consider that maintaining the whole
graph is prohibitive. Instead, we focus on the degree of each
node in the graph as well as its degree in each community, and
the nodes that comprise each community. For each incoming
edge of the stream, we first increment by 1 the degree of each
of the adjacent nodes in the graph (Lines 8-9). Then, for each
community we wish to extend, we examine whether each of

Algorithm 2: pruneComm
1 Function pruneComm (C, s, degreeV , degreeC)
2 minheap ← [];
3 foreach c ∈ C do
4 cp(c) = degreeC [c]

degreeV [c] ;
5 if minheap.size() < s then
6 minheap.push((c, cp(c)));
7 else if cp(c) > minheap[0] then
8 minheap.pop();
9 minheap.push(c, cp(c));

10 return set(minheap);

the adjacent nodes is a member of the community. If this is
the case, we increment the community degree of the other
node. In addition, if the other node is not a member of the
community, we add the node to the community (Lines 11-
18). Going back to the example of Figure 1, with the arrival
of edge {9, 8} COEUS will first increment the degree of both
nodes 8 and 9 by 1. After that, COEUS will examine for every
community if nodes 9, or 8 are members of the community.
This is true regarding node 8 for two communities. Therefore,
COEUS will increment the community degree of node 9 by 1
for both communities. In addition, COEUS will add node 9 to
both communities that node 8 belongs to.

As the diameters that real-world networks exhibit are small
and in many cases decrease as the network grows [14], the
communities COEUS detects through the above process often
grow considerably in size. However, we wish to focus on nodes
that are tightly connected to each other for each community.
To this end, we additionally consider a window of size W .
During a window, the communities may grow freely in size,
as new edges arrive. However, when the window closes,
COEUS prunes all communities and keeps only the most
highly involved nodes of each community (Lines 20-21). This
process is detailed with Algorithm 2 and function pruneComm,
which uses Eq. 2 to evaluate each node’s participation level
to community C. For each node c ∈ C we calculate cp(c)
(Line 4). Then, we use a min-heap to hold the nodes with the
highest community participation values. If the size of the min-
heap is currently below s, i.e., the size at which we want to
prune the community, we push the node and its community
participation value to the min-heap (Lines 5-6). Otherwise,
we examine whether the community participation value of
the current node is higher than that of the minimum value
in the min-heap (Line 7). If so, we pop the latter out of the
min-heap, and push the current node in it (Lines 8-9). The
function outputs a set that comprises the nodes that remained in
the min-heap after examining all the nodes of the community
(Line 10). COEUS prunes communities to a size of 100, as
related studies state that quality communities do not surpass
100 nodes [26]. Moreover, COEUS uses a window of 10,000
edges, a value derived via extensive exploratory testing that
consistently works well.

Termination: COEUS can be stopped at will, as the member
nodes of each community are available at any moment. In the
pseudocode of Algorithm 1, we consider a finite stream and
COEUS terminates when all elements of the stream have been

Algorithm 3: addToCommByEdgeQuality
1 Procedure addToCommByEdgeQuality
2 foreach C ∈ C ′ do
3 if u ∈ C then
4 degreeC [v]+ = degreeC [u]

degreeV [u] ;

5 if v ∈ C then
6 degreeC [u]+ = degreeC [v]

degreeV [v] ;

7 if u ∈ C then
8 C.put(v);
9 if v ∈ C then

10 C.put(u);

processed. However, COEUS can handle infinite streams as
well. Besides, all nodes of each community are associated with
a community participation value that COEUS may include in
its output. The higher this value is, the more certain we are
that the respective node is part of the community.

D. Reckoning in edge quality w.r.t. each community

For every edge of a graph stream, COEUS examines
whether an adjacent node is a member of a community. If
so, COEUS increments the respective community degree of its
adjacent node by 1. This procedure takes under consideration
the number of adjacent nodes each node has in a community to
estimate the participation of the node in the latter. However, we
do not consider the level of involvement of the adjacent nodes
in the community. All nodes included in a community provide
increments of 1 to all of their adjacent nodes, regardless
of how well-established the former are in the community.
We discuss here a variation of COEUS to improve over a
simple community degree measure by taking into account the
edge quality of nodes w.r.t. each community. This variation
is reminiscent of PageRank, that employs the network’s link
structure to improve over the in-degree measure [3].

Our variation employs Eq. (2), instead of incrementing
the community degree of a node by 1 for all of its adjacent
nodes that are members of a community. Eq. (2) is equal
to the fraction of the adjacent nodes of a node that are
also members of the community in question. This fraction
is essentially an estimation of the probability that a one-step
random walk starting from the node will lead to a node that
is a member of the community in question. Therefore, the
value of Eq. (2) for each node grows with its involvement
in the community. If this value is high, then the probability
that an adjacent node is a member of the community is also
high. Incrementing the community degree of a node using the
value of Eq. (2) of its adjacent node instead of 1, enables
COEUS to maintain its focus in the community. In particular,
this variation favors nodes that are adjacent to well-established
members of the community, as such nodes receive a significant
increment to their community degree. In contrast, nodes that
exhibit low values of Eq. (2) provide insignificant increments
to the participation levels of their adjacent nodes. Thus, the
potential of nodes exhibiting low values of Eq. (2) to shift the
focus of the community is limited.

 0

 0.01

 0.02

 0.03

 0.04

 25 50 75 100

cp

Rank

community nodes
tail nodes

Fig. 3: Ranking of nodes according to their community partic-
ipation values and the partitioning that Algorithm 4 makes to
come up with a community automatically for a random citation
network community.

Algorithm 3 details the above outlined approach, and can
replace Lines 9-17 of Algorithm 1. The difference in func-
tionality is in Lines 4 and 6 of Algorithm 3, which increment
the participation level of a node in the community using an
estimation of Eq. (2) for the respective adjacent node.

E. Size of the community

COEUS associates each node included in the expanded
community with a community participation value. However,
the size of an actual community might be smaller than the one
COEUS examines. Therefore, COEUS needs to additionally
solve the issue of determining the size of a community
automatically and removing any irrelevant nodes.

Algorithm 4 details dropTail, a procedure that identifies
nodes irrelevant to the community formed with COEUS and
removes them. In this regard, dropTail utilizes the community
participation values of the nodes included in the commu-
nity, and allows for fully automatic, on-demand removal of
irrelevant nodes. More specifically, irrelevant nodes exhibit
weak ties to the actual community and thus, their respective
community participation values are insignificant when com-
pared to the values of other nodes included in the community.
This is evident in Figure 3 that illustrates the community
participation values of nodes included in a community of
a real-world graph, as found by COEUS. We observe that
ordering nodes according to their community participation
values results to a clearly visible tail. The distribution of
community participation values varies, depending on both
the graph and the community in question. Thus, setting a
constant threshold value and discarding nodes that exhibit

TABLE I: Graphs of our dataset reaching up to 1.8 billion edges.

Graphs Type Nodes Edges Average Degree
Amazon Co-purchasing 334, 863 925, 872 2.76
DBLP Co-authorship 317, 080 1, 049, 866 3.31
Youtube Social 1, 134, 890 2, 987, 624 2.63
LiveJournal Social 3, 997, 962 34, 681, 189 8.67
Orkut Social 3, 072, 441 117, 185, 083 38.14
Friendster Social 65, 608, 366 1, 806, 067, 135 27.53

Algorithm 4: dropTail
1 Procedure dropTail
2 Ĉ ← reverseSort(C);
3 totalDifference← 0;
4 previous← 0;
5 foreach c ∈ Ĉ do
6 if previous > 0 then
7 totalDifference← cp(c)− previous;
8 previous← cp(c);

9 averageDifference← totalDifference

Ĉ.size()−1 ;
10 previous← 0;
11 foreach c ∈ Ĉ do
12 if previous > 0 then
13 difference← cp(c)− previous;
14 previous← cp(c);
15 if difference < averageDifference then
16 Ĉ.remove(c);
17 else
18 break;

lower community participation values to remove such tails is
not an option. Instead, we need to adjust to each particular
community and isolate the nodes that belong to the tail through
clustering, To do so, dropTail calculates the average distance
between two consecutive nodes with regard to their ranking
by their associated community participation values (Lines 5-
9). Then, dropTail iteratively examines the value distance of
two nodes in this ranking, starting from the last node. When
this distance is found to be larger than the average distance
of nodes, dropTail stops, as it has spotted a significant gap
between the values of two consecutive nodes (Lines 11-18).
The result of this process for our example is also illustrated
in Figure 3. The average distance between consecutive nodes
w.r.t. the ranking by community participation value is 0.00043.
The first node from the end that exhibits a gap larger than
that from its predecessor is the one ranked 35th. Therefore,
dropTail considers that the tail of irrelevant nodes begins
from the 35th node (depicted using red crosses), and the actual
community is formed by the first 34 nodes (depicted using
green dots).

We note that seed nodes exhibit relatively large community
participation values and their inclusion in this process is
experimentally found to include more relevant nodes in the
tail. Thus, dropTail does not consider seed nodes, but only

those nodes that have been added to the community during its
expansion process.

III. EXPERIMENTAL EVALUATION

We proceed by evaluating the performance of COEUS on
a range of networks from various domains. Our experiments
measure the impact of the novel techniques of our algorithm
and feature comparisons against state-of-the-art community
detection approaches that use the entire graph. We first discuss
the specification of our experimental setting. Then, we proceed
with the evaluation of COEUS by answering the following
questions:

• What is the impact of employing the edge quality varia-
tion of COEUS with regard to its accuracy in detecting
communities?

• Is COEUS able to automatically determine the size of a
detected community using our novel dropTail clustering
procedure?

• Is the accuracy achieved through COEUS comparable to
that of state-of-the-art local community detection methods
that use the entire graph?

• What are the merits of COEUS with regard to execution
time as well as space efficiency when compared to prior
efforts?

A. Experimental Setting

Our dataset comprises the six publicly available social, co-
authorship, and co-purchasing networks listed in Table I.2 The
respective graphs reach up to 1.8 billion edges and possess
ground-truth communities which allow for quantifying the
accuracy of community detection algorithms. To ensure a
fair comparison against a state-of-the-art algorithm [16] we
have adopted its experimental setting and use the top-5000
ground-truth communities of each network that possess the
highest quality according to [15], after enforcing a minimum
community size of 20.

We implemented COEUS using Java 8. Our implementa-
tion, as well as execution tests that enable the reproducibility
of our results are publicly available.3 The experiments were
carried out on a machine with an Intel® CoreTM i5-4590,
with a CPU frequency of 3.30GHz, a 6MB L3 cache and a
total of 16GB DDR3 1600MHz RAM and the Linux Xubuntu
14.04.5 (Trusty Tahr) x86 64 OS. To maintain node and
community degrees we employ in all our experiments COUNT-
MIN sketches. The latter are initialized with the following

2https://snap.stanford.edu/data/#communities
3https://github.com/panagiotisl/CoEuS

 0

 0.2

 0.4

 0.6

 0.8

 1

Am
azon

DBLP

Youtube

LiveJournal

Orkut

Friendster

F
1

-s
co

re

Graph

CoEuS1
CoEuScp

Fig. 4: F1-score comparison for COEUS when incrementing
community degree by 1 (COEUS1) and by community degree
of the adjacent node (COEUScp). The variation of COEUScp
clearly improves the F1-score for all graphs our dataset. The
improvement is particularly impressive for orkut and dblp
graphs.

parameters: i) d = 7, and ii) w = 200,000, so that we obtain
99% confidence that ε < 0.00001. Our evaluation assumes
that three random nodes of each ground-truth community are
provided to each algorithm as an input seed-set. To measure
the accuracy of each algorithm we use the average F1-score
achieved for the communities of each graph. All results re-
ported are averages of multiple executions (for various random
seed-sets and permutations of the order of edges) and are
accompanied with their respective 95% confidence intervals.

B. Impact of the Edge Quality Variation

We begin by studying the behavior of COEUS when
considering our two different techniques of incrementing the
community degree of a node. We denote our algorithm as
COEUS1 when the community degree of each node is incre-
mented by 1 for every adjacent node found in the community
(Algorithm 1) and COEUScp when the community degree of
each node is incremented by the community degree of the
adjacent node (Algorithm 1 with the edge quality variation of
Algorithm 3).

Figure 4 illustrates a comparison between COEUS1 and
COEUScp on their accuracy on detecting the ground-truth
communities of the networks in Table I. It is clearly evident
that the edge quality variation we introduce to COEUS heavily

impacts the ability of our algorithm to accurately retrieve the
members of a community. We see that COEUScp achieves
an increased F1-score compared to COEUS1 for all graphs
included in our dataset. The improvement for graphs dblp,
livejournal, and friendster is particularly impressive, increasing
from 0.263 to 0.469, from 0.369 to 0.684, and from 0.15 to
0.464, respectively. Significant improvements with regard to
F1-score are also achieved for graphs orkut, amazon, youtube,
for which the F1-scores increase from 0.397 to 0.444, from
0.838 to 0.878, and from 0.082 to 0.121, respectively.

These results verify emphatically that the variation of
Algorithm 3 successfully favors nodes that are actual members
of the community in question, and penalizes nodes that exhibit
weak ties with the community, when incrementing their re-
spective community degrees. Thus, the resulting communities
are much more accurate than the ones detected when relying
entirely on Algorithm 1.

We note that this experiment considers for both COEUS1
and COEUScp as size of each resulting community the size of
the respective ground-truth community. We now proceed with
the evaluation of our automatic size determination clustering
algorithm (Algorithm 4), as we cannot assume that the size of
a community is known a priori.

C. Evaluation of Automatic Size Determination

Community detection via seed-set expansion calls for a
stopping criterion for the expanding process. COEUS employs
two techniques to limit the expansion of each community.
The first one, i.e., Algorithm 2, is a pruning procedure that is
periodically applied to reduce the size of the community. The
second one, i.e., Algorithm 4, is a novel clustering algorithm
that is applied on the resulting community of COEUS to
separate the nodes that exhibit weak ties with the community
and should be removed. In this experiment we evaluate the
effectiveness of our clustering algorithm by comparing the
average F1-score of COEUScp and COEUScp-auto; for COEUScp
we assume that the size of each community is known a
priori, whereas COEUScp-auto automatically derives the size of
a community using Algorithm 4.

The first two bars of Figure 5 illustrate the F1-scores
achieved through COEUScp and COEUScp-auto when detecting
the ground-truth communities of the networks of our dataset.
As we can see, our dropTail clustering algorithm is able
to offer impressive performance, as the difference between
the F1-score of COEUScp is in most cases negligible. More
specifically, the difference in F1-score is under 0.06 for all
networks of our dataset and 0.04 on average. This result
strongly highlights the effectiveness of Algorithm 4 to deter-
mine the size of a community automatically. We also note
that Algorithm 4 is extremely efficient, both time- and space-
wise, requiring only two passes over each resulting community
(about 100 nodes), without any access to the graph’s elements.
In contrast, other size determination techniques such as the
one employed in [16] necessitate calculations of complex
community quality measures like that of Eq. (1) for every
possible size of each community and require the presence of
the entire graph.

 0

 0.2

 0.4

 0.6

 0.8

 1

Am
azon

DBLP

Youtube

LiveJournal

Orkut

Friendster

F
1

-s
co

re

Graph

CoEuScp
CoEuScp-auto

LEMON

Fig. 5: F1-score comparison between LEMON and COEUS.

D. Comparison against state-of-the-art non-streaming local
community detection algorithms

After evaluating the impact of Algorithms 3 and 4 on the
accuracy of COEUS, and having verified their effectiveness
in detecting communities in a variety of networks, we now
proceed with comparing our graph stream algorithm against
state-of-the-art non-streaming local community detection al-
gorithms. Our comparison focuses on LEMON as it is shown
in [16] to outperform all [12], [13], [23], whereas the more
recent SCODA [11] reports significantly lower F1-scores and
does not allow overlaps.

1) F1-score comparison: We begin the comparison of
COEUScp-auto with LEMON as far as their accuracy on detecting
communities is concerned. We initialize LEMON with three
random seeds of each ground-truth community of our dataset
and report here averages of multiple executions. The third bar
of Figure 5 illustrates the F1-scores achieved with LEMON for
all six networks. Note, that we were unable to retrieve results
for the two largest networks of our datasets due to LEMON’s
memory requirements. However, we include here the results
reported for orkut in [16].

As we can see, using the entire graph, LEMON is usually
able to slightly outperform COEUScp-auto for small graphs.
However, our algorithm is extremely competitive w.r.t. ac-
curacy, despite the fact that it operates on a graph stream
setting. More specifically, The average F1-score difference of
COEUScp-auto with LEMON for the four smaller graphs of our
dataset is 0.061. Regarding orkut, COEUScp-auto is far more

TABLE II: Execution time comparison between COEUS and
LEMON for all graphs of our dataset. COEUS is remarkably
fast, even for the largest network of our dataset and clearly
outperforms LEMON.

Graphs COEUS LEMON
Amazon 0.0458 sec 3.1197 sec

DBLP 0.0575 sec 7.2756 sec

Youtube 0.176 sec 11.3834 sec

LiveJournal 1.573 sec 28.14 sec

Orkut 7.5171 sec −
Friendster 158.6547 sec −

accurate achieving an F1-score of 0.408 against LEMON’s 0.17.
Finally, our algorithm is able to achieve a notable F1-score of
0.417 for the largest graph of our dataset, which LEMON fails
to handle due to its size.

These results are particularly impressive as the graph
stream setting that COEUS adheres to, is much more restrictive
than the setting LEMON and other prior seed-set expansion
methods operate on. COEUS processes each edge of the graph
as it is becoming available and maintains very limited infor-
mation for each node and community. Hence, it is surprising
that our algorithm achieves comparable accuracy to methods
that utilize the entire graph structure. Furthermore, it is evident
in Figure 5 that our effective novel graph stream techniques
enable COEUS to easily scale to large graphs, which other
community detection methods fail to handle.

2) Execution time and space efficiency comparison: Hav-
ing shown that COEUS is competitive or better than state-
of-the-art non-streaming algorithms as far as accuracy is
concerned, we now report results concerning execution time
and space efficiency.

Table II illustrates a comparison on the execution time
between COEUScp-auto and LEMON. Regarding COEUScp-auto,
we consider a streaming setting in which we process every
edge of each graph to update our structures and expand the
communities in question. Similarly for LEMON, we read the
entire graph in-memory, as only then we can sequentially
expand each community in question. We use only one CPU
core for both algorithms as parallel execution is not an option
for LEMON which is written in Python. The results concern
the average time needed for one community of each network.
As we can see in Table II, our algorithm is extremely faster.
In particular, COEUScp-auto is able to detect a community in
the four smaller networks in time less than 2 seconds, whereas
LEMON needs up to 28.14 seconds. Moreover, COEUS is able
to scale to networks reaching billions of edges requiring only
an impressive total of 158.66 seconds for a community of the
friendster network.

We note that even though these results clearly show that
COEUS is considerably faster than prior approaches, they are
not indicative of COEUS’s speed in a real streaming setting.
In particular, COEUS is able to return the communities in
question on-demand as we process the stream in real-time.
The measurements reported in Table II additionally consider

TABLE III: Comparison of space requirements between
COEUS and LEMON for all graphs of our dataset. COEUS uses
two COUNT-MIN sketches to hold a graph’s elements and
therefore its requirements depend only on the desired approxi-
mation quality of the sketches. LEMON maintains the adjacency
lists of a graph and thus requires significantly more space.

Graphs COEUS LEMON
Amazon 21.36MB 155.74MB

DBLP 21.36MB 156.49MB

Youtube 21.36MB 457.62MB

LiveJournal 21.36MB 2, 652.99MB

Orkut 21.36MB −
Friendster 21.36MB −

edge processing, which we expect that in a real-life setting will
happen faster than edges are made available. In this regard, the
actual response time of COEUS in a streaming setting is in the
order of milliseconds regardless of the size of the graph. Yet,
the results of Table II indicate that COEUS is a very attractive
option even for non-streaming settings.

Table III shows a comparison between the two algorithms
on their space requirements concerning the graph structure.
COEUScp-auto employs two COUNT-MIN sketches which are
initialized in our experiments to require the same space re-
gardless of the graph. Therefore, the space requirements are
independent of the size of the graph and depend only on the
desired approximation quality of the sketches and the number
of communities in question. In contrast, LEMON needs to
maintain in-memory the entire graph structure, using adjacency
lists. Both algorithms require additional space to hold the
communities we seek; however, this space is linear to the
number of the communities and fairly insignificant compared
to the graph structure.

It is evident that the space requirements of COEUS are
remarkably low. Even the largest graph of our dataset, reaching
up to 1.8 billion edges is handled appropriately with just
21.36MB. In contrast, the space requirements of LEMON grow
with the number of edges of a graph. The largest graph we are
able to handle is livejournal with 34 million edges for which
more than 2,500MB are needed. The two largest graphs of our
dataset result in memory errors.

IV. RELATED WORK

Our work lies in the intersection of community detection
over streaming graphs and local community detection via seed-
set expansion. We outline here pertinent aspects of these two
areas.

Local community detection via seed-set expansion: Numer-
ous recent approaches depart from the direction of working
on the entire graph structure. Instead, they focus on detecting
local communities in time functional to the size of the com-
munity and are thus able to support large scale graphs. Such
approaches usually operate using a seed-set of nodes which
they expand to a community. Kloster and Gleich [12] propose a
deterministic local algorithm to compute heat kernel diffusion

and study the communities it produces when initiated with
seed nodes. The authors compare with PageRank diffusion
on large scale real-world graphs and report that using Heat
Kernel diffusion they are able to detect smaller, more accurate
communities, with slightly worse conductance. LEMON [16]
also uses seeds to perform short random walks and forms an
approximate invariant subspace termed local spectra. Then,
LEMON looks for the minimum 1-norm vector in the span of
this local spectra such that the seeds are in its support. To de-
termine the size of the community, the authors of [16] employ
the measure of conductance. In particular, they measure the
conductance of the community as they increase its size, and
stop at the first relative minimum conductance encountered.
Both the above approaches are similar to our setting as they
expand a seed-set of nodes into a community. However, neither
of them is able to handle graph streams. LDLC [17] focuses on
egonets of nodes in networks and performs hierarchical link
clustering to detect all the overlapping communities of a node.
In addition, LDLC uses a measure of dispersion to detect nodes
that share multiple communities and thus avoids to group
together overlapping parts of communities. Our COEUS is
different as it uses a seed-set of nodes and expands it into
a single community.

Streaming community detection: Yun et al. [27] consider
settings in which the size of the network is so large that main-
taining the respective graph is prohibitive. Thus, they study
the problem of clustering the nodes of a graph to communities
in a streaming setting where rows of the adjacency matrix of
the graph are revealed sequentially. They propose an online
algorithm with space complexity that grows sub-linearly with
the size of the network. Our streaming setting does not assume
that rows of the adjacency matrix are completely revealed to
us. Instead, we consider that edges involving any node of the
graph may arrive at any moment. Moreover, we are unaware of
the size of the graph, which grows with time. Zakrzewska and
Bader [28] propose a dynamic seed set expansion algorithm for
community detection. In particular, they consider that edges
may be inserted to or removed from the graph dynamically
and detect the local community of a seed set by incrementally
adjusting to the changes of the graph. The latter allows for
faster execution compared to an algorithm that requires re-
computation after every update at the cost of slightly worse
community quality. Our approach is different as we assume
that we cannot maintain the whole graph in-memory, whereas
the incremental adjustments that [28] performs do impose such
a requirement. Moreover, we suggest a significantly more cost-
effective recomputation of the local community at every step.
Hollocou et al. [11] consider an edge streaming setting and
assign all the nodes of a graph to non overlapping communities
using only two integers per node that hold: i) the node’s degree,
and ii) the current community index assigned to the node.
Their work is heavily based on the observation that if we pick
uniformly at random an edge of the graph, this edge is more
likely to link nodes of the same community, than nodes from
distinct communities. This is expected to be true as nodes
tend to be more connected within a community than across
communities, thus, if we process edges in a random order we
expect many intra-community edges to arrive before the inter-
community edges. However, this requires that we already hold
the graph in its entirety and we are able to select its edges one
by one uniformly at random. We operate on the more practical

assumption that the edges of the graph arrive at no particular
order.

V. CONCLUSION

In this paper we propose and develop COEUS, a novel
graph stream community detection algorithm that expands
seed-sets of nodes into communities. To the best of our knowl-
edge COEUS is the first streaming algorithm that performs
community detection using space sublinear to the number of
edges without imposing any restrictions in the order in which
edges arrive in the stream. COEUS processes a stream of edges
and maintains limited information about the respective graph,
concerning the nodes’ degrees, the participation of nodes into
communities and the nodes that comprise each community we
seek. In addition to COEUS, we propose two algorithms to
improve the effectiveness of our approach. The first one places
emphasis on the quality of an edge w.r.t. a community and
is able to better preserve the focus of a community as the
latter is expanding. The second one allows for automatic on-
demand determination of the size of a community through a
novel clustering technique, tailored to the needs of COEUS.

We compare COEUS with a non-streaming local com-
munity detection method that reportedly outperforms other
recent approaches. Using large-scale networks from various
domains we show that COEUS is able to offer accuracy that
is equivalent to or better than that of methods exploiting the
entire graph, even though it operates on a graph stream. The
two algorithms we propose to enhance COEUS, contribute
enormously to its effectiveness and efficiency, by improving its
accuracy and allowing for real-time determination of the size
of each community. Furthermore, we examine the requirements
of COEUS and show that our algorithm is clearly superior
than prior approaches with regard to both execution time and
space used. Therefore, our COEUS algorithm proves to be
not only an extremely accurate graph stream algorithm, but a
very attractive option for large-scale community detection in
general.

REFERENCES

[1] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal
multiscale complexity in networks,” Nature, vol. 466, no. 7307, pp.
761–764, 2010.

[2] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[3] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual Web
Search Engine,” Computer Networks, vol. 30, no. 1-7, pp. 107–117,
1998.

[4] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical review E, vol. 70, no. 6,
p. 066111, 2004.

[5] G. Cormode and S. Muthukrishnan, “An improved data stream sum-
mary: the count-min sketch and its applications,” J. Algorithms, vol. 55,
no. 1, pp. 58–75.

[6] T. Evans and R. Lambiotte, “Line graphs, link partitions, and overlap-
ping communities,” Physical Review E, vol. 80, p. 016105, 2009.

[7] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3, pp. 75–174, 2010.

[8] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” Proc. of the National Academy of Sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

[9] D. F. Gleich and C. Seshadhri, “Vertex neighborhoods, low conductance
cuts, and good seeds for local community methods,” in Proc. of the 18th
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
2012, pp. 597–605.

[10] K. He, Y. Sun, D. Bindel, J. E. Hopcroft, and Y. Li, “Detecting overlap-
ping communities from local spectral subspaces,” in IEEE International
Conference on Data Mining, Atlantic City, NJ, USA, 2015, pp. 769–774.

[11] A. Hollocou, J. Maudet, T. Bonald, and M. Lelarge, “A linear streaming
algorithm for community detection in very large networks,” ArXiv e-
prints, Mar. 2017.

[12] K. Kloster and D. F. Gleich, “Heat kernel based community detection,”
in The 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, New York, NY, USA, 2014, pp. 1386–1395.

[13] I. M. Kloumann and J. M. Kleinberg, “Community membership identi-
fication from small seed sets,” in Proc. of the 20th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining, pp. 1366–1375.

[14] J. Leskovec, J. M. Kleinberg, and C. Faloutsos, “Graphs over time:
densification laws, shrinking diameters and possible explanations,” in
Proc. of the 11th ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, Chicago, Illinois, USA, August 21-24, 2005, pp. 177–187.

[15] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Statistical
properties of community structure in large social and information
networks,” in Proc. of the 17th Int. Conf. on World Wide Web, ser.
WWW ’08, 2008, pp. 695–704.

[16] Y. Li, K. He, D. Bindel, and J. E. Hopcroft, “Uncovering the small
community structure in large networks: A local spectral approach,” in
Proc. of the 24th Int. Conf. on World Wide Web, 2015, pp. 658–668.

[17] P. Liakos, A. Ntoulas, and A. Delis, “Scalable link community detection:
A local dispersion-aware approach,” in 2016 IEEE Int. Conf. on Big
Data, BigData 2016, Washington DC, USA, December 5-8, 2016, pp.
716–725.

[18] P. Liakos, K. Papakonstantinopoulou, and A. Delis, “Memory-optimized
distributed graph processing through novel compression techniques,”
in Proc. of the 25th ACM Int. Conf, on Information and Knowledge
Management, CIKM 2016, Indianapolis, IN, USA, October 24-28, 2016,
pp. 2317–2322.

[19] M. W. Mahoney, L. Orecchia, and N. K. Vishnoi, “A local spectral
method for graphs: With applications to improving graph partitions and
exploring data graphs locally,” J. Mach. Learn. Res., vol. 13, no. 1, pp.
2339–2365, Aug. 2012.

[20] A. McGregor, “Graph stream algorithms: a survey,” SIGMOD Record,
vol. 43, no. 1, pp. 9–20.

[21] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Phys. Rev. E, vol. 69, no. 2, p. 026113, Feb.
2004.

[22] P. Pons and M. Latapy, “Computing communities in large networks
using random walks,” in Computer and Information Sciences-ISCIS
2005, 2005, pp. 284–293.

[23] J. J. Whang, D. F. Gleich, and I. S. Dhillon, “Overlapping community
detection using seed set expansion,” in Proc. of the 22nd ACM Int. Conf.
on Information & Knowledge Management, 2013, pp. 2099–2108.

[24] J. Yang and J. Leskovec, “Community-affiliation graph model for
overlapping network community detection,” in Proc. of the 12th IEEE
International Conference on Data Mining, 2012, pp. 1170–1175.

[25] ——, “Overlapping community detection at scale: a nonnegative matrix
factorization approach,” in Proc. of the 6th ACM int. Conf. on Web
Search and Data Mining, 2013, pp. 587–596.

[26] ——, “Structure and overlaps of ground-truth communities in net-
works,” ACM Transactions on Intelligent Systems and Technology,
vol. 5, no. 2, p. 26, 2014.

[27] S. Yun, M. Lelarge, and A. Proutière, “Streaming, memory limited
algorithms for community detection,” in Advances in Neural Informa-
tion Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, 2014, pp. 3167–3175.

[28] A. Zakrzewska and D. A. Bader, “A dynamic algorithm for local
community detection in graphs,” in Proceedings of the 2015 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining, ASONAM 2015, Paris, France, August 25 - 28, 2015, 2015, pp.
559–564.

