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Abstract—Both economic reasons and interoperation require-
ments necessitate the deployment of IaaS-clouds based on a
share-nothing architecture. Here, live VM migration becomes
a major impediment to achieving cloud-wide load balancing
via selective and timely VM-migrations. Our approach is based
on copying virtual disk images and keeping them synchronized
during the VM migration operation. In this way, we ameliorate
the limitations set by shared storage cloud designs as we place
no constraints on the cloud’s scalability and load-balancing
capabilities. We propose a special-purpose file system, termed
MigrateFS, that performs virtual disk replication within specified
time-constraints while avoiding internal network congestion.
Management of resource consumption during VM migration is
supervised by a low-overhead and scalable distributed network
of brokers. We show that our approach can reduce up to 24%
the stress of already saturated physical network links during load
balancing operations.

I. INTRODUCTION

The need to balance load across computing systems that

make up an IaaS cloud infrastructure is of paramount impor-

tance for the quality of the rendered services [1], [2]. In such

IaaS-clouds that predominantly offer virtual machines (VMs),

load-sharing can be achieved through VM migration; here, a

VM moves from one physical machine (PM) to another. VM

movement helps offload congested physical nodes, may con-

siderably enhance the utilization of the underlying computer

systems, and may ultimately improve the quality of provided

services.

In large-scale share-nothing infrastructures, VM migration

is not a trivial task as virtual disks in the order of multiple

GBytes have to be transferred from source to target PMs. Of-

ten, VM migrations cause significant performance degradation

or even yield discernible downtime for applications [3], [4].

Moreover, multiple simultaneous VM migrations coinciding

with high-load periods in the underlying VMs and/or the

involved network resources further exacerbate the problem.

Relying on usage statistics and taking into account the infras-

tructure’s architecture, an IaaS-cloud provider can decide upon

a time window for scheduling each pending VM migration.

A VM migration failing to complete within its pre-specified

window, can degrade the QoS experienced by the affected

VMs and may lead to a number of Service Level Agreement

(SLA) violations.

In this paper, we focus on the problem of real–time schedul-

ing of live VM migration tasks in share-nothing IaaS-clouds:

for each VM migration task a new PM host and a time window

for the migration to take place are pre-defined by the cloud

reallocation policy. Moreover, migrations are live since they

are performed while the migrating VMs remain on–line and

involve a short downtime hardly noticeable by users interacting

with the VMs [5], [6]. In this context, a real–time scheduling

mechanism must:
• control the amount of resources allocated on each migra-

tion task, based on the QoS degradation and the SLA

violations that any affected VM may experience. For

example, we should limit the network resources allocated

to a migration task that, due to its network bandwidth

consumption, leads to an SLA violation for a VM hosted

on the migration’s target PM.

• limit the effects in the operation of a migrating VM.

For example, a migration’s duration can last a lot more

than estimated, when a migrating VM constantly writes

on blocks that need to be re-transferred to the target

PM. An efficient real–time scheduler should be as non-

interventional as possible with such a migrating VM and,

still, should not let the migration extend beyond the time

window.

• complete each task within the respective pre-defined time

window.

Live migration requires that both the source and target PMs

(used for hosting the VM) have access to the VM’s virtual

disk(s). This requirement can be readily fulfilled for small

clouds that use a shared common storage substrate. However,

when it comes to large IaaS clouds built around the shared-

nothing approach or clouds that have to interoperate across

broadband networks, a common storage option is infeasible.

In such settings, live migration can be attained through on-

demand copy and synchronization of virtual disks across

physical nodes.
The approach we propose in this paper, employs on-demand

virtual disk synchronization to accommodate large numbers

of simultaneous migration tasks. Our prime objective is to

complete each migration within the designated time-constraint

while not depleting disk and network resources. We introduce

a novel policy that effectively appropriates resources to carry



out the simultaneous migrations. To this end, we seek to

accomplish near real-time load balancing while at the same

time diminishing the performance penalties that migrations

inevitably inflict. Prior work [4], [7]–[9] has shown the fea-

sibility of synchronizing individual virtual disks and these

results constitute the foundation for our proposal.

Our proposed resource management technique helps syn-

chronize in a timely fashion virtual disk images across PMs

and avoid counterproductive movements during periods of

high-use of the underlying cloud resources. The low-level

features used by our approach primarily deal with the con-

sumption of PM-resources manifested as I/O and network

throughput rates. These tunable features are captured in the

context of our MigrateFS file system that runs on each PM.

Instances of MigrateFS communicate over the network and

jointly control the transfer of a virtual disk image between any

two PMs. Based on input provided by performance monitoring

tools [10], [11], we continuously adjust the following two rates

during disk shipment: a) disk throughput available to the VM’s

internal processes accessing the virtual disks under migration,

and b) network throughput used for the purposes of migration.

In this way, we are able to yield safe estimates on the exact

time the migration will finish within the shared-nothing IaaS

cloud. Estimates also help us delay migrations when the cloud

experiences heavy workloads.

We develop our approach around a coordinating Migrations

Scheduler and a distributed network of Brokers as we target

not only intra- but also inter-cloud operations. The resource

allocation policy followed by the Brokers allows for prioritiza-

tion of migration tasks while taking into account the network

status so that “hot” physical network links are not further

stressed by virtual disk shipments. Broker policies drive the

operation of MigrateFS in restricting the network as well as

disk throughput. Our evaluation, based on both a MigrateFS

prototype and simulation of large infrastructures, shows up to

24% less stress on saturated PMs during migration. It is also

worth pointing out that we achieve these gains with minimal

administrative effort from the cloud provider. The paper is

organized as follows: Sections II and III present the salient

features of MigrateFS. Section IV outlines our two disk–

shipment management policies and Section V reports on our

experimentation. Related work and concluding remarks are

found in Sections VI and VII.

II. OVERVIEW OF OUR APPROACH

Live VM migrations consume considerable amounts of

cloud resources and inflict heavy performance penalties on

the migrating VMs. More importantly, SLAs offered by the

cloud provider may fail as network and disk bandwidth

get depleted. By placing time constraints on the migration

tasks, the cloud administration can schedule the performance

degradation during periods of low demand. For instance, a VM

migration may commence during the night time and can be

forced to complete before consumers start using their VMs

again later in the day.

Policies [1], [2], [12] that help determine whether and when

a VM should migrate, typically consider the average and

current load in both PMs and VMs, projections on future

VM resource consumption, and the SLAs to be satisfied. In

our work, each migration task references a) the VM to be

migrated, b) the source and target PMs involved, and c) the

time period within which the migration has to complete. A

load-balancer may need to predict when VMs are to be used by

cloud consumers so that shipments of VMs across the network

take place during low activity periods.

Our approach assumes the existence of a queue where all

migration tasks arrive. We attempt to manage resources in

a way that all migrations complete within their respective

time-constraints while not failing the offered SLAs. Figure 1

shows the key components of an IaaS-cloud that our approach

deploys. At the top of Figure 1 lays the Cloud Middleware

such as OpenStack or OpenNebula [13], [14]. Migration Tasks

produced by a Load Balancing Policy [1], [2], [12] in the

context of the middleware are dispatched to the underlying

physical infrastructure. We present three physical systems,

each one featuring its own local physical disk and a VM

hypervisor [15], [16]. The VMs hosted on each system place

their data on virtual disks stored as files on physical disks.

All physical systems communicate through a networking layer

represented as a switch/router at the bottom of Figure 1. Our

approach entails three components: the Migrations Scheduler,

the Brokers, and a special-purpose file-system MigrateFS.

MigrateFS offers resource management facilities -denoted as

Disk and Network Throughput Control Points in Figure 1-

exploited by the Brokers during VM migration.
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Fig. 1. High level view of our approach.

A. The Migrations Scheduler and its Brokers

The Migrations Scheduler takes as input a number of

migration tasks along with their respective time-constraints.

Tasks can be prioritized based on the cost of violating their

time-constraints. A distributed network of Brokers oversees

the resource consumption for the transfer of the VMs’ disk

images. A low cost communication policy is used for the in-

teraction between Brokers so as to ensure the scalability of our

approach. As soon as the virtual disks are transferred across



the PMs, the Migrations Scheduler contacts the hypervisor

and initiates the live-migration of the VM. The synergy of

the Migrations Scheduler and the Brokers ensures the timely

movement of all VMs pending action.

In order to honor the migration time constraints, while

respecting the SLAs offered, the Brokers have to manage two

types of resources. First, the network bandwidth consumed for

transferring virtual disk images must not hamper the perfor-

mance of other, already on-line, VMs. Second, the virtual disk

I/O bandwidth (available to the migrating VM) must be limited

since this disk I/O translates to dirty disk pages that ultimately

have to be transferred over the network. The usage of both

resources (disk and network) can be constrained through the

facilities offered by MigrateFS. The consumption of these two

resources is continuously adjusted so that no SLAs fail in the

dynamic cloud environment where the migrations take place.

B. MigrateFS and Resource Consumption Restrictions

Constraining resource consumption, so as to comply with

time restrictions on migration tasks, has to be assisted by

low-level cloud facilities. Such facilities must function outside

the VMs as the abstractions enforced by the cloud hide the

VM’s iternal operations from the cloud administration. In

our approach, migration is assisted by a special purpose file

system, MigrateFS, that traps all I/O operations targeting the

virtual disk images of the migrating VMs. MigrateFS intro-

duces a layer between the VM Monitor (VMM)/hypervisor and

the physical device where the VM’s virtual disks are stored

(Figure 1). Instances of MigrateFS collaborate in moving VM

disk images without interrupting the operation of the VMs.

During migration, blocks of the migrating VM’s disk images

are copied to the target PM. When all blocks are transferred,

the two copies of virtual disk images -in both the source and

target PMs- are kept synchronized while the VM hypervisor

completes the migration task by moving RAM contents and

devices’ states. It is in the context of MigrateFS, where the

bandwidth of disk and network, are placed under restrictions.

• Disk bandwidth: As MigrateFS transfers blocks from the

source to the target PM, the still on-line VM may write

over already transferred blocks. These dirty blocks need to

be transferred again. If the rate at which virtual disk blocks

get dirty is higher than the rate blocks are transferred through

the network, the migration task will not finish. Yet, the

migration task must come to its completion under certain time

constraints. To this end, an authorized Broker may contact

MigrateFS and limit the rate at which the VM writes to its

virtual disk. The decision on when and if such an I/O rate

must be limited is based on the current network and disk I/O

rates reported by MigrateFS.

• Network bandwidth: We need to ensure that no migration

task will deplete the network resources of the IaaS-cloud.

MigrateFS enables the Brokers to limit the network bandwidth

consumed during migration. In this way, saturated network

links, shared among migrating and non-migrating VMs, do

not cause network SLA failures. With this approach, we are

able to distribute resource consumption throughout the entire

migration’s time window.

III. OPERATIONAL ASPECTS OF MigrateFS

The I/O operations trapped by the MigrateFS layer can

be replayed on remote PMs so as to create and maintain

synchronized copies of virtual disk images. To this end, an

instance of MigrateFS has to be installed on each PM that

plays the role of either the source or target hosting node in a

migration.

Each MigrateFS instance listens on a port for connections

from either three sources: a) the Migrations Scheduler re-

questing the transfer of a VM, b) another MigrateFS instance

sending data blocks and remotely replaying I/O operations,

or c) a Broker overseeing the resource consumption of a

migration task. MigrateFS presents an interface through which

a Broker can query the progress of a migration task and set

limits on the disk and network bandwidth. Table I summarizes

the functionality MigrateFS offers for handling and monitoring

a migration task.

TABLE I
MigrateFS NETWORK API FOR A VM MIGRATION TASK

Operation Input/Output

Start a Migration In: Target PM, disk image

Set Network Limit In: Bandwidth in KB/sec

Set Disk Limit In: Bandwidth in KB/sec

Query Progress In: Selectively query the Network or Disk rate

Out: The respective bandwidth in KB/sec

Query Completion Out: True or False
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Fig. 2. Routing I/O calls through the layers of our approach.

As we show in Figure 2, MigrateFS is a user-space file

system functioning as an intermediate between the Linux

kernel and any underlying file system on the physical disk.

MigrateFS is thus mounted over an already existing file system

and mirrors its contents. The underlying file system is used to

store virtual disk images. When an I/O request is issued by

a process within a VM (I/O op. in Figure 2) it is forwarded

through the virtual file system (VFS) API of the hypervisor

to the file system mounted on the path where the virtual disks

are stored. The response to the I/O call is routed from the

underlying file system through MigrateFS and the hypervisor

to the VM. Our decision to mirror an already existing path in



the physical disk storage greatly reduces the effort to set up

MigrateFS on an already operational IaaS-cloud. An in-kernel

file system implementation might yield higher performance but

does so at the expense of a more intrusive and less deployable

approach.

The main operation of MigrateFS is to synchronize a virtual

disk image across any two PMs. To initiate a VM migration,

the Migrations Scheduler has to contact the MigrateFS in-

stance of the source PM where the VM is currently hosted

and specify: a) the hostname of the target PM, b) the port

on which the MigrateFS instance of the target PM listens,

and c) the filenames of the disk images of the migrating VM.

As soon as the request for a VM migration is received, the

MigrateFS instance deployed on the source PM contacts the

MigrateFS instance on the target and starts sending blocks

of the virtual disk image over the network. Synchronizing a

virtual disk across two PMs is a three phase process:

• Phase 1: Iterate once over all blocks of the virtual disk

and send them to the target PM. As the VM remains on-

line, in-VM processes may write over a portion of the

blocks already transferred; these blocks are marked as

dirty.

• Phase 2: Dirty blocks are transferred through the net-

work. Here, the operating VM may continue to alter the

content of blocks already transferred, thus rendering them

dirty again. Sending blocks stops (phase 2 ends) as soon

as all dirty blocks are transferred. For this to happen, the

rate at which blocks get dirty must be less than the rate

at which blocks are transferred through the network.

• Phase 3: During this phase, the virtual disks remain

synchronized across the target and source PMs. Each

write operation performed on the virtual disk residing

in the source PM is replayed on the one residing on the

target PM.

The purpose of this 3-phase copy of the virtual disks is to

ameliorate the performance penalties of migration. The VM

can operate with no restrictions during the first and second

phases. In these two phases, the disk addresses of dirty blocks

are kept in a thread-safe array protected through proper locking

mechanisms. Dirty blocks are cleaned out during the second

phase by sending them over the network. To reduce the high

network latency penalty, the transfer block size (512 KB) is

larger than the block size used by the local disk file systems.

In phase 3, we have no dirty blocks. Each write operation

is performed in both replicas of the virtual disk. During this

phase, there is a significant impact on the I/O performance

of the VM due to the network latency. Here, the block size

is equal to the size of the I/O request. We expect the third

phase to be short. During this phase, the hypervisor completes

the live migration task by transferring the VM’s memory

and devices’ state. The details of moving the VM’s RAM

and devices’ state from the source to the target PM while

minimizing the downtime are hypervisor-specific. With respect

to the file system, the hypervisor sends a sync I/O system call

as the last I/O operation right before the VM starts operating

in the target PM. When the sync call is received, MigrateFS

flushes all buffers (network and disk) so that the VM on the

target PM will find the virtual disk in a consistent state.

IV. RESOURCE MANAGEMENT FOR VM MIGRATIONS

Management of cloud resources expended during migrations

ensures that VM movements are fulfilled within the specified

time-constraints. Efficient resource handling should impose

minimal overheads so that it can be applied to large, share-

nothing clouds. In addition, resource handling should not im-

pose special hardware requirements as the scalability of large

infrastructures is based on the use of commodity hardware. We

achieve the above through the distributed network of Brokers

that interact using a low communication cost policy.

Pending VM migrations -produced by VM placement poli-

cies [1], [2], [12]- are delivered to the Migrations Scheduler.

As soon as the latter decides that a migration task should start,

it instantiates a Broker on the migration’s source PM; the task

of resource handling in shipping the VM is assigned to that

Broker. The Broker acts so that Expression 1 remains true for

the designated migration task.

Disk size

(Net Rate − Dirty Rate)
+ VMM time ≤ finish time (1)

The rate at which blocks get dirty (Dirty Rate) as well as

the rate at which blocks are moved (Net Rate) from source

to target PM are periodically queried from MigrateFS. The

transfer rate must be, on average, greater than the dirty block

rate so that the virtual disk network copy completes within

the designated time frame (finish time) and still leaves enough

time (VMM time) for the hypervisor to successfully complete

the migration.

Priority-Based Resource Brokers

The network of priority-based Brokers requires two types

of cloud operational information: 1) Real-time notification

of saturated network switches (hot-spots). Clouds facilitate

monitoring tools [10] that detect stressed network links of

the fixed (often tree-based) physical network topology [17].

2) The path of VM shipment. It is straightforward to compute

such paths in a fixed network topology with static routing

rules. The Migrations Scheduler computes migration paths and

marks path sections shared among multiple migration tasks.

The Migrations Scheduler provides the VM shipment path

upon the Broker’s instantiation. The Broker registers for no-

tifications on saturated switches to the corresponding cloud

monitoring tools. As soon as the Broker projects that the

designated migration time-constraint will be violated, it needs

to request other Brokers to release (if possible) some of the

network bandwidth they occupy. As the Migrations Scheduler

is aware of all migrating VM disks sharing network paths

any Broker can exploit this information to notify only those

Brokers with which it shares saturated network links. Since

Brokers exchange messages directly with each other in a peer-

to-peer fashion there is no single message exchange hub.

The distributed nature of Broker communication allows our

approach to scale to the size of large cloud installations.

The cloud administration is allowed to specify which of the

migrating tasks are important. Brokers responsible for such



tasks should be the first to a) ignore network congestion

and b) signal other Brokers to temporarily suspend their

migration tasks whenever they face the danger of violating

the migration’s time frame. There are two thresholds, termed

danger and warning, that are used in task prioritization. Both

thresholds are percentages expressing the ratio between the

time the migration has to be finished (timetodeadline) and the

projected time the migration task will actually last (timeleft).

Both threshold percentages are expected to be greater than

100% and the danger percentage to be less than the warning

percentage as we first get a warning and then we face the

danger of violating a constraint.

The operation of a Broker is described in Algs 1 and 2.

Alg. 1 shows when the Broker chooses to limit the disk and

network resources in the context of a single migration task,

while Alg. 2 shows how this network limit is set. Network

bandwidth consumption due to migration may cause other

VMs to fail to uphold their SLAs. To address failing network

SLAs, we should limit the network resources used by the

migration process. When limiting the disk transfer rate, we

ensure that SLAs will not fail due to the resources consumed

for migration, but we do not commit to any migration time

frame. Constraints on the migration time –given the available

network bandwidth does not decrease– are honored when we

limit the disk bandwidth available to the processes inside the

VM. Limiting both transfer and disk rates enables us to offer

Deadline Scheduling for the migration. Deadline Scheduling

can be achieved even if we unbound the network transfer

usage. In this case, we take the risk of failing network SLAs,

yet, we potentially reduce the migration time.

Alg. 1 estimates the timeleft and the timetodeadline (lines

3 and 4) based on the disk blocks (task.diskleft) and two rates

(diskrate and netrate) queried through the Query Progress call

of MigrateFS (Table I). Should a warning of no compliance

with a designated time-constraint be received (line 9), we limit

the available disk bandwidth. In line 6 we assess the danger

of failing to migrate the VM on time and if so we limit the

used network rate (setNetworkLimit call in line 7). Similarly,

in line 9, we get a warning of violating a time constraint if the

ratio of timeleft to timetodeadline is greater than the warning.

The higher the values of the danger and warning parameters,

the sooner our algorithm will take action to secure the time

constraints.

Limiting the network bandwidth is not based only on the

danger threshold. We also limit the network usage rate if we

detect a network contention, as indicated by the backoff flag.

This flag is set to true under two conditions: a) the migration

process causes a network SLA failure of a running VM, b) the

network bandwidth consumed should be given to another

migration task that is about to violate its time constraint. The

shouldBackOff function detects saturated network links on the

path between the source and target hosting PMs.

Algorithm 2 depicts how this network limit is set. The

Broker takes into account the current network rate available

through the input parameter task, the backoff flag and the

number of consecutive periods with no backoff request indi-

cating no network congestion. Inspired by TCP, our approach

Algorithm 1 PriorityBasedMigrationsManagement

Input: task: The migration operation
period: Time between monitoring iterations
danger: Threshold indicating high chances of loosing the migration deadline
warning: Threshold indicating miss of the migration dead-
line

1: while (task.completed == false) do
2: sleep(period);
3: timeleft := computeTimeLeft(task.diskleft, task.netrate, task.diskrate);
4: timetodeadline := task.deadline - now;
5: backoff := shouldBackOff (task.source, task.target);
6: if ((timetodeadline/timeleft ≥ danger) and (backoff == true)) then
7: setNetworkLimit(backoff, task);
8: end if
9: if timetodeadline/timeleft ≤ warning then

10: setDiskLimit(task);
11: end if
12: end while

reduces the limit of the network bandwidth usage by dividing

the current network rate by two and increases the network

limit linearly. Two factors influence our decision: the last

decision to increase or decrease the network limit (outer if-

then-else statement), and any request for releasing bandwidth

made through the backoff flag. If we had limited the network

usage and we still observe network congestion (if statement

in line 2), we use the task.netrate divided by two as the new

limit. If we had previously reduced the network rate and we

now have no back off request, we mark the current network

rate as one that causes no network congestion (line 5). This

mark, stored in task.lastOKnetlimit, is used in line 10 where

we have previously increased our network limit and we just

got a back off request. In hope that our migration task caused

the network congestion we quickly revert back to a network

rate that did not cause any congestion in a previous period.

Further backoff requests will cause lowering even more the

network limit. The else clause of lines 11 to 18 handles the

case where we continuously increase our network limit. We

raise the network limit linearly, yet, there might be the case

that a lot of bandwidth has become unexpectedly available due

to an event that we are not informed of (e.g., another migration

task has just finished). In this case, we need to probe the

network availability and quickly take advantage of the extra

bandwidth (lines 13 to 15).

Alg. 2 implements a policy that requires no communication

with the other consumers of the network bandwidth. Priority

is given to VMs failing their SLAs and to migration tasks

in danger of violating their time constraints. In this context,

we opt for a low-cost communication policy among Brokers

as we target large cloud infrastructures. Brokers need only to

announce the danger of violating the time constraint of a VM

migration to a well specified subset of other Brokers so that

the shouldBackOff call yields valid back-off requests.

V. EVALUATION

We evaluate our approach in two ways. First, we use the

MigrateFS prototype to quantify the overheads involved in

hosting VMs in our file system. For this, we use a real

cloud infrastructure setup in our lab using Xen 3.2-1 [16] and

OpenNebula [14]. Second, we simulate large infrastructures



Algorithm 2 setNetworkLimit

Input: task: The migration task
backoff: True, if we are to reduce the network bandwidth, False otherwise
n: # of consecutive periods with no backoff request indicating no network
contention
C: Step of network rate increase, in MB
Output: The network limit

1: if task.lastAction == “reduce bandwidth” then
2: if backoff == true then
3: return task.netrate / 2;
4: else
5: task.lastOKnetlimit := op.netrate
6: return task.netrate;
7: end if
8: else if task.lastAction == “increase bandwidth” then
9: if backoff == true then

10: return task.lastOKnetlimit;
11: else
12: task.lastOKnetlimit := task.netrate
13: if consecutivePeriodsWithoutBackOff(task,backoff) > n then
14: return +∞ /*no network limit*/
15: else
16: return task.netrate + C
17: end if
18: end if
19: end if

and show the effectiveness of combining MigrateFS with our

resource management polic. We implemented our own cloud

simulator (in Java) that uses the proposed approach to appoint

resources for VM migration.

A. MigrateFS Overheads

The MigrateFS prototype is implemented in C using

FUSE [18] and pthreads. As source and target hosting nodes of

migrating VMs we use two physical systems connected with

a 1 Gbps Ethernet switch. Each physical node is equipped

with 8 GB of RAM and an Intel(R) Xeon(R) CPU X3220

at 2.40GHz. The VM disk images are stored in an ext3 file

system.

File system benchmarking during normal operation – no

migration: Using the Bonnie++ [19] benchmark, we measure

the performance overhead introduced by the additional layer

of MigrateFS. The benchmark is executed within a paravirtu-

alized VM featuring 2 GB of RAM and a single CPU core.

We compare MigrateFS against three methods of accessing the

virtual disk:

• Local: This method routes I/O system calls through the

hypervisor’s kernel directly to the file system (ext3) where

the virtual disk image resides.

• GlusterFS: Virtual disks are stored in a distributed file

system setup with GlusterFS [20]. GlusterFS is config-

ured to use two nodes in RAID-1 configuration. With this

setup, each write operation is performed on the local file

system and on the remote node.

• Mirror: This method routes I/Os through the hypervisor

to a FUSE file system. The FUSE file system traps and

relays all I/O operations to the underlying file system

holding the virtual disk images. In this manner, we

quatify the FUSE-introduced overehad.

Figure 3 shows the read, write, and write-after-read, per-

formance of MigrateFS as far as block I/O operations are

concerned. When no migration operations are involved, the

performance of MigrateFS is almost identical to the one we

measure for the Mirror file system. This shows that the main

overheads involved are introduced by the FUSE layer1. The

write performance of GlusterFS is significantly hampered by

the network latency as all files are replicated in a remote

physical node (RAID-1 configuration). In this type of I/O

call, MigrateFS proves superior. In the case of read operations,

GlusterFS uses caching at the expense of RAM consumption

and thus, it surpasses MigrateFS.
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Fig. 3. Comparing block I/O performance of MigrateFS to other disk access
methods.

B. Priority Based Management of Migration Tasks

Impact of scheduling migrations on SLA failures: The

physical infrastructure we simulate in this experiment is made

of 500 PMs. Each PM features a 10 Gbps network link to

all other physical nodes. The VMs hosted by this physical

infrastructure are evenly distributed among the PMs. Each

VM has a 50 GB virtual disk and writes into it at a rate

of 30 MB/sec. This 50 GB virtual disk has to be transferred

during migration. Regarding network usage, there are no

restrictions on the bandwidth consumed by each VM.

The evaluation scenario we present here consists of

1, 000 migration tasks. We trigger one migration operation

every 100 seconds. For the disk transfer operation we have the

10 Gbps of the PM network links at our disposal. However, the

operating VMs need to use some of the available bandwidth for

their normal operation. As we cannot account for the workload

of all VMs collocated with the migrating ones, we set the

available network bandwidth to follow a Gaussian distribution.

Consuming network resources for migrating VMs will stress

the cloud resources. To quantify the effectiveness of our

approach we use two metrics:

• SLA violations occur due to network bandwidth shortage.

Bandwidth shortage may occur on any randomly selected

PM as we cannot predict the behavior of each VM

running. The duration of the resource shortage is set

to 300 seconds (five 60 second periods). This shortage

(marking an SLA violation) is extended for additional

periods in case the migration operations consume the

entire 10 Gbps bandwidth available to the PM under

stress.

1The performance of FUSE has improved in versions newer than the one
used, yet, these improvements were not available in our testing environment.



• The load of the network is represented by the frequency of

violations. That frequency is expressed as the percentage

of PMs where a shortage occurs within a 60 second

period.

Increasing the load of the network causes more SLA violations.

Our goal is to limit the network utilization over stressed links

used during migration.

We show how our resource management approach handles

migrations with different time constraints. We compare our

approach against the currently available cloud setup, denoted

as “No Scheduling”, where there are no constraints on the

resources consumed. The danger and warning thresholds of

Alg. 1 are set to 300% and 400% respectively. The network

and disk limits are updated once every 60 seconds (the period

in Alg. 1).

In Figure 4, we present our policy operating under three

different migration completion time values, 200, 350 and 800
seconds, and the “No Scheduling” approach. We measure

the periods (y-axis) we observe network SLA violations as

we gradually increase the network load from 5% to 25%.

High values indicate that we further stress the already limited

network resource. The 25% load is an extreme case where in

each minute (60 second period), 25% of the PMs links fail to

satisfy the VM’s SLAs and they continue to display high load

for the next five minutes.
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Fig. 4. Evaluating our approach under different time constraints set on
migrations.

This experiment shows an important aspect of our work: by

limiting the network and disk bandwidth, our policy waits for

the “hot” spots (PMs) of the infrastructure to cool down before

performing the migration. Reducing the acceptable migration

time, forces the scheduler to use “hot” PMs instead of waiting.

Impact of prioritizing migration tasks on throughput: The

danger and warning thresholds are used to prioritize migration

tasks as they reflect when our resource sharing policy will

take action to ensure a timely migration. In this experiment,

we have three migration tasks, each one with a different set

of danger and warning thresholds. The danger thresholds are

200%, 300%, 400% and the warning thresholds are 250%,

350%, 450% respectively for the VMs with IDs 0, 1, 2. All

migration tasks have the same source and target PMs and

thus use the same network links and share the same network

bandwidth.

In Figure 5 we present the network throughput consumed by

each migration task over time. All three tasks start in a danger

state according to the throughput they have available and their

danger threshold. In the period of 500 to 1, 700 seconds first

VM-0, then VM-1 and finally VM-2 exit the danger “zone”

leaving more bandwidth available. A time period of equal

bandwidth share follows (1, 700 to 2, 200). After that the

migration tasks finish in the order their thresholds dictate. We

do not see the remaining tasks take up the available bandwidth

immediately after a migration finishes because as a migration

nears its end, it often enters the danger state leading the rest of

the migrations to release some of the network resources they

occupy. This is because in the third phase of the migration, the

network bandwidth consumed is affected by the short block

size of the I/O requests.
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Fig. 5. Prioritize migration requests.

VI. RELATED WORK

Live OS migration was shown [5] to have the potential

to reduce downtime to tens of milliseconds by first copying

RAM content and only after the VM state including virtual

devices (e.g., CPU, network). By transferring the VM’s state

in the early stages of the migration, VM post-copy [21] was

shown to reduce the total number of RAM pages moved as no

dirty pages are involved. The Slowdown Scheduling Algorithm

(SSA) [6] seeks to reduce dirty page rate in accordance to the

CPU activity of the migrating VM.

VM-Monitors (VMMs) [15], [16] are not concerned with

migrating the VM persistence layer (i.e., the “virtual disk(s)”).

In this direction, the cloud design may actually assist and

its administration can explicitly replicate disk images at the

block level [22], [23]. For small to medium-size clouds,

designers and administrators can resort to SANs or deploy

distributed file systems [20] (DFSs). The incremental transfer

of virtual systems to different locations presents an alternative

that avoids scalability issues often hindering DFSs. In [8],

[9], live VM migration in WANs is advocated as a way

to relieve overloaded PMs. A workload-driven migration of

virtual storage is discussed in [24]. VMware ESX 5.0 [4] is

capable of live migrating VMs including the persistence layer

using IO Mirroring; here, all write operations are performed

concurrently in both source and target PMs during a VM

migration.

Autonomic and load-balancing systems are often employed

to schedule VM migrations. In such systems [1], [12], [25]–

[27] the performance of the cloud is continuously monitored



and proper action is taken to handle bottlenecks and resource

shortages. Our approach can work in tandem with such au-

tonomic systems and can extend their effectiveness. Time-

warranties are typically used to enhance the quality of service

offered by real-time systems [28], [29]. I/O throttling during

VM migration enables for time and performance warranties

and ultimately for migration completion. VMware ESX 5.0 IO

Mirroring [4] reduces the transfer rate to the slowest medium

of the source or target PM and guarantees migration conver-

gence. In [30], [31] live migration is applied to databases.

In [32] data flow deadlines are accommodated through a

network control protocol; this diversity of data flows calls for

significant changes in the underlying infrastructure.

VII. CONCLUSIONS - FUTURE WORK

Live migrating VMs is of key importance to IaaS-clouds

as it helps accomplish major operational and administrative

objectives including effective load-sharing and improved uti-

lization of physical machinery. However, the movement of

VMs over the network inadvertently consumes significant

cloud resources. In this work, we focus on emerging highly-

scalable share-nothing cloud installations and employ on-

demand virtual disk synchronization across PMs to attain live

migration under explicit time-constraints. Based on network

elements and computing systems’ usage rates, our proposal

accommodates all scheduled VM migrations within their spec-

ified time-frame by considering the dynamics of the underlying

share-nothing infrastructure. Our approach is empowered by

the combined use of a network of Brokers and the MigrateFS

file system. MigrateFS effectively synchronizes disk images

between physical computing systems, while the Brokers man-

age the resources of the share-nothing cloud elements. Our

proposed resource management policy dynamically adjusts the

bandwidth of both virtual disks and network consumed during

the transfer of VM disk images. Our prototype experimentation

demonstrates the minimal overheads involved in the operation

of our approach and shows that we can honor the time-

constraints set for migrations while significantly reducing SLA

violations due to heavy network traffic. We plan to examine

statistics-driven and cost aware VM migration scheduling

algorithms in large infrastructures possibly consisting of in-

teroperating IaaS-clouds and investigate the application of our

approach to PaaS-clouds for attaining real-time migrations.
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