IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 3, MARCH 2002

269

Real-Time Processing in
Client-Server Databases

Vinay Kanitkar and Alex Delis, Member, IEEE Computer Society

Abstract—In this paper, we propose and experimentally evaluate the use of the client-server database paradigm for real-time
processing. To date, the study of transaction processing with time constraints has mostly been restricted to centralized or “single-node”
systems. Recently, client-server databases have exploited locality of data accesses in real-world applications to successfully provide
reduced transaction response times. Our objective is to investigate the feasibility of real-time processing in a data-shipping client-
server database architecture. We compare the efficiency of the proposed architecture with that of a centralized real-time database
system. We discuss transaction scheduling issues in the two architectures and propose a new policy for scheduling transactions in the
client-server environment. This policy assigns higher priorities to transactions that have a greater potential for successful completion
through the use of locally available data. Through a detailed performance scalability study, we investigate the effects of client data-
access locality and various updating workloads on transaction completion rates. Our experimental results show that real-time client-
server databases can provide significant performance gains over their centralized counterparts. These gains become evident when
large numbers of clients (more than 40) are attached per server, even in the presence of high data contention.

Index Terms—Client-server databases, real-time transaction processing, experimental performance evaluation.

1 INTRODUCTION

THE proliferation of network-centric computing has
created opportunities for corporations and institutions
to support their business cycle with large-scale information
systems. Interagency transactions, known collectively as
electronic commerce (e-commerce) [11], [31], have led to
new models of interaction among organizations and
individuals. In this environment, the movement/transfer
of funds and equity is performed electronically and needs
to be completed within predefined deadlines. If implemen-
ted effectively, such execution of commercial operations
offers a cost-effective means of managing global financial
services. Modern commercial applications often require that
the duration of their transactions obeys time-constraints in
varying degrees and they are based on the efficient
interaction among distinct computing systems. Real-Time
Systems (RTS) and Client-Server Databases (CS-DBS) are
two key areas that can assist in achieving the above goal.
Although there has been a great deal of independent
research in these two areas, their aggregation has not been
investigated at all.

In a real-time system, tasks submitted to the system for
execution have deadlines imposed by the application
requirements. By utilizing elegant scheduling techniques
and exploiting a priori knowledge of the nature of the tasks,
RTSs have been designed so that time constraints on
individual jobs are met with as small a percentage of

e V. Kanitkar is with Akamai Technologies Inc., 500 Technology Square, 3rd
Floor, Cambridge, MA 02139. E-mail: kanitkar@akamai.com.

e A. Delis is with the Department of Computer and Information Science,
Polytechnic University, Brooklyn, NY 11201.
E-mail: ad@naxos.poly.edu.

Manuscript received 17 May 1999; revised 27 Dec. 2000; accepted 27 Feb.
2001.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 110437.

missed deadlines as possible [1], [12], [22], [29], [38]. On a
separate track, client-server databases have been designed
to take advantage of rapid improvements in computing
power and increasing network data transfer capabilities in
order to provide high throughput rates. This performance
enhancement has been derived by effectively utilizing the
resources available in a network of clients [7], [41], [42].
While algorithms for scheduling real-time tasks [1], [15],
[18], [29], real-time multiprocessor systems [6], [30], [27],
and the assignment of tasks in distributed environments
[22] have been addressed, there has been no coverage of
real-time issues in the popular client-server database
paradigm [8], [10], [23], [40]. In this paper, we make the
case for real-time transaction processing in a CS-DBS
environment and provide indicators of the performance
and scalability of such systems. Our objective is to establish,
through experimental means, the viability and the useful-
ness of the proposed framework.

In real-time database systems (RTDBS), transactions—
that involve nonnegligible I/O operations—are scheduled
with constraints on their required completion time. Time
constraints are usually specified in the form of deadlines. A
deadline is the latest possible time by which a transaction
must complete in order to be useful. Therefore, an important
measure of the effectiveness of a RTDBS is the percentage of
transactions that are completed within their specified dead-
lines. In this paper, we investigate the performance of a CS-
DBS in the presence of real-time tasks. The aggregation of
these two areas is termed Client-Server Real-Time Databases
(CS-RTDBSs). In the proposed framework, we use the
resources available at client sites and exploit intertransac-
tion data caching in order to support real-time processing.
A centralized server-based real-time database system (CE-
RTDBS) is used as the baseline case. This baseline is used
to determine the operational parameters and workloads

0018-9340/02/$17.00 © 2002 |IEEE
Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

270

under which a CS-RTDBS configuration can offer promis-
ing performance results. We chose not to use a distributed
real-time database system as the baseline for two reasons:
1) Most current implementations of real-time databases
are centralized and 2) in the absence of transaction-
shipping between multiple database nodes, the flexibility
of a distributed database system is limited.

Although client sites in this paper often seem to be
directly accessible by users, that need not necessarily be the
case. A formed cluster—between the client sites and their
supporting server—can be used as the “nucleus” system
configuration running applications on a dedicated and/or a
virtual private network (VPN). Users submit their transac-
tions/requests from the “periphery” of this nucleus.
Requests are handled by client sites that demonstrate
physical proximity to users and/or load balancing and
sharing considerations. For example, consider a bank with
multiple internetworked branches connected and operating
as a client-server system. Here, employees of any one
branch would only have to communicate with the client site
serving their branch. Account data for customers of a bank
that initiate transactions at any branch would be cached at
the client site serving that branch and used for their banking
needs. The proposed CS-RTDBS configuration can be used
to facilitate the effective development of a wide range of
application systems. This set of application software
includes:

1. Highly Available Database Services: Such database
systems make up the core of many telecommunica-
tion operations and their goal is to not only manage
voluminous data in real-time conditions with vir-
tually zero downtime, but also to provide customers
with advanced billing options and services. Data
fragmentation and a shared-nothing approach have
been proposed as a way to develop such services
[19]. Real-time transaction scheduling in such
environments is the focus of this paper.

2. Multimedia-Server Architectures: The storage of a
very large number of multimedia sources can only
be accommodated by multiple cooperating servers.
The latter can respond to rapidly changing work-
load characteristics while complying with prespe-
cified quality-of-service requirements. In this
context, new strategies for data placement in
video/audio applications operating in variable
bit-rate and 3D interactive virtual worlds are
matters of recent proposals [34].

3. Ultrafast Internet Content Delivery: There exist
multiple concurrent efforts that attempt to bring
web content closer to the requesting user. This can
be either by using multiple proxies or content
facilities around the globe and trying to always
furnish “updated” content. These facilities could be
implemented as clusters of sites with characteristics
similar to those advocated in this paper.

4. Efficient Access for Massive E-Commerce User
Communities: In seeking ways to ensure that there
are available resources to service user requests at all
times, prominent retailers and corporations plan and
implement multiserver systems capable of isolating

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.3, MARCH 2002
classes of requests [2], [3], [5], [14]. In doing so,
organizations can overcome server overloads and
response delays. The development of such multi-
server farms can follow our system model.

5. WAP-Related Infrastructure: The Wireless Access
Protocol was developed as a mechanism to enable
access to information services (resident on the
Internet) from a wide range of PDAs and phones
with limited computing resources [13], [37]. The core
of this infrastructure is the WAP proxy, whose role is
to translate HTML to the WAP Markup Language
(WML)—WML is fashioned to be syntactically close
to XML. The immense existing user community of
cellular phones and PDAs can create serious
performance bottlenecks in the utilization of such
WAP proxies; these can be removed by deploying
proxies following our proposal in this paper.

Through the development of operational prototypes, we
investigate the behavior of the client-server and centralized
RTDBS configurations in a number of diverse settings. We
evaluate the prototypes of the two configurations with
contrasting workloads that feature mixed types of transac-
tions with varying degrees of update selectivities. Our
experiments show that the CS-RTDBS is much more
scalable than its centralized counterpart as the transactional
load on the system increases.

We have organized this paper as follows: In the next
section, we describe models of the CE and CS-RTDBS
configurations, as well as the policies used to schedule
transactions with time constraints. Section 3 provides
detailed information about the development of our system
prototypes. Experimental parameters and the results of our
performance study are presented in Section 4. Section 5
briefly discusses related work. Conclusions can be found in
Section 6.

2 RTDBS CONFIGURATIONS

In this section, we describe the processing models of the
two architectures and explain the transaction scheduling
algorithms used.

2.1 Models and Assumptions

This section describes the transaction processing models of
the centralized and client-server (CS) database architec-
tures. Here, we assume that the database is a collection of
uniquely identifiable objects. In the centralized real-time
database architecture (Fig. 1), CE-RTDBS, the database
server performs all the transaction processing. The clients in
such a system are assumed to be simple terminals and serve
as user-interface devices only. Clusters of clients are
managed by a terminal server which handles all commu-
nication between the terminals (clients) and the centralized
server. Transactions are initiated at the clients and are
immediately transported to the server for execution. There,
the transactions are scheduled by a single centralized
scheduler according to some priority assignment algorithm.
Since concurrent execution of transactions is possible, a
locking protocol is used to serialize access to database
objects. The results of executing the transactions are

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

KANITKAR AND DELIS: REAL-TIME PROCESSING IN CLIENT-SERVER DATABASES 271

Terminals Terminals

Terminal Server Terminal Server

LLAN

Comm. Software

Server DBMS

Server
Disks

Server
Fig. 1. The centralized database model.

communicated to users through their terminals. This is an
early form of the query-shipping approach [33].

In a data-shipping CS architecture [28], [32], client sites
are expected to have significant processing and storage
capabilities (Fig. 2). Transactions are initiated, scheduled,
and executed at client sites. The locally available buffer
space and CPU of a client are used to carry out the
necessary high-level database processing. This includes
application-specific presentation management, query pro-
cessing, and transaction management. If a database object
referenced by a transaction is not cached locally, then it
must first be fetched from the server before it can be used.
The server ships this object to the client and the transaction
that requested the object is executed locally. Thus, the
server performs only low-level database functionalities
(I/Os, buffering, and management of concurrency) on the
behalf of requesting clients. The set of objects cached in a
client’s disk and memory bulffers is treated as a local data-
space. Objects/locks that have been fetched from the server
are returned to the server only if the latter explicitly calls
them back. This type of intertransaction caching allows
future requests on the cached objects/locks to be satisfied
without any interaction with the server. However, inter-
transaction caching of data also complicates database
recovery in case of client failures. The durability of
committed client transactions after a client crash needs to
be ensured. Although, we consider database recovery to be
beyond the scope of this paper, we envision the possibility
of extending an algorithm like ARIES/CSA [26] to this
environment in the future.

Global concurrency control is based on pessimistic
locking and is performed by the server using a lock table.
Clients are permitted to hold two types of locks, shared
(read-only) and exclusive (read-write) [17], [28], [41]. More
than one client can hold shared locks (SL) on an object, but
an exclusive lock (EL) can be granted to only one client at a
time. Additionally, if a client holds an exclusive lock on an
object, then no other client can have any type of lock on that

Client Client

Application
Soltware

Application
Soltware

Local DBMS Local DBMS

Comm. Software Comm. Software

LAN

Comm. Software

Database
Object
Server

Server
Disks

Server

Fig. 2. The client-server database model.

object. When a lock is granted to a client, a copy of the object
is shipped over to the requesting client (if necessary). If
another client has a conflicting lock on that object, the server
then contacts that client and requests it to release the lock
on the object and return the object, if necessary. This is done
by the client as soon as no local transactions are accessing
the object in question. Once the object has been returned,
the server grants the lock to the requesting client and
dispatches the object to it.

This locking mechanism has been called callback locking.
It guarantees serialized access to the database, but it can
also cause unnecessary blocking of transactions as they wait
for the requested locks to be granted, especially in a
distributed environment. To alleviate the delays caused by
such blocking, we have modified the above locking
mechanism. When the server requests a client to give up
an exclusive lock on an object, it also specifies the type of
lock the presently requesting client desires. If the competing
request is for a shared lock, then the client that holds the
exclusive lock ships an updated copy of the object to the
server (as soon as the transaction that is currently using the
object commits), but only downgrades its own lock to a
shared lock. Now, the server grants a shared lock to the
requesting client and ships the object to it. Transactions at
both clients can now access the object in a shared fashion.
We believe that this novel technique, which we call
Enhanced Callback Locking, permits greater data sharing
among multiple sites, especially in low update situations.
The server’s global lock table is also used to maintain a
wait-for graph that stores granted and outstanding lock
requests. This wait-for graph is used to detect global
deadlocks caused by clients” object requests.

In the CS-DBS, each client also has a local lock manager
[25]. Since each client can execute multiple transactions
concurrently, it is necessary for all transactions to acquire
appropriate locks on the objects they access. Transactions
are allowed to acquire shared or exclusive locks on locally
cached objects, but the lock that can be granted by the local

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

272

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.3, MARCH 2002

e Transaction T requests object A from the client’s local lock manager.

e IF(object A is available in the local cache with the appropriate lock)
THEN

— IF{no other concurrent local transaction has locked the object
in a conflicting mode) THEN

object.
ELSE

ENDIF

ELSE

client.

ENDIF

*+ Transaction T is granted the lock and allowed to access the

* T blocks until the transaction{(s) holding the lock(s) commit.
Now, T is granted its requested lock on A, and allowed to
continue with its processing.

— A request for the appropriate lock is dispatched to the server.

— T is blocked until the server grants the requested lock.
when the server grants a lock it also sends the object over to the

The only exception is for exclusive lock requests when

the object is already present at the client with a shared lock.

In this case, the server only needs to grant the lock.

— Once the lock is granted by the server, transaction T is granted
the requested lock and allowed to proceed.

e When transaction T commits, it releases all the locks it has acquired.
The objects that have been fetched from the server are held in the
client’s cache along with the granted locks.

Usually,

Fig. 3. Processing of object requests from client transactions.

lock manager depends on the lock that the client has
acquired from the server. Therefore, a client transaction
cannot acquire an exclusive lock on a cached object if the
client itself has only acquired a shared lock from the server.
This hierarchical, strict locking policy ensures that conflict-
ing locks cannot be simultaneously granted to client
transactions anywhere in the cluster. The precise algorithm
used by the clients for executing local transactions is given
in Fig. 3.

Clients” lock managers also maintain up-to-date wait-for
graphs that store granted and outstanding requests from
local transactions. The local wait-for graphs are used to
detect and resolve deadlock cycles among local transac-
tions. Deadlock detection at the clients is performed
independently of the global deadlock detection performed
by the server. This is due to the fact that each transaction is
executed at precisely one client site (in a nondistributed
manner) and, therefore, all the necessary objects/locks have
to be cached at that client.

In this paper, we propose the use of such a client-server
database architecture in real-time transaction processing
environments. As the CS model maintains improved
response times in the presence of spatial and temporal
locality of client data accesses, we believe it can lead to
more effective real-time processing. Once data objects are

available at the client site, the local scheduler can
independently determine the order of execution among
the pending transactions which no longer need to access
server data. The next section discusses a number of
algorithms used to schedule tasks either at the client or
the server site, depending on the configuration used,
CS-RTDBS or CE-RTDBS.

2.2 Transaction Scheduling Algorithms

In the context of real-time database systems, transactions
are assumed to have deadlines associated with them. A
transaction successfully completes only if it has finished
executing within its deadline. In an RTDBS, the priority
assignment used to schedule transactions often plays an
important part in deciding the efficiency of the system. This
efficiency is measured in terms of the percentage of
transactions completed within their deadlines. For each
transaction, there are three basic pieces of information
available: the transaction’s arrival time, deadline, and
expected processing time. This information can be used in
several ways to assign priorities to transactions [1], [20].
Two of the most commonly used policies are: Earliest
Deadline First (ED) and Least Slack First (LS). In addition
to these two scheduling algorithms, we also experiment
with the First-Come First-Serve (FCFS) policy. FCFS
schedules transactions to be processed in the order in

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

KANITKAR AND DELIS: REAL-TIME PROCESSING IN CLIENT-SERVER DATABASES 273

TABLE 1
An Example Set of Job Arrivals
Job | Arrival Time | Processing Time | Deadline
Required

A 0 2 3

B 1 4 10

C 2 2 5

D 5 8 16

E 7 2 13

F 11 3 19

which they arrive. Since the deadline information about
the transactions is not used, FCFS will discriminate against
a newly arrived transaction with an earlier deadline in favor
of an older transaction which may have a later deadline.
Therefore, FCFES is not a real-time scheduling policy and we
use it only as a baseline technique for comparison with
other scheduling policies.

Earliest Deadline First scheduling utilizes the deadline
information of the transactions. In this regard, the transac-
tion with the earliest deadline is assigned the highest
priority. This scheduling policy does not look at the
expected processing time required for transactions and,
hence, has the weakness that it can schedule transactions
that have missed their deadline or are certain to.

Least Slack First defines a slack time for each transaction
that is computed using the formula: S = d — (¢t + E), where
t is the current time and E and d are the estimated
processing time and deadline for the transaction, respec-
tively. The slack time, S, is an estimate of how long a
transaction can be postponed without missing its deadline.
The transaction that has the least slack time will be
scheduled first by this algorithm. A negative slack time
indicates that a transaction has missed its deadline. The
efficiency and usefulness of Least Slack First scheduling
depends heavily on accurate knowledge of transaction
processing times. In our discussion of this policy, we make
an important assumption that the CPU processing time of
all transactions is known precisely. Note that we make no
assumptions about the time a transaction could have to wait
for its requisite data to become available. Therefore, it is
quite possible that a transaction could fail to meet its
deadline because it could not gain access to appropriate
data objects.

In addition to these scheduling strategies, only transac-
tions that have feasible deadlines (FD) are selected for
execution. This ensures that transactions that are expected
to miss their deadlines are not processed at all. Using this
measure to determine whether a transaction should be
processed requires reasonably accurate estimates of its
execution time. Transactions that have already missed their
deadlines (tardy transactions) can easily be descheduled or

A B o D E F

Fig. 4. Pure FCFS scheduling.

C Tardy: Abandoned
E Tardy: Abandoned

Fig. 5. FCFS scheduling with NT.

aborted. For simple examples of how these scheduling
policies prioritize the submitted transactions, consider the
job arrival sequence shown in Table 1. Although, in a real
database system, transactions are not executed one at a
time, these examples allow us to demonstrate the strengths
and weaknesses of the various scheduling policies.

Scheduling the jobs in the order in which they arrive
(pure FCES) results in the schedule shown in Fig. 4. Only
transactions A, B, and D meet their respective deadlines,
while the other three jobs are unsuccessful. In addition to
FCFS scheduling, processing only those transactions that
have not yet missed their deadlines (Not Tardy or NT)
results in the schedule depicted in Fig. 5. In this schedule, at
time 6, Job C has missed its deadline and, therefore, Job D is
picked for processing. When Job D finishes at time 14,
Transaction F is processed because E has already become
tardy. Since FCFS with NT is clearly better than Pure FCFS,
we do not examine pure FCFS in the rest of the paper.
Instead, we use the term FCFS to mean FCFS with NT.

Using the ED scheduling algorithm, results in the
schedule shown in Fig. 6. Here too, the NT criteria is used
so that no time is wasted in processing transactions that
have already missed their deadlines. At time 0, A is the only
job in the system, so it is processed immediately. At time 2,
there are two jobs available, B and C. The deadline for B (10)
is later than that for C (5), so C is selected for processing at
this time. Similarly, at time 8, Job E has an earlier deadline
that Job D, so E is processed first.

If the Least Slack First algorithm is used, the schedule
that is generated is shown in Fig. 7. At time 2, either of B
and C have to be selected for processing. The slack for Job B
is 4 [10 - (2 + 4)] and the slack for Job Cis 1 [5 - (2 + 2)],
hence, Job C is processed first. In the same manner, at
Time 8, Task D has a slack 0 [16 - (8 + 8)] and Task E has an
available slack of 3 [13 - (8 + 2)] and, hence, D is processed
before E. At Time 16, E has a negative slack (-5) that
indicates that E has missed its deadline. Therefore, Job F is
processed at this time.

As the above example demonstrates, pure FCFS is
virtually assured to do worse than the other scheduling
policies. However, it is not easy to theoretically compare

D Aborted

Fig. 6. Earliest deadline first scheduling with NT.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

274

E Tardy; Abandoned

Fig. 7. Least-slack first scheduling with FD and NT.

the schedules generated by FCFS (with NT), ED (with
NT), and LS (with FD and NT). This is because the
quality of the generated schedules depends largely on the
actual job arrival times and deadlines. It has been shown
experimentally that ED and LS perform better than FCFS
under most situations, except when the transactional load
is very high [1].

The algorithms described above can be used to prioritize
tasks either at the server in a centralized setting or at the
clients in a client-server setting. The availability of cached
data in a CS-RTDBS can play an important role in
scheduling the execution of client-based transactions. In
the absence of its necessary data, a higher priority
transaction may have to be scheduled after a lower priority
one if the latter has all its required data/locks cached at the
client. Also, in our previous work on CS-RTDBSs [21], an
important observation we made with regard to failed
transactions was that the time spent by such transactions
waiting for the appropriate locks on their requested objects
played a major part in their failure. Therefore, we propose a
scheduling policy that makes its scheduling decisions on
the basis of the data locally available at the clients. The task
that has the highest proportion of its required data available
locally is assigned the highest priority. If two tasks have the
same percentage of their required data available locally,
then the ED policy is used as a tie-breaker. We term this
scheduling strategy Most Locally Available Data First (LAD).
For instance, consider the set of jobs shown in Table 2,
which is a minor variation of that shown in Table 1. The
additional information available for each job is the
percentage of its requested objects so far that are already
available at the site of execution. In general, the set of
objects that a transaction will access during its execution is
not easy to predict a priori. Although, we do not update the
values for the percentage of locally available data (objects)
in the given example (Table 2), in our implementation, these
values are updated dynamically as object requests are

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.3, MARCH 2002

G Aborted

Fig. 8. Most locally available data first scheduling with NT.

fulfilled by the server and when local transactions release
locks on objects that other local transactions are waiting to
access. The transaction priority queue is also updated
accordingly.

The order in which these jobs are scheduled is shown in
Fig. 8. At time 0, A is the only job available, so it is started
immediately. When this task finishes, at time 2, B and C are
in the scheduler’s queue. Of these two jobs, C is selected for
execution first since it has a greater proportion of its
required data available locally. At time 4, B is executed as it
is the only job in the queue. Once job B completes, the
choice to be made is between D and E. According to LAD
scheduling, E will be picked as it has 80 percent of its data
resident at the site as compared to 65 percent for D. At
time 11, D is dropped from the job queue since it has missed
its deadline. The decision to be made, at time 12, is between
tasks F and G, both of which have a deadline of 19. Since
LAD uses the deadline only as a secondary measure, F is
executed first because it has more of its data locally
resident. G is executed after F is done, but is aborted when

it misses its deadline (at time 19).
The performance of LAD is tied very closely to the

degree of locality that transactions at each site in the cluster
demonstrate. A higher percentage of data requests that can
be satisfied locally implies a lower percentage of missed
deadlines. We believe that, in the presence of tight time
constraints on tasks, the use of deadline information as a
secondary heuristic will not affect the performance of LAD
very significantly even when the degree of access locality is
lower.

In the next section, we describe the development of the
system prototypes used to evaluate the CS-RTDBS and the
CE-RTDBS.

TABLE 2
Example Set of Job Arrivals for LAD Scheduling

Job | Arrival Time | Processing Time | Deadline | Percentage of So Far Requested Data
Required Objects Locally Available
A 0 2 3 80%
B 1 4 10 80%
C 2 2 5 90%
D 5 4 16 65%
E 7 4 13 80%
F 11 3 19 90%
G 12 5 19 70%

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

KANITKAR AND DELIS: REAL-TIME PROCESSING IN CLIENT-SERVER DATABASES 275

TABLE 3
PF Layer Primitives

PF Layer Function Description Timings for 100,000 Operations (in ps)
Average | Maximum Minimum
PF_GetThisPagce (disk) Fetch the specified page
from disk and return a 3,981 482,643 146
pointer to the page data
PF_GetThisPage (memory) | Fetch the specified page
from memory and return a 7 5,792 5
pointer to the page data
PF_PageUnfix Make the buffer manager
aware that the page is no 14 11,901 6
longer needed in the buffer
PF_PageAlloc Allocale a page 2,067 91,711 54
PF_DirtyPage Mark a page as dirty 15 2,335 10

3 DEVELOPMENT OF SYSTEM PROTOTYPES

In this section, we describe the implementation of our
system prototypes of the centralized (CE-RTDBS) and
client-server (CS-RTDBS) architectures. The prototypes for
both systems have been developed on Solaris 2.5 using the
available thread and socket libraries, as well as a library for
paged 1/0O operations. The overall size of the CS-RTDBS
package is about 11.3 K lines of C code, while the size of the
CE-RTDBS package is approximately 7.9 K lines.

In both systems, communication between the clients and
the server is done using TCP sockets. In both implementa-
tions, the server has been designed as a concurrent
connection-oriented server. Once a connection has been
created between a client and the server, this connection is
maintained for the duration of the experiment. This is done
so that the relatively high overhead of establishing a socket
connection between the clients and the server is incurred
only once. At the beginning of each experiment, the server
listens on a socket for client connection requests. As soon as
a connection request arrives from a client, the server creates
a new lightweight process (Solaris thread) to handle that
connection. This thread interacts only with that client and
handles all future requests from it.

The Paged-File (PF) layer from the MiniRel system
developed at the University of Wisconsin, Madison, is used
to create and manage an object database (at the centralized
server, CS-RTDBS clients, and CS-RTDBS server). The
PF layer implements a file page buffer manager. Its basic
data structures are the PF file page, the page buffer, the
page hash table, and the file table. Each PF file is
implemented as an Unix file with the PF file page forming
the basic unit of organization. In our experiments, we
assume that one PF page contains exactly one database
object. The page buffer is used to maintain a number of
PF pages in memory. Pages requested by applications are
brought into the memory buffer. If a page is already in the
memory buffer, then the request is satisfied without having
to read from disk. If a page is to be brought into a full
buffer, a victim page is chosen using LRU from among the
unpinned pages in memory and thrown out. Victim pages
are written back to the disk only if they have been marked
as dirty. The page hash table is provided in order to locate

the buffer entry corresponding to a PF file page in the
buffer. Descriptions and timings for PF layer operations
used are given in Table 3. On top of the PF layer, each
database client has a local cache manager. The cache
manager maintains metadata about the objects cached
locally that allows it to control the overall state of each
client’s cache. When the client cache becomes full, poten-
tially unnecessary objects are selected, using LRU, from the
local cache and the locks on them are released to the server.
Objects that have been updated locally are shipped back to
the server before they are purged from the local cache.

A transaction in each of the prototypes is constructed
using calls to PF layer functions to load and update
database objects. The total number of objects that each
transaction accesses is decided according to an Exponential
distribution. A random number of objects, between 0 and
this total, are requested by the transaction as soon as it is
created and the rest are requested at periodic intervals over
its processing lifetime. Objects (pages) are read into the
transaction’s buffer space by using the PF_GetThisPage()
function call, which retrieves the requested pages either
from the disk or PF memory buffer. Objects which are to be
updated are marked as dirty using the PF_DirtyPage()
function. Dirty pages are automatically written back to the
disk file by the PF buffer manager when the page is
replaced in the buffer. The “processing” performed by each
transaction is the calculation of products of random
numbers until the prescribed CPU processing time has
elapsed. As the transaction commits, it releases its locks on
the database objects.

Lock managers are used to ensure that conflicting
accesses to the object database are not allowed. In the
CE-RTDBS, the two-phase locking protocol employed by
the corresponding manager ensures serializability of trans-
actions. In the CS-RTDBS, the global lock manager is located
at the object server and arbitrates between lock requests
from clients. The lock managers in the centralized and
client-server systems also maintain up-to-date wait-for
graphs in order to detect deadlocks [39]. In our implemen-
tations of both systems, we do not allow a transaction with a
higher priority to take away locks/objects from transactions
with a lower priority. This corresponds to the WAIT lock
management scheme proposed in [1]. We do this because,

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

276

Objects
A B C
1 -EL EL
Clients 2 SL 8L
3 SL -EL S

SL: Shared Lock
EL: Exclusive Lock

(@)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.3, MARCH 2002

B EL
N -
sL b !
’ EL Request
EL Request y
2
i A
SL
»

c 3

Fig. 9. Using a two-dimensional array to represent a request wait-for graph.

in our experimental system, all transactions belong to the
same equivalence class in terms of their importance.
However, in a system where transactions have differing
levels of importance, a lock management method such as
WAIT-PROMOTE or HIGH-PRIORITY may provide a better
level of performance.

In a wait-for graph, nodes represent clients and objects
and directed edges represent granted locks and outstanding
requests. A granted lock is shown as an edge from the object
to the client that holds the lock, while an outstanding
request is shown as an edge from the requesting client to
the object. In our implementation, two-dimensional arrays
of integers are used to maintain wait-for graphs. Positive
integers denote granted locks and negative integers identify
outstanding requests. This compact representation allows
us to incorporate the wait-for graphs within the lock tables
resulting in considerable savings in memory space usage.

Fig. 9 depicts a deadlock involving clients 1 and 3. This is
a result of allowing both the request from client 1 for
object A and that from client 3 for object B. In our
implementation, when an object/lock request is received,

it is added to the request queue only if it does not cause a
cycle in the wait-for graph. Therefore, of the two out-
standing requests shown in the figure, the request that
arrives later is denied. The client that issued the request is
required to release the lock it holds in the present deadlock
cycle and abort the transaction in question.

In our packages, accesses to the database, lock tables,
wait-for graphs, and variables shared by multiple threads
are synchronized by means of Solaris mutual exclusion
primitives. The use of Solaris reader-writer locks was
considered, but their timing performance was observed to
be generally poorer than the simpler mutex locking
primitives.

The CE-RTDBS server executes one thread per client/
terminal in the system. This thread maintains a persistent
socket connection with that client for the duration of the
experiment. Each client ships all transactions initiated at it
to the server using this socket connection, where the
transactions received from all the clients are scheduled
and executed. The CE-RTDBS server has been designed to
be able to process a number of transactions simultaneously.

Centralized Server
Database
i
i MLock) \ .
stk anager ™ Dams Bufters
Transactions iy I s v
-
» © AW\
L Pool of
N concurrent Concurrent
client handler Transaction
threads Threads
- - Results
]
Results

N clients/terminals

Fig. 10. Implementation of the CE-RTDBS.

Transactions

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

KANITKAR AND DELIS: REAL-TIME PROCESSING IN CLIENT-SERVER DATABASES 277

Object Server

Database

i

Global y
Lock
Manager » Memory Buffer

My Y £ >

1 b8

N concurrent

object request
handling
threads

Object Requests
and Responses

Client
DBMS

N clients

Disk-Resivent
Cached Data

i
Local Lock '
Manager ™ pgyis Bufiers
DYy v
v ~

Transaction
heduler

i

User Transactions

User Transactions

Fig. 11. Implementation of the CS-RTDBS.

This is done by executing each transaction as an indepen-
dent thread. The number of transactions that can execute
concurrently depends on the availability of memory buffer
space and access to database objects. Fig. 10 provides a
pictorial representation of the server implementation. The
clients (terminals) shown in the figure are simple points of
service and perform no transaction processing,.

In the CS-RTDBS, the object-server executes one thread
per client (Fig. 11). Each such thread maintains two
persistent socket connections with the client for the entire
duration of the experiment. One connection is used
exclusively for messages, while the other is used for the
transfer of database objects to and from the client. Here too,
like the CE-RTDBS, each transaction is executed as a
separate thread, but the distinction is that transactions at
each client are scheduled locally, independent of the server.
The clients also make use of the short and long term
memory available to them [9]. Data objects/locks that have
been fetched from the server are maintained in the local
cache so that future requests on cached data can be satisfied
without interaction with the server.

4 EXPERIMENTAL APPROACH AND RESULTS

The objective of our experimental effort was to answer the
following questions:

e What is the scalability of the centralized (CE-RTDBS)
and client-server (CS-RTDBS) models as the number
of clients attached to the server increases?

e How do the centralized and client-server models
compare under conditions of varying update loads
in the context of real-time database processing?

o What is the effect of the different scheduling policies
(ED, LS, ECFS, and LAD) on the performance of the
two RTDBS models?

The test environment for our experiments was a system
consisting of five Sun ULTRA-1 workstations residing on a
10 Mbps Ethernet LAN. The database server executed by
itself on one workstation and the clients were evenly
distributed on the other four. We ran our experiments for
two different database access workloads, a varying percen-
tage of updates, and evaluated the four transaction
scheduling policies. The duration of each experiment was
approximately two hours and, therefore, a complete set of
experiments took about 70 hours to perform. We ran each
experiment several times in order to verify and confirm the
consistency of the derived results.

The database consisted of 10,000 objects and the size of
each object was 2 KB. The database parameters for the
prototypes is given in Table 4. In both systems, transaction
arrival at each client is determined by a Poisson arrival
process with a mean interarrival time of 10 seconds. The
Average Transaction Length (ATL)—CPU processing

TABLE 4
Prototype Parameters

Parameter Vulue

Database Size 10.000
Centralized RTDBS Server Main Memory | 5.000
CS-RTDBS Server Main Memory 1.000
Client Disk Cache Size 1.000

Client Memory Cache Size 600

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

278

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 3, MARCH 2002

TABLE 5
Parameters for Each Set of Experiments
Parameter Experiment Experiment Experiment
Set 1 Set 2 Set 3
Database Access Pattern Localized-RW Normal Localized-RW

Avcrage Transaction

Inter-Arrival Time (seconds) 10 10 10

Average Transaction CPU

Processing Time (seconds) 10 10 20
Average Number of

Objects Accessed 10 10 10

by Each Transaction

Update Selectivity

1%, 5%, 20%

1%, 5%, 20%

1%, 5%, 20%

Transaction Scheduling Strategics

ED,LS,FCFS,LAD

ED,LS,FCFS,LAD

ED,LS,FCFS,LAD

time—is generated according to an exponential distribution
with a specific average. The choice of the Poisson and
Exponential distributions was made so as to be in
accordance with theoretical queuing models. The values
used for the ATL in our three sets of experiments are given
in Table 5. Transaction deadlines were set according to an
exponential distribution with three times the average
processing time of a transaction as its mean. The average
number of objects accessed by each transaction is 10. The
values for the average interarrival time and for the average
CPU processing time of transactions (ATL) were chosen to
be large enough so as to minimize the effects of network
data transfer times—especially in comparison to transac-
tion-scheduling and locking-related delays. The update
workload is varied by using different update selectivities,
i.e., the percentage of the overall object accesses that are
modifications. We tested the two prototypes with 1 percent
and 5 percent, as well as a very extreme (for regular
databases) 20 percent update selectivity.

We experimented with two different database access
patterns that create different degrees of contention for
database objects. In the first access pattern, we divided the
database into 10 equal-sized ranges. The probabilities of
transactions” object accesses for each range were set

0.30

The probability of
accesses for each
of the ten partitions

0.20

0.10

Fig. 12. Normal object access distribution.

according to the Normal distribution shown in Fig. 12.
Within each range, the actual objects to be accessed were
selected with a Uniform probability. Hence, all clients
demonstrate a very keen interest in a common “hot” area,
which is 20 percent of the database. The degree of
contention for the objects in this hot area is expectedly very
high. In the other access pattern, which we call Localized-
RW, each client has its own distinct “hot” area that is
1 percent of the size of the database. Eighty percent of a
client’s accesses are made to this hot area (according to the
Uniform distribution), while the other 20 percent of the
accesses were to the remainder of the database according to
the Zipf distribution. Therefore, Localized-RW is very
similar to the HOTCOLD workload described in [7] except
that, here, a client’s accesses to the rest of the database
objects are not uniformly distributed. The Localized-RW
pattern was designed to investigate the effect of locality in
clients’ data accesses on the efficiency of the CS-RTDBS. The
Localized-RW database access scheme is depicted in Fig. 13.

In order to perform a comparison of the two processing
models under varying workload conditions, we first tested
them with the Normal and Localized-RW database access

Client] Client 2
Object Accesses Object Accesses

| Range of Database Objects |

Fig. 13. Localized-RW object access distribution.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

KANITKAR AND DELIS: REAL-TIME PROCESSING IN CLIENT-SERVER DATABASES

279

Percentage of Transaction Completed Within Deadlines

90.00
88.00
86.00
84.00
82.00
80.00
78.00
76.00
74.00
72.00
70.00
68.00

66.00

20 40

Fig. 14. One percent updates (localized-RW, ATL 10 seconds).

patterns for an average transaction processing time of
10 seconds. Then, we used the Localized-RW scheme and
set the average transaction processing time to 20 seconds.
The higher processing time per transaction allowed us to
see the performance of the systems under overload
conditions. The following sections describe the results of
our experiments for each of the above three workloads. For
each experiment, our basic measure of system performance
is the percentage of transactions that complete within their
prescribed deadlines. Transactions that are aborted either
during deadlock detection or because they have missed
their deadlines are counted as failures.

4.1 Localized-RW and Average Transaction
Processing Time of 10 Seconds

The performance of the two real-time configurations, in
terms of the percentage of transactions that completed
within their deadlines, for an update selectivity of 1 percent
is shown in Fig. 14. The derived curves show that the
CE-RTDBS offers greater efficiency for a very small number
of clients. The faster processing ability and larger memory
capacity of the centralized server outweighs the advantages
offered by the CS-RTDBS at very low loads. However, as

CS-1.8
\J

CS-LAD

CS-ED

CS-FCFS

CE-1.8
CE-ED
CE-FCFS

60 80 100

Number of Clients

the load increases, the performance of the centralized
system deteriorates rapidly, independent of the scheduling
algorithm used. This is because the distributed scheduling
of the CS system tends to alleviate the problems caused by
an unfavorable scheduling policy.

Additionally, the low percentage of conflicting lock
requests makes the client caches in CS-RTDBS very efficient.
Most object requests made by client transactions are
satisfied locally. The low updates selectivity results in very
few conflicting lock requests from clients. Therefore, object
requests dispatched to the server are satisfied within very
short times—see the column for 1 percent update selectivity
in Table 6. Requests for exclusive locks are satisfied in only
slightly longer time than shared lock requests. All these
factors cause the CS-RTDBS to demonstrate better perfor-
mance than the CE-RTDBS as the number of clients
increases beyond 40.

Fig. 15 shows a break-up of the average object response
times in the CS-RTDBS. Here, the response times for both
shared and exclusive lock requests are shown as two
components. The first component indicates the network
transfer time for the object request from the client to the
server plus the object transfer time in the reverse direction.

TABLE 6
Average Object Response Times in the CS-RTDBS (in Milliseconds) for the Localized-RW Access Pattern and ATL of 10 Seconds
(ED Scheduling)

Number of Clients | 1% Update Selectivity | 5% Update Selectivity 20% Update Selectivity
Shared Exclusive Shared Exclusive Shared Exclusive
Lock Lock Lock Lock Lock Lock
20 43 58 57 90 102 109
60 53 181 97 185 226 242
100 58 251 135 257 363 382

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

280
RN Object transfer time for SL request
250 -
‘ Processing time for SL request
. Object transfer time for EL request
200 . Processing time for EL request —
[72]
e
s
g 150
[0}
2
= 100
50 - ‘ §
N
20 60 100

Number of Clients

Fig. 15. Breakup of average object response times in CS-RTDBS for 1
percent updates, localized-RW, ATL 10 seconds, ED scheduling.

The second component denotes the delay encountered in
processing each object request (including deadlock detec-
tion). A significant portion of this second component is the
time required to call back an object from a client that has
locked it in a conflicting mode. The actual overhead
incurred in performing the deadlock detection itself is
shown in Fig. 16. What is shown here is the average time
spent in deadlock detection per request, including the time
it takes to resolve deadlocks when they are detected. The
time spent in checking whether a request could cause a
cycle in the wait-for graph is very short for 20 clients
(5 milliseconds), but, when the number of clients increases
to 100, this delay is as much as 28 milliseconds.

The transaction scheduling policies used have a notice-
able effect on the performance of two configurations. In the
CE-RTDBS, the LS scheduling policy outperforms FCFS by
about 8 percent. In the CS-RTDBS, the difference between
the best policy (LS) and the worst one (FCFS) is approxi-
mately 4 percent. It is interesting to note that the LAD
scheduling policy performs better than the ED and FCFS
methods. The Localized-RW access pattern allows a con-
siderable percentage of client requests to be satisfied locally
and, therefore, scheduling transactions on the basis of
available local data is beneficial.

The percentage of transactions completed successfully by
both systems for a 5 percent update selectivity is shown in
Fig. 17. The increased percentage of updates causes the
efficiencies of both systems to drop by a small amount. In
the CS-RTDBS, this is due to the more frequent transaction
blocking at the clients for locks on objects and an increased
number of object callbacks and refetches. The increased
data contention causes a reduction in the effectiveness of
CE-RTDBS as well. However, since the data is all stored at
the server, the only cost incurred is in the serializability of
interleaved transactions requesting conflicting locks. Con-
sequently, the centralized system performs better than the
CS system for lower loads (up to 40 clients). Due to the
rapid degradation of the performance of the CE-RTDBS, the
CS-RTDBS performs better when the number of clients
becomes large. Overall, the results for this update setting
follow the same pattern observed for 1 percent updates,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.3, MARCH 2002

40

20

Milliseconds

]

20 40 60 80 100
Number of Clients

Fig. 16. Deadlock detection overhead per object request in CS-RTDBS
(1 percent updates, localized-RW, ATL 10 seconds).

although the benefits of the CS-RTDBS become apparent
only for more than 60 clients. A similar pattern of results is
repeated in the third group of experiments when the
selectivity of updates is increased to 20 percent—see Fig. 18.
Once the number of clients in the system becomes very high
(greater than 60), the client-server system demonstrates
greater efficiency. From Fig. 19, it can be seen that the
deadlock detection overhead (per request) is not higher for
an update selectivity of 20 percent than that for 1 percent
(Fig. 16). This is because just increasing the proportion of
exclusive lock requests does not cause an corresponding
rise in the complexity of the wait-for graphs used to detect
deadlocks.

An important observation that can be made from the
results of the above three groups of experiments is that the
performance differential between the two systems de-
creases as the percentage of updates increases. When the
number of clients is large and the update selectivities are
limited, the difference in the performance levels of the two
systems is more notable. On the whole, the results of this set
of experiments demonstrate that, for reasonable percen-
tages of updates, the CS-RTDBS can significantly outper-
form its centralized equivalent.

4.2 Normal and Average Transaction Processing
Time of 10 Seconds

In this set of experiments, transactions at each client
accessed the database according to the Normal distribution
shown in Fig. 12. For an update selectivity of 1 percent, the
percentage of transactions that completed within their
deadlines is depicted in Fig. 20. The results follow a trend
similar to that seen in the set of experiments with Localized-
RW accesses. The CE-RTDBS performs very well for a small
number of clients, but its performance deteriorates very
rapidly as the number of clients increases. The CS-RTDBS
demonstrates stable performance levels as the number of
clients increase. This is because the small percentage of
updates allows quick service of clients’ object requests
(Table 7). Additionally, the very low probability of
exclusive lock request conflicts allows clients to cache data
for long periods of time and also ensures that deadlock
detection overheads are low (Fig. 21). This allows transac-
tion requests to be satisfied locally without reference to the

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

KANITKAR AND DELIS: REAL-TIME PROCESSING IN CLIENT-SERVER DATABASES 281

Percentage of Transaction Completed Within Deadlines

85.00

80.00

75.00

70.00

65.00

60.00

20 40

Fig. 17. Five percent updates (localized-RW, ATL 10 seconds).

server. Consequently, the efficiency of the CS-RTDBS is
better than that of the CE-RTDBS when the number of
clients increases beyond 60. As Fig. 20 shows, the schedul-
ing policies used have a considerable impact on the
efficiencies of the two configurations. Expectedly, LS
demonstrates the best performance in either architecture,
followed by ED and FCFS. In the CS-RTDBS, LAD does not
perform any better than ED. This is because of the higher
degree of contention for the more frequently accessed
ranges of objects in the Normal distribution.

CS-LS CS-1.AD
»
\J
A
CS-ED i
4

CS-FCFS

CE-1.8 P2
CE-ED
CE-FCFS
60 80 100
Number of Clients

Increasing the selectivity of updates to 5 percent (Fig. 22)
adversely affects the performance of the two systems, but
the overall trends are similar to those in Fig. 20. The higher
percentage of object updates and the absence of locality in
the clients’ data accesses results in longer transaction
blocking in the CS-RTDBS. In spite of these drawbacks,
the CS-RTDBS is able to demonstrate greater efficiency
when the number of clients is more than 80.

It is when the percentage of object updates is increased to
a very extensive 20 percent that we can see a significant

Percentage of Transaction Completed Within Deadlines

80.00

75.00

70.00 i

CS-FCFS

65.00

60.00

55.00

20 40

Fig. 18. Twenty percent updates (localized-RW, ATL 10 seconds).

CS-1.8
CS-1.AD

CE-LS v

CE-ED

CE-FCFS

60 80 100

Number of Clients

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

282

40

20 - 1

Milliseconds

20 40 60 80
Number of Clients

100

Fig. 19. Deadlock detection overhead per object request in CS-RTDBS
(20 percent updates, localized-RW, ATL 10 seconds).

deterioration in the performance of the CS-RTDBS (Fig. 23).
The dramatic increase in the percentage of updates causes a
manyfold increase in the percentage of conflicting lock
requests. This implies that the clients have to return and
refetch database objects to and from the server. The
CE-RTDBS is affected by the high percentage of updates
as well. However, since the data is all stored at one

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.3, MARCH 2002
location, it does not incur the significant costs involved in
transporting data back and forth between the clients and
the server. The column for 20 percent updates selectivities
in Table 7 shows the extensive delays in obtaining locks on
database objects. For 100 clients, obtaining an exclusive
lock takes 1.296 seconds on the average. This is a very
considerable delay, resulting in a worse performance for
the CS-RTDBS than its centralized counterpart.

For the CS-RTDBS, the LAD scheduling policy is now
noticeably worse than the LS and ED policies. Higher
contention for objects in the clients’ common hot area
results in a very small percentage of these objects being
readily available in local caches. Also, the increased
presence of “cold” objects in each client’s cache causes
misjudgments in LAD’s scheduling decisions.

Overall, the performance of the CE-RTDBS is slightly better
for the Normal access distribution than the Localized-RW one.
We believe that this is due to the fact that transactions’ data
accesses here are largely concentrated on a very small portion
of the database (almost 52 percent of all object accesses are in
ranges5and 6 of the database—Fig. 12). The centralized server
copes in a more effective way as frequently accessed objects
remain in main memory buffers much more often, thus
requiring a smaller number of disk accesses.

Percentage of Transaction Completed Within Deadlines

92.00
90.00
88.00
86.00
84.00 I
82.00
80.00
CS-1LAD
78.00
76.00
74.00
72.00

70.00

68.00

20 40

Fig. 20. One percent updates (Normal, ATL 10 seconds).

CS-1.8
CS-KD
\
'
v
v
CS—FCFS
CE-LS -
CE-ED
CE-FCFS -

60 80 100

Number of Clients

TABLE 7

Average Response Times in the CS-RTDBS (in Milliseconds) for the Normal Access Pattern and ATL of 10 Seconds

(ED Scheduling)

Number of Clients | 1% Update Selectivity | 5% Update Selectivity | 20% Update Selectivity
Shared Exclusive Shared Exclusive Shared Exclusive
Lock Lock Lock Lock Lock Lock
20 58 265 66 264 94 279
60 63 538 88 562 201 724
100 69 850 90 917 355 1296

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

KANITKAR AND DELIS: REAL-TIME PROCESSING IN CLIENT-SERVER DATABASES 283

40

20

Milliseconds

N

20 40 60 80 100
Number of Clients
Fig. 21. Deadlock detection overhead per object request in CS-RTDBS
(1 percent updates, Normal, ATL 10 seconds).

4.3 Localized-RW and Average Transaction
Processing Time of 20 Seconds:

We now evaluate the systems when the average transaction
processing time is 20 seconds. Since the mean transaction
interarrival time is only 10 seconds, the systems are
operating under significant overload conditions. The
performance of the two systems for a 1 percent update
selectivity can be seen in Fig. 24. As expected, the
CE-RTDBS behaves well when the number of clients is
small. In fact, for 20 clients, the CE-RTDBS completes
almost 10 percent more transactions within their deadlines
than its client-server counterpart. This is a very large
margin in an overloaded real-time environment. However,
this level of performance cannot be sustained by the CE-
RTDBS as the load on the system increases. As the number
of clients increases beyond 40, performance degrades very
rapidly. For 100 clients, the CE-RTDBS can complete only

58 percent of transactions successfully with ED or LS
transaction scheduling. With FCFS scheduling, this percen-
tage is even lower at 46 percent. On the other hand, the
client-server system demonstrates remarkably stable per-
formance in the face of increasing transactional loads. For 20
clients, the percentage of transactions that the CS-RTDBS
can complete using the FCFS discipline is approximately 80
percent. This percentage declines very gradually to 74
percent when the number of clients attached to the server is
increased to 100. The LAD scheduling policy is able to
demonstrate performance equal to that of the ED policy. It
is unable to do better than ED because the longer
transaction execution times imply proportionally longer
transaction blocking (in case of conflicting locks). In such a
situation, using the LS policy leads to higher efficiency.
We can see that the average deadlock detection overhead
—shown in Fig. 25—is higher than in the first two sets of
experiments. This is a direct result of the increase in the
transaction CPU processing times. Locks once acquired by
client transactions are not released for longer periods of
time (twice as long on the average). This causes an increase
in the number of outstanding requests in the wait-for
graphs and, hence, increased delays in performing the
deadlock detection. In the CS-RTDBS, for 100 clients, the
average deadlock detection overhead is 101 milliseconds.
When the update selectivity is set to 5 percent, the results
follow the same general trend as those in Fig. 24, but
absolute performance levels are slightly lower. The percen-
tages of transactions that completed within their deadlines
are shown in Fig. 26. For a smaller number of clients (up to
40), the CE-RTDBS offers better performance, but, once the
number of clients becomes high, the CS-RTDBS is clearly
better. The increased contention for the database causes the
performance of both systems to be affected adversely, but
the locality of accesses by the clients in the CS-RTDBS

Percentage of Transaction Completed Within Deadlines

85.00

CE-FCFS
80.00

75.00

CS-1LAD
CS-ED

CE-ED

CE-LS

y CS-18

CS-FCFS

70.00

65.00

60.00

20 40

Fig. 22. Five percent updates (Normal, ATL 10 seconds).

60 80 100
Number of Clients

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

284

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.3, MARCH 2002

Percentage of Transaction Completed Within Deadlines

CE-LS

80.00

75.00

70.00

CS-1.8

65.00

60.00

55.00

20 40

Fig. 23. Twenty percent updates (Normal, ATL 10 seconds).

CE-ED

CE-FCFS

CS-ED

CS-FCFS
CS-1LAD

60 80 100

Number of Clients

Percentage of Transaction Completed Within Deadlines

90.00

CS-LS
85.00
80.00 ‘ 1
i &
75.00
CS-ED i
CS-LAD
70.00
»
CS-FCFS
65.00 CE-LS
-
60.00 CE-ED
55.00
CE-FCES -

50.00
45.00

20 40 60 80 100

Fig. 24. One percent updates (localized-RW, ATL 20 seconds).

allows it to maintain a consistent performance level as the
load increases. The effect of the increased percentage of
updates on the CE-RTDBS becomes clearly visible when the
load increases.

When the selectivity of updates is increased to 20 percent,
we observe that the performance of the CE-RTDBS is better
than or equal to that of the CS-RTDBS, independent of the
number of clients attached. The increased contention for
exclusive locks causes the clients in the CS-RTDBS to have
to return database objects to the server and refetch them
much more often. The performance of the CE-RTDBS is also

Number of Clients

affected by the increased percentage of updates, but, since
all the data is available in one location, the overall overhead
incurred by the system is smaller. The results of this set of
experiments is shown in Fig. 27.

5 RELATED WORK

There exists an extensive body of research in real-time
systems indirectly related to our work. Here, we highlight a
number of representative works that investigate issues in
scheduling of real-time jobs, design issues in RTSs, and

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

KANITKAR AND DELIS: REAL-TIME PROCESSING IN CLIENT-SERVER DATABASES

100 + l 1

Milliseconds

50

.l ‘
40 60 80

20

100

Number of Clients
Fig. 25. Deadlock detection overhead per object request in CS-RTDBS
(1 percent updates, localized-RW, ATL 20 seconds).

resource management in multiprocessor and distributed
settings.

In [1], scheduling methods for database transactions are
proposed and concurrency control policies are investigated
through experimentation. The management of concurrent
transactions in real-time settings is further discussed in [15],
[18]. A family of speculative concurrency control techniques
is proposed in [4]. Here, potentially costly delays due to
blocking and roll-backs are avoided with the use of
additional shadow transactions that guard incomplete
database transactions. Haritsa et al. [16] propose the
Adaptive Earliest Deadline scheduling algorithm (AED).
To overcome the observed disadvantages of the Earliest
Deadline First algorithm (ED) in a heavily loaded RTDBS,
AED features a feedback control mechanism that detects
overload conditions and modifies transaction priority
assignments accordingly. An alternative approach for real-
time database systems is presented in [36]. Deadlines are

285

associated with “contingency constraints” rather than
directly with transactions.

The architectural design of StarBase is reported in [24].
StarBase is a firm RT-DBS based on the RT-Mach OS and the
concept of precise serialization is used to reduce transaction
aborts. The imprecise-computation model is augmented so
that it accounts for input errors and real-time constraints in
[12]. In this context, heuristic algorithms for the scheduling
of preemptive and composite tasks are proposed and
examined using a suite of simulation experiments. In [22],
the fact that general complex distributed tasks consist of
subtasks is exploited by the proposed scheduling algo-
rithms. Here, it is assumed that such subtasks may be
carried out in parallel.

The problem of scheduling tasks with deadlines and
resource requirements is discussed in [30] in the context of
two multiprocessor models (shared and local memory). In
[6], the analysis of both online and offline schemes for
multiple processors running the rate—monotonic schedul-
ing algorithm is presented. Assignment of priorities in
active real-time multiprocessor environments is discussed
in [35]. Three policies that take into account the amount of
active work generated by transactions are proposed and
their behavior is investigated with simulation experiments.

In contrast to the above efforts, our approach not only
advocates usage of the CS model, but also makes
opportunistic use of client resources. It is this type of
distributed processing that, in many instances, can produce
higher completion rates for real-time transactions in
comparison to centralized systems.

6 CONCLUSIONS

As network-centric computing becomes commonplace in
today’s business environments, client-server platforms

Percentage of Transaction Completed Within Deadlines

85.00
80.00
75.00
70.00
65.00
60.00
55.00
50.00
45.00

40.00
20 40

Fig. 26. Five percent updates (localized-RW, ATL 20 seconds).

CS-1.8
CS-ED 5 r.aDp
\i
\
A}
I
CS-FCFS
v CE-1.8
»
CE-FD
CE-FCFS
60 80 100
Number of Clients

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

286

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.3, MARCH 2002

Percentage of Transaction Completed Within Deadlines

80.00

CE-LS
75.00
4
I4
70.00
CE-ED
65.00
CE-tCEFS 7
60.00
4 CS-1.S
55.00
‘ CS-ED
CS-1L.AD y
50.00 .
CS-FCFS

45.00 v

40.00

35.00

30.00

20 40 60 80 100

Fig. 27. Twenty percent updates (localized-RW, ATL 20 seconds).

handling time-constrained requests emerge as the domi-
nant framework for transaction processing. In this paper,
we propose the usage of the client-server database
paradigm for handling requests with time constraints.
The resulting configuration takes advantage of the
available client resources and schedules requests locally.
We have established the viability of the Client-Server Real-
Time Database (CS-RTDBS) configuration by contrasting its
performance with a comparable centralized system
(CE-RTDBS) in a number of diverse workload settings.
For our experimental study, we have developed prototype
packages for both systems using the Solaris 2.5 socket and
thread libraries and a database system library which allows
paged I/0.
The results of our experimental effort indicate that:

e For workloads with usual to large database update
selectivities (i.e., 1 percent and 5 percent of all data
access modify data), the CE-RTDBS offers better
performance than the CS-RTDBS when the number
of clients is small. As the number of clients attached
to the server is increased, the CS-RTDBS is consis-
tently more efficient. For all three workloads that we
examined, the performance of the centralized system
degrades very rapidly as the number of clients
increases.

e When the percentage of updates is significantly
increased to 20 percent, the CE-RTDBS performs
better than or equal to the CS-RTDBS for the Normal
database access pattern and for the overload situa-
tion with the Localized-RW access scheme.

o The scheduling strategy used to assign priorities to
transactions affects the performance of the
CE-RTDBS (in terms of percentage of transactions
completed within their deadlines) much more

Number of Clients

significantly than that of the CS-RTDBS. In the
CS-RTDBS, the transaction scheduling strategy
based on the local availability of data (LAD)
performs as well as ED when database clients
demonstrate locality in their object accesses. The
LS policy performs better consistently; however, in
the absence of accurate transaction execution times,
the ED and LAD disciplines provide viable alter-
natives for effective scheduling at client sites.

e The time spent by transactions awaiting server data
is seen as a very significant factor affecting the
performance of the CS-RTDBS. Thus, the minimiza-
tion of server-related delays—by using intertransac-
tion caching of data objects/locks—and allowing
independent transaction scheduling at the clients
serve as the enablers for higher CS transaction
completion rates.

Based on the results of the experimentation, we believe that
the client-server paradigm is an effective and scalable
alternative to the centralized model for real-time transaction
processing.

We plan to extend our work while pursuing at least three
different directions: 1) techniques that enhance the basic
data-shipping model and improve its real-time processing
capabilities, the adaptive merging of data and query-
shipping based on the location of data within the system
is such a method; 2) distributed speculative transaction
processing, where the use of additional system resources
can provide lock conflict resolution and minimize the
occurrences of transaction rollback and blocking; and
3) logical clustering of database clients based on their data
access patterns—this can significantly reduce the load on
the object server and result in reduced transaction blocking.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

KANITKAR AND DELIS: REAL-TIME PROCESSING IN CLIENT-SERVER DATABASES

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their

detailed comments and suggestions that helped them

improve the presentation and content of the paper. This

work was supported in part by the US National Science
Foundation under Grant NSF II5-9733642 and the Center for
Advanced Technology in Telecommunications, Brooklyn,
New York.

REFERENCES

(1]

(2]

B3]

4

(5]

(o]

(7

(8]

[l

(10]

(1]

[12]

(13]

(14]

[15]

[10]

(17

(18]

[19]

(20]

R. Abbott and H. Garcia-Molina, “Scheduling Real-Time Transac-
tions: A Performance Evaluation,” ACM Trans. Database Systems,
vol. 17, no. 3, 1992.

S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha, “Relational
Transducers for Electronic Commerce,” Proc. ACM Symp. Princi-
ples of Database Systems, June 1998.

M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster Reserves: A
Mechanism for Resource Management in Cluster-Based Network
Servers,” Proc. ACM SIGMETRICS Conf., June 2000.

A. Bestavros and S. Braoudakis, “Timeliness via Speculation for
Real-Time Databases,” Proc. IEEE Real-Time Systems Symp., Dec.
1994.

W. Bolosky, J. Douceur, D. Ely, and M. Theimer, “Feasibility of
Serverless Distributed File System Deployed on an Existing Set of
Desktop PCs,” Proc. ACM SIGMETRICS Conf., June 2000.

A. Burchard, J. Liebeherr, Y. Oh, and S. Son, “Assigning Real-Time
Tasks to Homogeneous Multiprocessor Systems,” IEEE Trans.
Computers, vol. 44, no. 12, Dec. 1995.

M. Carey, M. Franklin, M. Livny, and E. Shekita, “Data Caching
Tradeoffs in Client-Server DBMS Architecture,” Proc. 1991 ACM
SIGMOD Conf., May 1991.

I. Chu and M. Winslett, “Choices in Database Workstation-Server
Architecture,” Proc. 17th Ann. Int’l Computer Software and Applica-
tions Conf., Nov. 1993.

A. Delis and N. Roussopoulos, “Performance Comparison of
Three Modern DBMS Architectures,” IEEE Trans. Software Eng.,
vol. 19, no. 2, pp. 120-138, Feb. 1993.

D. DeWitt, D. Maier, P. Futtersack, and F. Velez, “A Study of
Three Alternative Workstation-Server Architectures for Object-
Oriented Database Systems,” Proc. 16th Int'l Conf. Very Large Data
Bases, pp. 107-121, 1990.

A. Dogac, “A Survey of the Current State-of-the-Art in Electronic
Commerce and Research Issues in Enabling Technologies,” Proc.
Euro-Med Net 98 Conf., Electronic Commerce Track, Mar. 1998.

W. Feng and J. Liu, “Algorithms for Scheduling Real-Time Tasks
with Input Error and End-to-End Deadlines,” IEEE Trans. Software
Eng., vol. 23, no. 2, Feb. 1997.

WAP Forum, “Wireless Application Protocol,” http://www.
wapforum.org, June 2000.

A. Gal, S. Kerr, and J. Mylopoulos, “Information Services on the
Web: Building and Maintaining Domain Models,” Int’l].
Cooperative Information Systems, vol. 8, no. 4, pp. 227-254, 1999.

J. Haritsa, M. Livny, and M. Carey, “On Being Optimistic about
Real-Time Constraints,” Proc. Ninth ACM Symp. Principles of
Database Systems, 1990.

J. Haritsa, M. Livny, and M. Carey, “Earliest Deadline Scheduling
for Real-Time Database Systems,” Proc. 12th Real-Time Systems
Symp., Dec. 1991.

J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,
R. Sidebotham, and M. West, “Scale and Performance in a
Distributed File System,” ACM Trans. Computer Systems, vol. 6,
no. 1, pp. 51-81, Feb. 1988.

J. Huang, J. Stankovic, K. Ramamritham, and D. Towsley,
“Experimental Evaluation of Real-Time Concurrency Control
Schemes,” Proc. 17th Int’l Conf. Very Large Data Bases, 1991.

S. Hvasshovd, S. Bratsberg, and O. Torbjornsen, “An Ultra Highly
Available DBMS,” Proc. 26th Int’l Conf. Very Large Databases, Sept.
2000.

E. Jensen, C. Locke, and H. Tokuda, “A Time-Driven Scheduler for
Real-Time Operating Systems,” Proc. IEEE Real-Time Systems
Symp., pp. 112-122, 1985.

(21]

(22]

(23]

(24]

(23]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(30]

(371

(38]
(39]
(40]

[41]

[42]

287

V. Kanitkar and A. Delis, “A Case for Real-Time Client-Server
Databases,” Proc. Second Int’l Workshop Real-Time Databases, Sept.
1997.

B. Kao and H. Garcia-Molina, “Subtask Deadline Assignment for
Complex Distributed Soft Real-Time Tasks,” Proc. 14th IEEE Int’l
Conf. Distributed Computing Systems, June 1994.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb, “The
ObjectStore Database System,” Comm. ACM, vol. 34, no. 10, Oct.
1991.

M. Lehr, Y. Kim, and S. Son, “Managing Contention and Timing
Constraints in a Real-Time Database System,” Proc. 16th IEEE
Real-Time Systems Symp., Dec. 1995.

C. Mohan and I. Narang, “Efficient Locking and Caching of Data
in the Multisystem Shared Disks Transaction Environment,” Proc.
Third Int’l Conf. Extending Database Technology, pp. 453-468, Mar.
1992.

C. Mohan and I. Narang, “ARIES/CSA: A Method for Database
Recovery in Client-Server Architectures,” Proc. 1994 ACM
SIGMOD Conf., pp. 55-66, May 1994.

A. Mok and M. Dertouzos, “Multiprocessor Scheduling in a Hard
Real-Time Environment,” Proc. Seventh Texas Conf. Computing
Systems, 1979.

E. Panagos, A. Biliris, H. Jagadish, and R. Rastogi, “Client-Based
Logging for High Performance Distributed Architectures,” Proc.
12th Int’l Conf. Data Eng., pp. 344-351, Feb.-Mar. 1996.

K. Ramamritham, “Allocation and Scheduling of Complex
Periodic Tasks,” Proc. 10th IEEE Int’l Conf. Distributed Computing
Systems, 1990.

K. Ramamritham, . Stankovic, and P. Shiah, “Efficient Scheduling
Algorithms for Real-Time Multiprocessor Systems,” IEEE Trans.
Parallel and Distributed Systems, vol. 1, no. 2, Apr. 1990.

B. Reich and I. Ben-Shaul, “A Componentized Architecture for
Dynamic Electronic Markets,” ACM SIGMOD Record, vol. 27, no. 4,
Dec. 1998.

N. Roussopoulos and A. Delis, “Modern Client-Server DBMS
Architectures,” ACM SIGMOD Record, vol. 20, no. 3, pp. 52-61,
Sept. 1991.

N. Roussopoulos and H. Kang, “Principles and Techniques in the
Design of ADMS +,” Computer, vol. 19, no. 2, pp. 19-25, Dec.
1986.

J. Santos, R. Muntz, and B. Ribeiro-Neto, “Comparing Random
Data Allocation and Data Stripping in Multimedia Servers,” Proc.
ACM SIGMETRICS Conf., June 2000.

R. Sivasankaran,]. Stankovic, D. Towsley, B. Purimetla, and K.
Ramamritham, “Priority Assignment in Real-Time Active Data-
bases,” The VLDB J., vol. 5, 1996.

N. Soparkar, H. Korth, and A. Silberschatz, “Databases with
Deadline and Contingency Constraints,” IEEE Trans. Knowledge
and Data Eng., vol. 7, no. 4, Aug. 1995.

W. Stallings and R. Van Slyke, Business Data Communications,
chapter “Wireless Networks.” Upper Saddle River, N.J.: Prentice
Hall, 2001.

J. Stankovic, “The Many Faces of Multi-Level Real-Time Schedul-
ing,” Proc. Real-Time Systems and Applications, pp. 2-5, Oct. 1995.
A. Thomasian, “Concurrency Control: Methods, Performance, and
Analysis,” ACM Computing Surveys, vol. 30, no. 1, pp. 70-119, 1998.
F. Velez, G. Bernard, and V. Darnis, “The O, Object Manager: An
Overview,” Proc. 15th Int’l Conf. Very Large Data Bases, 1989.

Y. Wang and L. Rowe, “Cache Consistency and Concurrency
Control in a Client/Server DBMS Architecture,” Proc. 1991 ACM
SIGMOD Conf., May 1991.

K. Wilkinson and M. Neimat, “Maintaining Consistency of Client-
Cached Data,” Proc. 16th Int’l Conf. Very Large Data Bases, pp. 122-
133, Aug. 1990.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

Vinay Kanitkar holds the PhD degree in
computer science from Polytechnic University
in Brooklyn, New York, and the Master of
Computer Science degree from the University
of Pune in India. He is a research scientist in the
Systems Performance group at Akamai Tech-
nologies Inc. His areas of interest are distrib-
uted/client-server systems, real-time systems,
optimistic concurrency control, and performance
evaluation.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO.3, MARCH 2002

Alex Delis holds the PhD and MS degrees in
computer science from the University of Mary-
land in College Park and a diploma in computer
engineering from the University of Patras. He is
a faculty member with the Department of
Computer and Information Science at Polytech-
nic University in Brooklyn, New York. His
research interests are in the areas of networked
databases, distributed systems, and system
evaluation. He received the Best Paper Award
at the 14th IEEE International Conference on Distributed Computing
Systems and the US National Science Foundation (NSF) CAREER
Award. His work has been supported by the NSF, US Department of
Commerce, Australian Research Council, Sun Microsystems, and SIAC.
He is a member of the IEEE Computer Society, ACM, and the Technical
Chamber of Greece.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 22, 2008 at 09:10 from IEEE Xplore. Restrictions apply.

