
Indexing Animated Objects Using
Spatiotemporal Access Methods

George Kollios, Member, IEEE, Vassilis J. Tsotras, Dimitrios Gunopulos,

Alex Delis, Member, IEEE, and Marios Hadjieleftheriou

AbstractÐWe present a new approach for indexing animated objects and efficiently answering queries about their position in time and

space. In particular, we consider an animated movie as a spatiotemporal evolution. A movie is viewed as an ordered sequence of

frames, where each frame is a 2D space occupied by the objects that appear in that frame. The queries of interest are range queries of

the form, ªfind the objects that appear in area S between frames fi and fjº as well as nearest neighbor queries such as, ªfind the q

nearest objects to a given position A between frames fi and fj.º The straightforward approach to index such objects considers the

frame sequence as another dimension and uses a 3D access method (such as, an R-Tree or its variants). This, however, assigns long

ªlifetimeº intervals to objects that appear through many consecutive frames. Long intervals are difficult to cluster efficiently in a 3D

index. Instead, we propose to reduce the problem to a partial-persistence problem. Namely, we use a 2D access method that is made

partially persistent. We show that this approach leads to faster query performance while still using storage proportional to the total

number of changes in the frame evolution. What differentiates this problem from traditional temporal indexing approaches is that

objects are allowed to move and/or change their extent continuously between frames. We present novel methods to approximate such

object evolutions. We formulate an optimization problem for which we provide an optimal solution for the case where objects move

linearly. Finally, we present an extensive experimental study of the proposed methods. While we concentrate on animated movies, our

approach is general and can be applied to other spatiotemporal applications as well.

Index TermsÐAccess methods, spatiotemporal databases, animated objects, multimedia.

æ

1 INTRODUCTION

WE consider the problem of indexing objects in
animated movies. In our setting, an animated movie

corresponds to an ordered sequence of frames. In this
sequence, each frame (or screen) is a 2D space that contains
a collection of objects. As the movie proceeds, this collection
of objects changes from one frame to the next (new objects
are added, objects move, change in size, disappear, etc.) A
conceptual view of a movie sequence appears in Fig. 1. The
x and y axes represent the 2D frame screen while the f axis
corresponds to the frame sequence. Frame f1 contains
objects o1 (which is a point) and o2 (which is a region). At
frame f2, object o3 is inserted while o1 moves to a new
position and o2 shrinks. Object o1 moves again at frame f5;
o2 continues to shrink and disappears at frame f5. For the
purposes of editing or assembling movie sequences, it is
important to have efficient ways to access and replay all, or
parts, of such movies. In particular, we are interested in
topological range queries of the form, ªfind all objects that
appear in area S between frames fi and fj,º and nearest
neighbor queries like: ªfind the q nearest located objects to
position A between frames fi and fj.º Variables S and A

take values inside the 2D frame screen. An example query is
illustrated in Fig. 1, ªfind all objects inside area S in frame
f3.º Only object o1 satisfies this query.

Objects in movie sequences can be referred at three
different abstraction levels, namely, raw, feature, and
semantic levels [34], [43], [20], [27]. At the raw abstraction
level, an object is an aggregation of pixels from a frame. In
this level, the interest is mainly in object comparisons which
are performed in a pixel by pixel fashion. At the next level,
frames are characterized by image features such as gray
scale, luminance, or color histogram. Objects are identified
through frame regions that consist of homogeneous feature
vectors. Queries in this level are similarity queries in a
multidimensional feature space. At the third level, semantic
information about the objects and their relative positions in
a frame has already been extracted and, thus, can be used to
index these objects. Such semantic information leads to
content-based queries, i.e., queries about the actual objects
in a movie.

Most of the previous research on indexing images or
movies has concentrated on the raw and feature levels and
examines similarity based queries [16], [18]. Our work is
different in that: 1) it deals with the semantic level and,
2) the queries are topological in nature (i.e., the relative
position of objects in space and frame is of importance).
This is a novel problem. Recently, [50] examines similar
topological queries for multimedia applications but it
addresses a special case (the ªdegenerateº case discussed
below).

We propose to index an animated movie sequence as a
spatiotemporal evolution. That is, frame ids fi, with i > 0,

758 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001

. G. Kollios is with the Department of Computer Science, Boston University,
Boston, MA 02215. E-mail: gkollios@cs.bu.edu.

. V.J. Tsotras, D. Gunopulos, and M. Hadjieleftheriou are with the
Department of Computer Science and Engineering, University of
California, Riverside, CA 92521. E-mail: {dg, tsotras, marioh}@cs.ucr.edu.

. A. Delis is with the Department of Computer and Information Science,
Polytechnic University, Brooklyn, NY 11201. E-mail: ad@naxos.poly.edu.

Manuscript received 27 Feb. 2000; revised 22 Jan. 2001; accepted 29 Jan. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 113984.

1041-4347/01/$10.00 ß 2001 IEEE

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



correspond to consecutive time instants. In the rest of the
paper, we will use the terms time instant and frame number
interchangeably. By considering an animated movie as a
spatiotemporal evolution, each object is assigned a record
with a ªlifetimeº interval �fi; fj� created by the frames when
the object was added (insertion frame) and deleted (deletion
frame) from the movie. We consider two types of evolu-
tions, namely, the degenerate case and the general case. In the
degenerate case (Fig. 2), objects are simply added or deleted
from the movie. That is, during its lifetime, an object
remains in the same position and retains the same 2D extent
(region). This type of evolution is rather static. The only
changes in the degenerate evolution are object insertions
and deletions. A deletion is a ºlogicalº operation that
simply updates the lifetime interval of the deleted object's
record. Important for the design of the index is the number
of object insertions, N . This represents the total number of
records ever created and is a measure for the storage
consumed by the index. More interesting (and realistic) is
the general case where objects are allowed to move and
grow/shrink among frames during their lifetime (Fig. 1).
However, in the general case, it is not obvious how position
and extent changes can be quantified as object insertions.
Consider an object that moves from position A in frame fi to
a new position C in the next frame fi�1. The simplest way to
represent such movement is to delete the object from
position A in frame fi�1 and reinsert it in position C at the
same frame. This creates two records for this object, one
record with position A and lifetime ending at fi�1 and one
record with position C and lifetime starting at fi�1. The

object's lifetime has been ªartificiallyº truncated into two
records with consecutive and nonoverlapping intervals.
This approach is not efficient if objects alter positions/
extents continuously through frames. A large number of
artificial insertions is created and, thus, the index storage
requirements increase.

A better solution is to store the functions describing how
objects move or vary their extents. In animated movies, an
object's frame evolution is represented by some function [1].
Even though general functions can be used, for simplicity
we assume an object can move or grow/shrink through a
linear function of time. Then, a new record is inserted only
when the parameters describing an object's (movement or
extent) function change. The new record will maintain the
object's lifetime under the new movement/extent function.
Thus, the number of insertions N in the general evolution
case corresponds to: 1) regular object insertions and
2) insertions due to function parameter changes.

We distinguish between two different modes of opera-
tion. In the online mode, when a new object is inserted at
frame fi, its deletion frame is not yet known, so its lifetime
is initiated as �fi; now�, where now is a variable representing
the (ever increasing) current frame number. If the object
gets deleted at a later frame fj, its lifetime interval is
updated to �fi; fj�. In contrast, the offline mode assumes
advance knowledge of the insertion and deletion frames for
each object, as well as its positions and extents during its
lifetime. Clearly, in the offline mode, the constructed index
is expected to be more efficient since we have more
information about the data. This paper concentrates on
the offline mode since this is the case in animated movies.
There are other spatiotemporal applications where the
future of the evolution is unknown and the online mode
is more appropriate (for example storing the evolution of a
collection of cars moving in the plane).

Using the spatiotemporal approach, one straightforward
way to index animated objects is to consider time as another
index dimension. Each object is then stored as a 3D
rectangle in a traditional spatial index (e.g., an R-Tree [17]
or its variations [26], [22], [40], [6]), where the ªheightº of
the rectangle corresponds to the object's lifetime interval.
The ªbaseº of the rectangle corresponds to the largest
2D minimum bounding rectangle (MBR) that the object
obtained during its lifetime. While simple to implement,

KOLLIOS ET AL.: INDEXING ANIMATED OBJECTS USING SPATIOTEMPORAL ACCESS METHODS 759

Fig. 1. A conceptual view of a movie sequence.

Fig. 2. A degenerate spatiotemporal evolution with four objects.

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



this approach does not take advantage of the specific
properties of the time (frame) dimension. Objects that
remain unchanged for many frames will have long lifetimes
and, thus, they will be stored as long rectangles. A long-
lived rectangle determines the length of the time range
associated with the index node in which it resides. This
creates node overlapping and leads to decreased query
performance [25]. Since all data is available in advance, one
way to achieve better clustering is to use ºpackedº R-Trees,
like the Hilbert R-Tree [22] or the STR-Tree [26].

Another attempt to overcome the problems with cluster-
ing long lifetime intervals is to fragment them in smaller
and easily manageable pieces. This approach has been
proposed in the Segment R-Tree (SR-Tree) [24], which
combines properties of the R-Tree and the Segment Tree
[39]. Interval fragmentation implies storing fragments of the
same interval in many places. This, in the worst case,
creates a logarithmic storage overhead and requires more
elaborate query processing.

In contrast, we propose to use a different approach in
indexing animated objects which combines a spatial index
(R-Tree) with the partially persistent methodology. A data
structure is called persistent [14] if an update applied to it
creates a new version of the data structure while the
previous version is still retained and can be accessed. A
data structure that does not keep its past is called ephemeral.
Partial persistence implies that all versions can be accessed
but only the newest version can be modified.

Partial persistence fits nicely with the degenerate
evolution case since, in that case, an update corresponds
to either an object addition or a deletion. Methods to make a
disk-based structure partially persistent have appeared in
the area of temporal databases [21], [5], [28], [51], [25], [38].
Reference [25] presents the Bitemporal R-Tree which is a
partially-persistent R-Tree used to index bitemporal objects.
This partially-persistent R-Tree can be easily extended to
index the degenerate case of animated objects.

The general evolution case where objects change con-
tinuously is different. One approach is to represent an
object's movement or extent change by the largest 2D MBR
that the object obtained during its evolution (maxMBR). For
example, in Fig. 1, the largest MBR in the evolution of
object o2 occurs at frame f1. Then, the evolution of o2 can be
represented by the insertion of this MBR at frame f1 and the
deletion of the same MBR at frame f4. While this
representation creates only one record, it creates a large
empty space for the partially persistent methodology. Even
though object o2 reduces its extent as frames advance, it is
still represented by the larger MBR. Empty space in R-Trees
is known to deteriorate query response time.

To reduce the empty space we propose to introduce a
limited number of artificial updates. An artificial update
deletes an existing object and reinserts it, thus adding an
extra record. To maintain the index storage linear to N we
limit the number of artificial updates to be a fraction of N .
To apply the partially persistent methodology, one must
first decide 1) which objects should be artificially updated
and, 2) on what frames the artificial updates should be
created. We first formulate these questions as an
optimization problem. Then, we provide a greedy algo-
rithm that optimally finds the artificial updates for the case
when objects move with linear functions. The algorithm is

based on a special monotonicity property that holds for
linear changes. This property also holds when objects
linearly change one of their (two) extent dimensions. If both
extent dimensions change, the algorithm does not provide
the optimal solution. Nevertheless, it serves as a good
heuristic that performs very well in practice.

To show the merits of our approach, we compare the
Partial Persistent R-Tree with 1) the standard 3D R-Tree [6],
2) the packed STR-Tree [26], and 3) the Segment R-Tree [24].
Both selection and nearest neighbor queries are examined.
Extensive experimental results indicate that the query
performance of the Partial Persistent R-Tree consistently
outperforms its competitor approaches for a number of
diverse query workloads. Moreover, the storage of the
Partial Persistent R-Tree remains linear to the number of
insertions N .

Section 2 provides background on the partially persistent
R-Tree and the degenerate case. Section 3 discusses the
general case of animated objects, as well as the greedy
algorithm. Section 4 contains experimental results. Section 5
presents related work, while Section 6 concludes the paper
and presents future research work.

2 PRELIMINARIES

For the offline problem, we measure the performance of an
index using two costs, query response time, and storage
requirements. Given the large sizes of animated movies, we
assume the data is disk resident. Hence, the indexing
scheme should be designed so as to minimize the number of
page transfers (I/O's) between the disk and main memory
needed to answer a query while keeping the index storage
requirements small. There are two basic parameters that
affect performance: 1) the number of insertions N and 2) the
number of records that fit in a page B. We assume that one
I/O transfers one page. Ideally, we would like our index
solutions to use linear storage, i.e., O�NB� disk pages [19].
Note that for the online problem an additional cost measure
is the index update time (the time to process an update).
This is not critical in the offline setting since the whole set of
updates is known in advance and the index is built once.

To further exemplify the above costs, consider two
obvious, but inefficient, ways to address topological
queries about animated movies. The first is to store
snapshots of all movie frames in the database. This
ºsnapshotº approach provides fast access to the frames of
interest, but extra work is needed to locate the objects in
the query area S. The main disadvantage, however, is the
high storage redundancy (O�N2

B �). The second approach is
to store the changes between frames in a ºlog.º The
storage requirement is O�NB� but the query time becomes
large. In the worst case, the whole log must be read
resulting in O�NB� query time. A combination of the above
would be to store a number of frame snapshots and the
sequences of changes between successive snapshots
(similar idea as in MPEG). However, this approach has
the following disadvantages: 1) it is not obvious how
often to keep snapshots (frequent snapshots increase
storage requirements, fewer snapshots increase query
time) and 2) locating the objects in the query area S still
requires extra effort that affects the query response time.

760 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



We proceed with a discussion of the 3D R-Tree ap-
proaches, namely, the R-Tree, the STR-Tree and the SR-Tree.
Then, we summarize the properties of the Partially Persistent
R-Tree. The degenerate evolution case is used as an example
in this section.

2.1 The 3D R-Tree Approaches

The R-Tree [17] is a hierarchical, height-balanced index. It is
a generalization of the B-tree for multidimensional spaces.
Multidimensional objects are represented by a conservative
approximation, usually their MBR. This approximation
may introduce empty or dead space, which is the part of
the MBR that is not covered by the object. The R-Tree
consists of directory and leaf (data) nodes, each node
corresponding to one disk page. Directory nodes contain
index records of the form (container, ptr), where ptr is a
pointer to a node in the next level of the tree and container is
the MBR of all the records in the descendent node. Leaf
nodes contain data records of the form (container, oid),
where oid is the object-identifier of the real object and
container is its MBR. All the nodes except the root must have
at least m records (usually m � B=2). Thus, the height of
the tree is at most logmn, where n is the total number of
objects. Searching in the R-Tree is similar to the B-tree. At
each directory node all records are tested against the query
and, then, all child nodes that satisfy the query are visited.
However, a drastic difference from the B-tree is that the
MBRs in a, R-Tree node are allowed to overlap. As a result,
when answering a query, multiple paths may be followed,
although some of these paths may not contribute to the
answer. At worst, all leaf nodes may be visited, however, in
practice, R-Trees have been shown to work much faster.

For a degenerate evolution (Fig. 2.), an object can be
represented by a 3D MBR starting from the frame the object
appears in the screen until the frame when it disappears.
The R-Tree will attempt to store records with long lifetimes
(like object o3 in Fig. 2) as long MBRs, causing a great deal of
overlapping between the nodes of the R-Tree. Large
overlapping is known to decrease the R-Tree query
performance drastically ([25], [24]).

Another alternative for indexing the 3D MBRs is to use a
packed R-Tree ([22], [26]). In our experiments, we consider
the STR-Tree [26]. The basic idea in a packed tree is first to
sort the indexed objects and, then, fill the data pages by
placing B consecutive objects in each page. The same
procedure is repeated recursively for the upper levels of the
tree until the root node. The advantage of packing is that the
storage utilization is almost 100 percent. Also, for specific
types of data sets and queries, a packed R-Tree has been
shown to be more efficient for answering queries than a
traditional R-Tree (like point data sets and point queries
[26]). However, there are cases where a packed R-Tree is
worse than a traditional R-Tree, in terms of query
performance. This is because the packed R-Tree may place
objects together in a page that are consecutive in ordering
but which are not close in space. This will create large
empty space and possibly some overlap which affect query
performance.

The SR-Tree [24] has been introduced as a remedy for
storing objects with long intervals. Intervals can be stored
in both leaf and nonleaf SR-Tree nodes. An interval I is

placed to the highest-level node X such that I spans at least
one of the intervals represented by X's children nodes. If I
does not span X and spans at least one of its children but is
not fully contained in X, then I is fragmented. Using this
idea, long intervals will be placed in higher levels of the
tree, which in turn decreases overlapping in the SR-Tree
leaf nodes. In contrast, a long interval stored in a leaf node
of a regular R-Tree will ºelongateº the area of this node,
thus exacerbating the overlap problem.

However, if large numbers of spanning records or
fragments of spanning records are stored higher in the
SR-Tree, the fan-out of the index may decrease as there is
less room for pointers to children nodes. Reference [24]
suggests varying the size of the nodes in the tree, making
higher-up nodes larger. ºVarying the size,º of a node means
that several pages are used for one node. This scheme will
ºaddº some page accesses to the query performance cost.

If an interval is inserted at a leaf SR-Tree node (because it
did not span any other node), it may cause the boundaries
of the MBR covered by this leaf node to be expanded.
Similar expansions may also be needed on the MBRs of all
nodes on the path to this leaf node. This in turn can change
the spanning relationships since records may no longer
span children which have been expanded. Such records are
reinserted in the tree, possibly being demoted to occupants
of nodes they previously spanned. Splitting nodes may also
cause changes in spanning relationships as they make
children smallerÐformer occupants of a node may be
promoted to spanning records in the parent. Because of
fragmentation, the worst case, storage requirement for an
SR-Tree is O��N=B�logB�N=B�� [38]. However, this is a
pathological scenario that rarely happens in practice. To
further improve query performance, [24] proposed the
Skeleton SR-Tree, an SR-Tree that prepartitions the entire
domain into a number of regions. This prepartition is based
on an initial estimate about the data distribution and the
number of intervals to be inserted. After partitioning, the
Skeleton SR-Tree is populated with data.

2.2 The Partially Persistent R-Tree

Consider the example in Fig. 2 and assume that the objects
in frame f1 are indexed by a 2D R-Tree. As the frame
number advances, this 2D R-Tree evolves by applying the
updates (object additions/deletions) as they occur in the
appropriate frames. Storing this 2D R-Tree evolution
corresponds to making a 2D R-Tree partially persistent.

By ªviewingº a degenerate evolution as a partial
persistence problem, we obtain a double advantage. First,
we disassociate the indexing requirements within a frame
from the frame sequence. More specifically, indexing within
a frame is provided from the properties of the ephemeral
2D R-Tree, while the frame evolution support is achieved
by making this tree partially persistent. Second, partial
persistence avoids the long 3D rectangles and, thus, the
extensive overlapping due to long lifetimes. Moreover, the
partially persistent R-Tree uses storage that is linear to the
number of insertions in the degenerate frame evolution. To
illustrate the partial persistence methodology, we present
how a 2D R-Tree is made partially persistent. Note that the
methodology applies to other spatial indexes; we use a 2D
R-Tree for simplicity.

KOLLIOS ET AL.: INDEXING ANIMATED OBJECTS USING SPATIOTEMPORAL ACCESS METHODS 761

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



Conceptually, while the partially-persistent R-Tree

(PPR-Tree) [25] records the evolution of an ephemeral

R-Tree, it does not physically store snapshots of all the

frames in the ephemeral R-Tree evolution. Instead, it

records the evolution updates efficiently so that the

storage remains linear, while still providing fast query

time.
The PPR-Tree is actually a directed acyclic graph of

nodes (a node corresponds again to a disk page). Moreover,

it has a number of root nodes, where each root is

responsible for recording a subsequent part of the ephem-

eral R-Tree evolution. The various roots can be easily

accessed through a linear array called the root*. Each entry

in the root* contains a lifetime interval and a pointer to the

root responsible for that interval.
Data records in the leaf nodes of a PPR-Tree maintain the

frame evolution of the ephemeral R-Tree data objects. Thus,

each data record is extended to include the two lifetime

fields: insertion-frame and deletion-frame. Similarly, index

records in the directory nodes of a PPR-Tree maintain the

evolution of the corresponding index records of the

ephemeral R-Tree and are also augmented with insertion-

frame and deletion-frame fields.
An index or data record is called alive for all frames

during its lifetime interval. A leaf or a directory node is

called alive if it has not been split. With the exception of root

nodes, for all frame numbers that a node is alive, it must

have at least D alive records (D < B). This requirement

enables clustering the objects that are alive at a given frame

number in a small number of nodes (pages), which in turn

will minimize the query I/O. The PPR-Tree is created

incrementally following the update sequence. Consider an

update (insertion or deletion) at frame fi. To process this

update the PPR-Tree is searched to locate the target leaf

node where the update must be applied. This step is carried

out by taking into account the lifetime intervals of the index

and the data records visited. This implies that the search

follows records that are alive at frame fi. After locating the

target leaf node, an insertion update adds a data record

with an interval �fi; now� to the target leaf node. A deletion

update will update the deletion-frame of a data record from
now to fi.

An update leads to a structural change if at least one new
node is created. Nonstructural are those updates which are
handled within an existing node. An insertion update
triggers a structural change if the target leaf node already
has B records. A deletion update triggers a structural
change if the resulting node ends up having less than D
alive records as a result of the deletion. The former
structural change is a node overflow; the latter is a weak
version underflow [5]. Node overflow and weak version
underflow need special handling, a split is performed on the
target leaf node. This is reminiscent of the time-split
operation reported in [28] and the page copying concept
proposed in [48]. Splitting a node x at frame f is performed
by copying to a new node y the records alive in node x at f .
Node x is considered dead after frame f . (We can assume
that the deletion-frame field in all of xs alive records is
changed to f even though this is not needed in practice).

To avoid having a structural change on node y quickly,
when a new node is created, the number of alive records
must be in the range D� e and Bÿ e (where e is a
predetermined constant). This allows at least e nonstructur-
al changes on this node before a new structural change.
Thus, before the new node is incorporated in the structure,
it may have to be merged with another node (this happens
if y has less than D� e alive records and is called a strong
version underflow), or, ºkey-splitº into two nodes (if y has
more than Bÿ e alive nodes, i.e., a strong version overflow).
For details, we refer to [25], [51], [5].

An example of a PPR-Tree is shown in Fig. 5 using the
evolution presented in Fig. 3 and Fig. 4. In particular, Fig. 3
shows the MBRs of 20 objects (numbered from 1 to 20) that
appeared in a small animated video, while Fig. 4 depicts the
lifetimes of these objects. Here, B � 5, D � 2, and e is set to
1. The root* entries show the lifetimes associated with each
pointer and the pointers to the root nodes of the PPR-Tree.
Similarly, index nodes depict the lifetime intervals and the
corresponding pointers to the next level of the tree. For
simplicity, data nodes show only the stored object ids (and
not their lifetimes). Note that an object can be stored in

762 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001

Fig. 3. Various object MBRs.

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



more than one data page. For example, object 14 is stored in
five data pages since it has a long lifetime.

Answering a range query about region S and frame f has
two parts. First, the root which is alive at f is found. This
part is conceptually equivalent to accessing the root of the
ephemeral R-Tree which indexes frame f . Second, the
objects intersecting S are found by searching this tree in a
top-down fashion as in a regular R-Tree. The lifetime
interval of every record traversed should contain the
frame f , and, at the same time, it's MBR should intersect
region S. Answering a query that specifies a frame interval
�f; f 0� is similar. First, all roots with lifetime intervals
intersecting the frame range are found, etc. Since the PPR-
Tree is a graph, some nodes are accessible by multiple roots.
Reaccessing nodes can be avoided by keeping a list of
accessed nodes.

To answer nearest neighbor queries, we use the algo-

rithm proposed in [35] and later refined in [10]. The query

consists of a point or object and a frame sequence. The

answer contains the q nearest objects that are closest to the

query object during the specified frame sequence. The

algorithm proposed in [35] can be used directly the only

difference is in the way distances are computed. All objects

that are not alive during the query frame sequence have

infinite distance to the query object. On the other hand, for

the objects that have lifetimes intersecting the query frame

sequence, the distance is computed using their extent

dimensions. The algorithm first visits the root of the tree

and, then, traverses the tree in a top-down fashion. At each

node, a list of the subtrees is kept, ordered by the minimum

KOLLIOS ET AL.: INDEXING ANIMATED OBJECTS USING SPATIOTEMPORAL ACCESS METHODS 763

Fig. 4. Corresponding object lifespans.

Fig. 5. The PPR-Tree created from the above object evolution.

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



distance of each subtree to the query object. The subtrees

are then visited in sorted order. A subtree is pruned from

the search if the minimum distance of this subtree is larger

than the distance of the qth nearest object found so far. The

same algorithm is used with the PPR-Tree, after the root of

the corresponding ephemeral R-Tree is found.

3 THE GENERAL EVOLUTION CASE

The problem in the general case is how to represent objects
that continuously change positions and/or extent over time.
Objects are still represented by MBRs, but an efficient
solution should minimize the empty space introduced by
the MBR representation. To achieve this goal, we introduce
artificial deletions and reinsertions of objects. We proceed
with some definitions.

Definition 1. A spatiotemporal object OL is defined as the 3D
volume created by a 2D spatial object o that moves and/or
changes its extent during its lifetime interval L.

In the rest of the paper, we use capital letters to represent
spatiotemporal objects. We sometimes drop the lifetime
exponent to simplify the notation.

Definition 2. Let G be a set of spatiotemporal objects. Empty:
G! R defines a function that takes as input a spatiotemporal
object and returns the empty space that is introduced by
approximating the spatiotemporal object by a 3D MBR.

Fig. 6 shows the movement of object o1 from frame f1 to
frame f2. The corresponding spatiotemporal object is the
shaded volume; the empty space is the volume that is
contained inside the 3D MBR and is not shaded.

Next, we define the (artificial) split operation. Consider

the spatiotemporal object created by the evolution of object o

from frame fi to frame fj. A split operation at frame fs,

where fi < fs < fj, artificially deletes object o at frame fs
and reinserts it at the same frame with the same extent at

the same position. As a result, the original spatiotemporal

object O�fi;fj� is replaced by two new spatiotemporal objects,

namely, O�fi;fs� and O�fs;fj�. By adding two new spatiotem-

poral objects instead of the original one, the overall MBR

empty space is expected to decrease since the original

evolution is represented using more detail. A similar idea

has been used in [31], [32] for indexing spatial objects with

the help of Z-codes.

Fig. 7 shows the result of a split operation performed at

frame fs on the object evolution of Fig. 6. The view from the

xÿ axis is depicted. That is, the spatial object is shown as

an interval that moved along the yÿ axis from frame f1 to

frame f2. The gain in empty space is equal to E1 �E2. For

the partially persistence approach, the above split is seen as

having an object y1 with lifetime �f1; fs� and an object y2

with lifetime �fs; f2�. Without the artificial split, we had an

object ytot with lifetime �f1; f2�. The rationale in splitting is to

decrease the empty space and, consequently, the over-

lapping of nodes in the ephemeral R-Tree. Thus, the query

performance of the index is improved at the expense of

using more storage. Every split increases the number of the

indexed objects by one.
A more general split operation allows a spatiotemporal

object to be divided multiple times.

Definition 3. LetO�fi;fj� be a spatiotemporal object. Split-k(O) is

defined as an operation that partitions O�fi;fj� into k� 1 objects

using spl splitting points, where fi � spl � fj; l � 1; :::; k.

For objects that move with a linear motion over time, the

best choice for k splitting points over a given spatiotempor-

al object (so as to minimize the empty space) is to take

equidistant splits during the lifetime of the spatiotemporal

object.

Lemma 1. Let O�fs;fe� be a spatiotemporal object created by a

linear movement, and m is the number of splits. The set

ffs � i � feÿfsm�1 ; i � 1; . . . ;mg is the set of splitting points

that maximizes the gain in empty space.

Proof. We first consider a point object that moved with a

linear motion between frames fs and fe. Let � and � be

the speed of the object in the, X and Y directions

respectively. If m � 1, then we need to find one splitting

point that maximizes the gain in empty space. Assume

that we split at position f 2 �fs; fe�. Then, the gain in

empty space is given from the following formula:

G�f� � V ÿ �f3�� � �F ÿ f�3���;

764 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001

Fig. 6. A spatiotemporal object.
Fig. 7. Split operation of a 1D object that moved continuously from frame
f1 to f2.

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



where F � fe ÿ fs and V � F � F� � F�. The value of f

that minimizes the above gain function is f � fs � feÿfs
2

(by solving the equation dG
df � 0.) Now, consider the case

where m � 2 and we want to find the positions of the

splitting points f1 and f2. Aassume that we decided the

optimal position of the first split f1. Then, we need to

find the position of the second split, that is, a position

between f1 and fe. This problem is equivalent to the

problem with m � 1, but for the spatiotemporal object

O�f1;fe�. Using the result for m � 1, the best splitting

position is the middle point between f1 and fe. Similarly,

the best splitting position for f1 is the middle point

between fs and f2. Therefore, the best values for f1 and

f2 are fs � feÿfs
3 and fs � 2 � feÿfs3 , respectively. Using the

same argument for m � k we get that the best splitting

points are ffs � i � feÿfsk�1 ; i � 1; . . . ; kg.
If the object is a rectangle, let x and y be the size of the

the X and Y side respectively (as in Fig. 9c). Then, if we
split the spatiotemporal object using one splitting point f ,
the function that gives the gain in empty space is:

G�f� �
V ÿ f����F ÿ f�3 � f3� � ��y� �x���f ÿ f�2 � f2� � xyFg;

where F � fe ÿ fs and V � F � �F�� x� � �F� � y�.
The value of f that minimizes the above function is

again f � fs � feÿfs
2 . For m > 1, we can use the same

argument as above to prove that the same splitting
points are optimal here, too. tu

Note that equidistant splits are optimal for objects that

1) move linearly (while retaining the same extent) or

2) change one of their extent dimensions linearly. However,

it is not the optimal choice for objects that change both their

extent dimensions. Although, there are ways to compute

the best splitting points even in that scenario, these methods

are computationally expensive. Therefore, we concentrate

on linearly moving objects (i.e., no extent change) for which

we will provide an optimal solution. Our solution can then

be used as a good heuristic for the choice of splits even for

objects that change both extent dimensions linearly.

Now, consider the problem of choosing the best splits

that decrease the empty space over a set of (linearly

moving) spatiotemporal objects. Clearly, as the number of

splits increases, a more accurate representation of the

spatiotemporal objects is achieved and, thus, the empty

space is reduced. One extreme is the case when splitting

occurs for every spatiotemporal object. However, this

creates high storage overhead. A more realistic assumption

is to put an upper limit on the number of splits. Then, the

challenge is to find which spatiotemporal objects to split

and where to split them. More formally, we consider the

following problem, also termed the Minimization of Empty

Space (MES) problem.
The gain function below measures the gain in empty

space after k splits.

Problem Statement. Given a set of spatiotemporal
objects G and an upper limit on the number of splits k,
find the optimal way to apply these splits so as to minimize
the empty space.

Defintion 4. Let G be a set of spatiotemporal objects. Function
gain: G�N ! R, takes as input a spatiotemporal object O
and an integer k and returns the following real value:

gain�O; k� � Empty�O� ÿ
X

1�i�k�1

Empty�Oi�;

where Oi are all the objects generated after applying the
operation split-k(O).

For example, in the 1D case that is shown in Fig. 7, we
have gain�O; 1� � E1 �E2.

We show that a special monotonicity property holds when
objects move linearly over time. This property is used to
prove the correctness of our splitting algorithm.

Lemma 2. Let O be a spatiotemporal object created by a linear
movement. Then, f�k� � gain�O; k� ÿ gain�O; kÿ 1� for
each O and k � 1 is a monotonically decreasing function of k.

Proof. The position alteration is described by an equation of

the form: f��t� � ��t� �. First, we provide formulas for

the gain function and, then, show that the monotonicity

property holds. First, consider the case where objects

move or change their extent linearly on a 1D environ-

ment. An example is an interval that moves linearly over

time on a line. The gain obtained by splitting such a

spatiotemporal object O k times is given by the equation:

gain�O; k� � k

k� 1
Empty�O�;

where Empty�O� is the empty space introduced by
approximating the original spatiotemporal object with
an MBR.

Fig. 8 depicts an 1D object O that is first split
once and, then, twice. With one split, the best split
position is at the middle of the horizontal side of the
original spatiotemporal object. The gain in empty
space is gain�O; 1� � 1

2E1 � 1
2E2 � 1

2Empty�O�. With
two splits, the best split positions are in the first
third and the second third of the horizontal side.
Now, gain�O; 2� � 2

3Empty�O�. (Note that the above
equation also holds for 1D objects that linearly
change extent, or move and change extent.)

The gain formula for a 2D moving object depends on
whether the object has extent. For the case of a point
moving linearly, the gain obtained after k splits is:

gain�O; k� � �k� 1�2 ÿ 1

�k� 1�2 Empty�O�:

Assume that the moving point has initial position
�x1; y1; t1� and final position �x2; y2; t2�, where x1 6� x2,
y1 6� y2, and t1 6� t2. Then, the MBR has volume V �
abc � �x2 ÿ x1��y2 ÿ y1��t2 ÿ t1� which is equal to the
empty space, since the moving point does not have
extent (see Fig. 9). After k splits, we get k� 1
spatiotemporal objects, approximated with k� 1 MBRs.

KOLLIOS ET AL.: INDEXING ANIMATED OBJECTS USING SPATIOTEMPORAL ACCESS METHODS 765

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



Since we split in equidistant points, each rectangle

(MBR) has sides a
k�1 ;

b
k�1 , and c

k�1 . The total volume for

these rectangles is:

Vsplits � �k� 1� a

k� 1

b

k� 1

c

k� 1

and, finally, the gain in empty space from the k splits is:

gain�O; k� � V ÿ Vsplits � �k� 1�2 ÿ 1

�k� 1�2 abc;

and this is equal to the previous equation.

An object with extent is represented by its 2D MBR.

Hence, consider a rectangle object that moved from some

initial position to a final one. The position of this

rectangle is defined by the position of its center. If the

initial and final positions have one common coordinate

(x or y), the gain is described by a similar formula as in

the 1D space. Note however that the empty space in the

1D case refers to an area while in two dimensions it

refers to a volume.

If the initial and final positions have different x and y

coordinates (see Fig. 9), the gain formula involves also

the spatial extent of the object. Using the same

arguments as for point objects it can be shown that:

gain�O; k� �
�k� 1�2 ÿ 1

�k� 1�2 abcÿ k

�k� 1�2 �aby� acx� ÿ
k2

�k� 1�2 axy:

Using the gain functions, it is easy to prove that f�k� �
gain�O; k� ÿ gain�O; kÿ 1� for each O and k � 1 is a

monotonically decreasing function of k, i.e.,

df�k�
dk
� 0:

tu
To indicate that the above property does not hold for

spatiotemporal objects created by nonlinear movement

functions, consider the example in Fig. 10. Here, two splits

on a 1D moving object provide a gain (shown as a shaded

area) that is larger than the gain with one split. Similar

examples exist for 2D objects.
The monotonicity property simply states that, after some

point, the more we split a spatiotemporal object the less

gain we get, in terms of empty space. So, the first few splits

will give higher gain in empty space.
The MES problem minimizes the empty space in the

3D space. However, by minimizing this empty space, we

also minimize the total empty space for the PPR-Tree.

Empty space in the PPR-Tree is introduced due to

766 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001

Fig. 8. A 1D moving object after one and two splits.

Fig. 9. Three cases for 2D moving objects, (a) point, (b) moving rectangle with the same starting and ending x coordinates, and (c) moving rectangle
with different starting and ending x and y coordinates.

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



approximating a moving object with the 2D rectangle that

encloses the object for all time instants during its lifetime

(maxMBR). Introducing the artificial splits enables the PPR-

Tree to better approximate an object's evolution. Hence, its

query performance is expected to improve.
On the other hand, the 3D R-Tree will not be significantly

affected by the splits. To justify this, we use the results

presented in [45]. In this paper, the authors give an

analytical model to approximate the number of pages

accessed in an R-Tree, given a range query. This number is

proportional to the number of indexed objects and also

proportional to the density of the data set. In particular,

they give the following equation for the number of data

pages accessed for a 3D data set of m hyper-rectangles.

DA�q� �
m

f

D1f

m

� �1=3

�qx
 !

D1f

m

� �1=3

�qy
 !

D1f

m

� �1=3

�qz
 !

and

D1 � 1�D
1=3 ÿ 1

f1=3

� �3

;

where f is the capacity of each node in the tree, and q �
�qx; qy; qz� is a range query. Also D is the density of the data

objects and is defined as the average number of objects that

contain a given point in the data space. These equations

show that split operations will not necessarily decrease the

query overhead. While a split operation decreases the
density of the data set (D), at the same time it increases the
number of indexed objects (m).

3.1 An Optimal Greedy Algorithm

Here, we introduce an optimal greedy algorithm for the
MES problem with linearly moving objects. We also discuss
possible implementation methods of the algorithm.

Fig. 11 depicts the algorithm. We use the notation Qi to
denote a vector of size N (the number of spatiotemporal
objects created by the linear movements). Each position in
this vector corresponds to an object and stores the number
of splits for the associated object in the optimal solution. We
initiate this vector with the N dimensional zero vector
�0 � �0; :::; 0�. We define vector ej to have zero values in all
positions except j, where the value is equal to one (1). Now,
we find the optimal solution for one, two, ..., up to K splits.
The basic idea is that the optimal solution for i splits can be
derived from the solution for iÿ 1 splits if we choose to
split some object one more time. Thus, we choose, from all
possible objects, the one that gives the higher gain in empty
space.

A naive implementation of this algorithm will have
complexity O�KN� operations in main memory. Note that,
to find the object that gives the optimal solution with one
more split, one needs to check only the objects that give the
maximum gain. Hence, the objects can be stored in a
priority queue, sorted by the gain obtained if each object is
split once more. Then, at each step, the object that gives the

KOLLIOS ET AL.: INDEXING ANIMATED OBJECTS USING SPATIOTEMPORAL ACCESS METHODS 767

Fig. 10. The spatiotemporal object created by a 1D moving point and the gain after performing one and two splits.

Fig. 11. The optimal GREEDY algorithm.

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



highest gain is chosen. Suppose that, at some point, object oj
is chosen to be split and assume this object has already l
splits. Then, the algorithm computes the difference between
the gain obtained by splitting the object using l� 1 splits
(gain�oj; l� 1�) and its current gain. That is, the object is
inserted in the queue with value gain�oj; l� 1� ÿ gain�oj; l�.

Next, we state and prove the following theorem:

Theorem 1. There is an algorithm that solves the MES problem
for linearly moving objects optimally. This algorithm can be
implemented in main memory with complexity O�N �
KlogN� and in external memory with O�NB logMB N

B� I/O's,
where M is the size of main memory in records.

Proof. First, we prove that indeed the GREEDY algorithm
finds the optimal solution. Let Qk be the vector that
stores the optimal solution for the MES problem of N
objects with k splits. That is, the solution that minimizes
the empty space by using k splits. We then derive the
solution for k� 1 splits.

Let Qk � fk1; k2; :::; kNg, where ki; i � 1; ::; N are the
number of splits for each object. Thus, the first object has
to be split k1 times, the second object k2 times, etc. We
also know that

PN
i�1 ki � k. We claim that the optimal

solution for k� 1 splits has the form Qk�1 � fk1; :::; ki �
1; :::; kNg for some i 2 f1; :::; Ng.

Lets assume that this is not true and that the optimal
solution for k� 1 splits has the form: Qk�10 � fk1; :::; ki �
2; :::; kj ÿ 1:::; kNg for some i and j.

Since Qk is the optimal solution for k splits, we have
that:

gain�oi; ki � 1� � gain�oj; kj ÿ 1� � gain�oi; ki� � gain�oj; kj�
)gain�oi; ki � 1�ÿgain�oi; ki��gain�oj; kj�ÿgain�oj; kj ÿ 1�:

Also, by Lemma 2 it holds that:

gain�oi; ki � 2� ÿ gain�oi; ki � 1�
� gain�oi; ki � 1� ÿ gain�oi; ki�:

Therefore,

gain�oi; ki � 2� ÿ gain�oi; ki � 1�
� gain�oj; kj� ÿ gain�oj; kj ÿ 1�
) gain�oi; ki � 2� � gain�oj; kj ÿ 1�
� gain�oi; ki � 1� � gain�oj; kj�:

The last inequality implies that Qk�1 is an optimal
solution since we can split object oi k� 1 times and object
oj kj times and have a better solution (or at least the
same) with a solution of the form Qk�10. The same can be
shown for any other solution with k� 1 splits.

Thus, the optimal solution for k� 1 splits can be
derived by the optimal solution with k splits. The
algorithm in Fig. 11 does exactly that.

To implement the greedy algorithm efficiently, we
need to implement a priority queue. For this queue, we
use a heap. The creation time of this heap is O�N� for N
objects [11]. Then, each insertion or deletion takes
O�logN� operations and the running time of the
algorithm is O�N �KlogN�. Under the assumption that
K � o�N�, the running time of the algorithm becomes
O�NlogN�.

Since for the applications we have in mind, the
number of spatiotemporal objects is large and cannot be
kept in main memory; an external memory priority
queue is needed. We propose using an implementation
of an external memory priority queue that is based on the
buffer tree [3]. The basic idea is to perform operations
(insertions and deletions) in such a way that the
amortized complexity of each operation is O�1B logMB N

B )
[4]. As a result, the running time of the algorithm in
external memory becomes O�NB logMB N

B� I/O's. tu

Note that the above proof works similarly for the case
where objects do not move but change only one of their
extent dimensions linearly.

4 PERFORMANCE EVALUATION

In Section 4.1, we describe the data sets and outline the
workloads used in our experimental evaluation. A discus-
sion regarding how to choose the number of artificial splits
for the GREEDY algorithm is presented in Section 4.2.
Section 4.3 discusses various optimization methods for
tuning the performance of the PPR-Tree. Finally, we present
experimental results for both types of object evolutions,
namely, the degenerate case (Section 4.4) and the general
case (Section 4.5.)

4.1 Experimental Setup

For all the methods used the maximum number of
records per page was equal to 50 (B=50). Therefore the
page size was 1.4 kybte. For the PPR-Tree, we set
D � e � 10. For the insertion and query operations, a
buffer of 10 pages was used with an LRU replacement
policy. For all methods, during the query phase, the
buffer is invalidated before a new query gets executed (so
that strengths and weaknesses of the particular imple-
mentations are revealed). For the 3D R-Tree method, we
used an implementation of the R*-tree [6]. We also
implemented a Skeleton SR-Tree based on the description
in [24]. Our implementation of the Skeleton SR-Tree
allows index nodes to have varying page sizes (starting
from the leaf nodes, the page size doubles as the level
reaches the root). For a given index page, one-third of the
page is allocated for storing spanning segments, while the
rest is used to store index records. Overflow segments
still appeared in higher-level nodes and such segments
were stored in additional pages. However, the reported
query times for the Skeleton SR-Tree do not include
accessing these pages (i.e., the reported SR-Tree query
times are underestimates of the actual ones). Finally, we
also experimented with the packed STR-Tree [26]. Our
method is offline and, since all data are available at index
creation, we would expect that clustering the data first
and building the index bottom-up would yield better
results.

We generated various spatiotemporal data sets to
compare the performance of the different methods. The
data sets for the degenerate case are similar to the
spatiotemporal data sets described in [50]. Objects in a
given frame are approximated by their 2D MBRs and the
size of the frame is 1:0� 1:0 (unit square). Moreover,

768 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



70 percent of the objects are small rectangles with small
lifetimes. The length of each rectangle in the x and y axes
is uniformly chosen from the interval (0, 0.04] and the
centers of the rectangles are uniformly distributed in the
unit square. The lifetime of each object follows a Poisson
distribution with a mean value equal to 50. Another
15 percent of the objects are large rectangles with small
lifetimes. Here, the length of each rectangle in spatial
dimensions is uniformly chosen from (0, 0.6] and the
lifetimes are the same as above. The remaining 15 percent
of the objects are small rectangles with large lifetimes.
The lifetimes for these objects are uniformly chosen
between 250 and 500 frames. Each object may appear
and disappear a number of times, which is randomly
chosen between 1 and 10,000. The number of intermediate
frames between subsequent lifetimes is once more
uniformly chosen between 250 and 500. We generated
five different data sets with objects per frame ranging
from 500 to 2,500. We call this type of data sets DG
(degenerate).

For the general case, we created a collection of data sets
containing only moving rectangles (the MV data set). Each
rectangle starts at a specific position and moves with a
linear motion to its final destination. Each set has one-third
of ªslowlyº moving rectangles whose sides are uniformly
chosen from �0; 0:02� and speeds between 0 and 0.001. One-
third has sides in �0; 0:01� and speeds between 0 and 0.006
and, finally, ªfastº objects with the same side lengths and
speeds between 0 and 0.01. The rectangles retain their size
as they move and only their center position changes. The
lifetime of each object has a mean value of 50. Again, the
average number of objects per frame ranges from 500 to
2,500.

We also generated a collection of data sets that is a
mixture of the previous ones (the GN or generic collection),
and consists of static objects, moving objects and objects
that change extent over their lifetime. In particular, one-
third of the objects are static objects with the characteristics
of the DG data sets. One-third are moving objects and the
rest are objects that change position and extent, always
linearly, over the frame sequence. To generate some of the
above data sets we used the GSTD generator [47]. In Table 1,
we give the main characteristics of the data sets.

Finally, query workloads were generated for range and
nearest neighbor queries. A query workload consists of
1,000 queries. A query is spatiotemporal in nature, i.e., it has
a spatial and a temporal predicate. For the range queries,
the spatial part contained 2D rectangles with three different
sizes, small, medium and large. The small rectangles had
lengths between 0 and 0.1, medium between 0.1 and 0.3,
and large between 0.2 and 0.6. For the temporal predicate,
we distinguished between ªsnapshotº queries, where the

temporal part was a single frame, and ªperiodº queries
where each query specified a frame interval of length
between 0 and 100. For the nearest neighbor queries, the
spatial part was either a query point or a small rectangle
uniformly chosen inside the data space. The temporal part
was a ªperiodº selected randomly, with length between 0
and 100.

It should be noted that, before inserting the data in the
PPR-Tree, we sorted them over the object insertion and
deletion frames. For the 3D R-Tree, the data set is first
sorted on the object insertion frames and objects are
inserted in that order. For the Skeleton SR-Tree, inserting
the spatiotemporal objects according to insertion frame
order tends to affect overlapping (since the ordering implies
that an interval will probably overlap the next inserted
interval). We got better performance when the spatiotem-
poral objects were inserted randomly. Finally, the STR-Tree
clusters the data in a specific way before building the tree
bottom-up, thus, presorting the data set has no effect on the
resulting structure.

4.2 Deciding on the Number of Splits

Before inserting objects into the PPR-Tree, we use the
GREEDY algorithm to split the data set with a given
number of artificial splits. A good number of splits depends
not only on the type of the data set at hand but also on the
available storage space. More splits minimize empty space,
but linearly increase the number of objects. We performed a
number of experiments with, varying number of splits for
the MV and GN data sets with 1,000 objects per frame. We
evaluated the query performance using snapshot queries.
Figs. 12 and 13 depict the results in terms of I/O per query.

In general, we expect query performance to increase as
we increase the number of splits. This continues up to a
point after which it stabilizes and ultimately deteriorates.
The reason for the latter is that the size of the index
structure will become very large, but the gain in empty

KOLLIOS ET AL.: INDEXING ANIMATED OBJECTS USING SPATIOTEMPORAL ACCESS METHODS 769

TABLE 1
The Data Sets Used for Testing the Index Structures

Fig. 12. Query performance of the Greedy-PPR-Tree for snapshot
queries and different number of splits and MV data sets.

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



space by introducing more splits, will not be comparable. A
good choice for the number of artificial splits would be the
point where the curve begins to stabilize. Obviously, there
is a trade-off between storage and query performance, so
the final choice of the number of artificial splits depends on
the cost of extra storage per split. Judging from the results
of our experiments, we decided to use a number of splits
equal to 50 percent of the total number N of objects
contained in each data set, meaning that the final number of
objects produced was equal to 1:5N .

We tested the above data sets with the varying number
of splits against the 3D R-Tree, the STR, and the SR-Tree,
too. As expected, splitting did not improve the query
performance of the nonpersistent indices.

4.3 Tuning the PPR-Tree

A number of optimization issues have to be addressed
when implementing the PPR-Tree. The most important of
them are the merging and splitting policies. When an
underutilized page in the PPR-Tree needs to be merged,
there may be many possible sibling pages for merging. We
used three merging policies. The first one, called Overlap,
chooses as a sibling the currently alive page that has the
same parent and shares the most overlap with the under-
utilized page. The second one, (Min_Area), selects as a
sibling the page whose bounding rectangle area needs the
least geometric expansion to incorporate the objects of the
underutilized page. Finally, the third policy, (Margin), finds
the page that, when merged with the underutilized page,
has the least margin. The latter is defined as the sum of the
lengths of all sides of the bounding rectangle.

For splitting, we use two methods. The first is called
Quadratic and it has been proposed in the original R-Tree
paper [17]. The second (R-star) is the policy used by the
R*-tree [6]. The first policy assigns objects in two groups,
initializing these groups by picking the pair of objects
that would waste the most area if inserted in the same
group. The R-star policy is based on determining various
distributions of objects in a page, after ordering all objects
in each dimension. The best distribution is selected, based
on a set of criteria, such as minimizing the sum of margin
values and also minimizing the overlap-area between the
two generated pages.

Fig. 14 plots the query performance (in average number
of pages read per query) for all combinations of splitting
and merging methods. We used the DG data sets and a
snapshot query workload. As the figure shows, the query
performance is mainly affected by the splitting policy (with
the R-star policy providing better results than Quadratic).
The merging policy has small effect. The storage consump-
tion of the PPR-Tree is depicted on Fig. 15. Here, the
important factor is the merging policy and the Margin
policy gives the best results. For the rest of our experiments,
we implemented the PPR-Tree using the R-star splitting
policy and the Margin policy for merging nodes.

4.4 Degenerate Case

We proceed with experimental results about the degenerate
case. Since it contains objects with no position/extent
changes, it serves as a reference point for our later
experiments. Figs. 16, 17, and 18 report the results for

770 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001

Fig. 13. Query performance of the Greedy-PPR-Tree for snapshot
queries and different number of splits and GN data sets.

Fig. 14. Query performance for snapshot queries and different merging/
splitting policies.

Fig. 15. Storage consumption for different merging/splitting policies.

Fig. 16. Query performance for small/snapshot queries and DG data

sets.

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



snapshot queries with small, medium and large size (in
spatial extent) respectively. The average lifetime of the
objects is about 50 frames. In all cases, the partially
persistence methodology outperforms the Skeleton SR-Tree,
the 3D R-Tree, and the STR-Tree. The difference is higher
for smaller queries. The SR-Tree behaves better than both
3D R-Tree and STR-Tree since placing spatiotemporal
objects with long lifetimes higher in the hierarchy reduces
overlapping. It should be noted that in our SR-Tree
implementation, the experiments with average number of
objects/frame equal to 2,000 and 2,500, comparatively
produced a very large number of overflow pages. Since
these pages were not counted for the query I/O's, the
depicted performance corresponds to interpolation from the
behavior of the method for the 500, 1,000, and 1,500 experi-
ments. The performance of the STR-Tree deteriorates with
the increase in size of the data set.

Fig. 19 shows the results for small/period queries with
query frame period ranging from 0 to 100, and a data set
with 1,000 objects/frame. Interestingly, the R-Tree behaves
better than the SR-Tree for period queries. This is due to
object fragmentation since the larger the query period, the
more object copies this period will overlap with. The PPR-
Tree's performance is also affected by the query period size.
Since partial persistence is optimized towards frame
queries, a query involving a large period (many subsequent
frames) will overlap with many object copies, thus decreas-
ing query performance.

Fig. 20 depicts the storage consumption of all methods
for DG data sets. As expected, storage for the PPR-Tree is

higher than that of the SR-Tree, 3D R-Tree, and STR-Tree
(but it remains linear to the number of objects). The STR-
Tree has the smallest storage requirements since packing
eliminates empty records in data and index pages. How-
ever, the query performance of the STR-Tree was clearly
worse than that of the other methods. The reason is that
packing may cluster together objects that are consecutive in
order even though they may correspond to small and large
intervals. This leads to more overlapping and empty space.
We observed similar behavior with all experiments (in the
degenerate as well as the general case), hence, for brevity,
we omit the STR-Tree from the latter figures.

4.5 General Case

First, we present our results for the moving rectangles data
sets (MV) and, then, for the general data sets (GN). Given a
data set, the GREEDY algorithm first derives all spatiotem-
poral objects that yield the best gain in terms of empty space
when split. Then, these objects are split and the MBRs of the
newly generated spatiotemporal objects are computed.
Subsequently, these MBRs are indexed by the PPR-Tree
(marked as Greedy-PPR-Tree in the figures). To validate the
expectation that a 3D R-Tree will not gain much by the
artificial splits of the GREEDY algorithm, we indexed the
resulting MBRs with a 3D R-Tree as well (Greedy-3D R-
Tree). We compare the two GREEDY approaches against
the approach where no artificial split is considered. That is,
we used a 3D MBR around each spatiotemporal object and
indexed them using 1) a plain 3D R-Tree and 2) a Skeleton
SR-Tree. Finally, we used the maxMBR approach for the
PPR-Tree (maxMBR-PPR-Tree.)

KOLLIOS ET AL.: INDEXING ANIMATED OBJECTS USING SPATIOTEMPORAL ACCESS METHODS 771

Fig. 17. Query performance for medium/snapshot queries and
DG data sets.

Fig. 18. Query performance for large/snapshot queries and DG data set.

Fig. 19. Query performance for frame period queries and DG data set.

Fig. 20. Storage consumption for DG data sets.

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



Figs. 21, 22, and 23 depict the results for snapshot
queries and MV data sets. The greedy algorithm
combined with the PPR-Tree provides the best query
performance. The second best is the PPR-Tree that
follows the maxMBR approach. It is interesting to note
that the 3D R-Tree performs similarly with splits or no
splits (i.e., as expected, the greedy splits do not provide
a large advantage). A split may decrease the empty space
but it increases the number of objects, affecting the 3D R-
Tree query performance. The Skeleton SR-Tree behaves
worse than the 3D R-Tree for the MV data sets. Since
objects move, the corresponding MBR is rather large, not
only on the frame dimension, but on the X and
Y dimensions as well. The SR-Tree clustering based on
the lifetimes is not so efficient anymore, and the method
tends to perform like a regular R-Tree. Frame period
queries appear in Fig. 24 using a data set with 1,000
objects per frame. The Greedy-PPR-Tree method remains
better than the other methods even for the larger periods
we tried. It is also clear that, as the query period
increases, the performance of the greedy 3D R-Tree
deteriorates against the conventional 3D R-Tree. This is
because the splits from the greedy approach introduce
copies that the R-Tree considers as separate objects.
Again, the SR-Tree behaves very similar to the 3D R-
Tree. The storage for a method that uses the greedy
approach is about 1.5 times the storage of the same
nongreedy method (Fig. 25). Since the behavior of the
SR-Tree is very close to that of the 3D R-Tree (in both

query and storage performance), for brevity we omit the
SR-Tree from the following figures.

The performance comparisons for the general data sets
(that include mixtures of moving/static/extending objects)
appear in Figs. 26, 27, 28, 29 and 30. All methods behave
very similar to the results for the moving objects data sets.
Despite using the greedy algorithm as an approximation for
the extending objects, the Greedy-PPR-Tree still provides
the best performance.

The performance for nearest neighbor queries is similar
to the range queries. For brevity, we report results for the
general data sets (GN), but the same trend was observed for
the other data sets as well. In Fig. 31, the average query
performance is shown for a set of 50-Nearest Neighbor
queries (that is, find the 50 nearest objects to the query
object). The frame period was 20 frames. Fig. 32 reports
results for nearest neighbor queries with different frame
periods. The Greedy-PPR-Tree has again the best query
performance.

Finally, in Figs. 33 and 34, we present the total number
of I/O's needed to create each of the index structures.
Here, we assume a cache of only 10 pages. Using a larger
cache, the construction time can be decreased consider-
ably. The 3D R-Trees have lower construction time than
the PPR-Trees. This is not surprising. Clearly, for the
partially persistent methods, the index is accessed twice
for each spatiotemporal object: once at the insertion frame
and again at the deletion frame. On the other hand, for
the 3D R-Trees, the index is accessed only when the MBR
of the spatiotemporal object is inserted. However, for the

772 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001

Fig. 21. Query performance for small/snapshot queries and

MV data sets.

Fig. 22. Query performance for medium/snapshot queries and

MV data sets.

Fig. 23. Query performance for large/snapshot queries and

MV data sets.

Fig. 24. Query performance for frame period queries and MV data sets.

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



offline problem the index is created only once and, then,
is used for querying only. Thus, the construction cost is
not that critical.

5 RELATED WORK

Although there recently has been extensive work on
multimedia and video databases, the approach discussed
in this paper is novel. The work in [50] considers only static
objects (degenerate case) and uses a 3D R-Tree approach to
index the objects. Another work that proposes indexing
video objects in order to answer mostly temporal queries
appears in [1]. In this paper, video movies are preprocessed
and all entities of interest such as objects, activities, and
events, are identified. Subsequently, these entities are
associated with specific frames in which they appear.
Therefore, every entity is coupled with a set of frames
which can be viewed as a set of line segments (if
consecutive frames are put in one line segment). A main-
memory Segment Tree [39] is used to store the resulting line
segments. Queries that this structure can answer are of the
type: ªfind the objects that appear when a specific event
happenedº or ªfind the objects that appear in all frames
where a specific object appears.º Also, the authors discuss
how to store higher-level information for each object in
order to answer more complex queries. However, most of
the complex queries have query time linear to the total
number of video objects.

Another interesting approach to index video data has
been proposed in [8], [9]. With their approach, video data is

indexed using not only information about the color or
texture (as in image databases) but also motion and
spatiotemporal information. First, a video movie is parti-
tioned into shots or scenes. Then, all objects that appear
inside each shot (called video objects) are found. For each
object, information about its features (color, texture, and
shape), and its motion is stored. In particular, the motion of
an object is stored as a trail of the object position from one
frame to another. The user can ask queries using a visual
interface, and can give different weights for each feature. In
[44], algorithms to index these video objects are presented.
Each object is mapped to a high dimensional space which is
then split into a few low dimensional feature vectors.
Querying is performed for each vector separately. Yet
another work that represents the motion of an object by
using its trail is [12]. Our approach is complementary to
these works and can thus be used to enhance the query
capabilities of the aforementioned systems.

Content-based retrieval has also been an active research
area in the past few years and several systems have been
developed. These systems allow image indexing by using
low-level image features such as color histograms, texture,
and shape. The user specifies a target image (QBE) or a
sketch and the system retrieves the most similar images to
the target image. Some examples of very successful systems
in this area include QBIC [16], Virage [18], and VisualSEEk
[41]. However, all these systems support retrieval of still
images. Some of these ideas have been used to index movie
databases by using low-level features combined with some
semantic information [42], [8].

KOLLIOS ET AL.: INDEXING ANIMATED OBJECTS USING SPATIOTEMPORAL ACCESS METHODS 773

Fig. 25. Storage consumption for MV data sets.

Fig. 26. Query performance for small/snapshot queries and
GN data sets.

Fig. 27. Query performance for medium/snapshot queries and
GN data sets.

Fig. 28. Query performance for large/snapshot queries and GN data

sets.

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



Research in the area of spatiotemporal database
indexing is also quite related to our work. In particular,
[46] summarizes the issues that a spatiotemporal index
needs to address. In an early paper [52], the RT-tree is
presented, an R-Tree that incorporates time into its nodes.
Each object has a spatial and a temporal extent. For an
object that is entered at time ti, the temporal extent is
initialized to �ti; ti�. This temporal extent is updated
(increased) every time instant that the spatial extent
remains unchanged. If the spatial extent changes at time
tj, a new record is created for this object with a new
temporal extent �ti; tj�. Clearly, this method is inefficient
due to its large update overhead. In [29], [49], [52], [30],
the idea of overlapping trees is used to make an index
partially persistent. Different indices are created for each
time instant, but, to save storage, common paths are
maintained only once since they are shared among the
structure. However, the overlapping method has a
logarithmic storage overhead since every time an update
is made, the whole path from the root to the updated leaf
node has to be copied. Indeed, in an experimental
evaluation presented in [30] the overlapping R-Tree
(HR-Tree) has an order of magnitude higher storage
overhead than the 3D R-Tree. It should be noted that the
GREEDY algorithm presented in this paper is general and
can be used to enhance the performance of any partially
persistent method (including the overlapping approach).
Recently, [33] presented a method indexing trajectories of
points moving in the 2D space. They propose two
extensions to the R-tree that cluster together, in pages,
trajectory segments from the same object. Using these

indices, trajectory and navigational queries (where the
query result must contain part or the whole trajectory
of some specified objects) are answered efficiently.
However, the indices in [33] are not optimized for
spatiotemporal range queries (queries primarily optimized
in the PPR-tree). In another recent work [36], an R-Tree is
extended to support transaction and valid time. However,
this work concentrates on the combination of degenerate
evolutions and bitemporal data sets. Spatiotemporal
indexing as examined here deals with historical queries
about the spatiotemporal evolutions. Work dealing with
future queries about the position of moving objects
(assuming knowledge of movement functions) appears
in [37], [23], [2].

6 CONCLUSIONS AND FURTHER RESEARCH

We have examined the problem of indexing objects in
animated movies. We proposed to represent a movie as a
spatiotemporal evolution and reduce the original problem
to a problem of partial persistence. However, the partial
persistence approach considers only objects that remain
unchanged during their evolution (i.e., between the frames
they appear). This is not realistic in animated movies where
objects can change their extent/position among frames. We
presented an efficient way to represent such complex
objects. In particular, we formulated this problem as an
optimization problem and provided an optimal greedy
algorithm for the case of linearly moving objects. Our
solution is also optimal for objects that change only one of
their extent dimensions. It is suboptimal for objects that

774 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001

Fig. 29. Query performance for frame period queries and GN data sets.

Fig. 30. Storage consumption for the GN data sets.

Fig. 31. Nearest-neighbor query performance for GN data sets.

Fig. 32. Nearest-neighbor query performance for different frame periods
and GN data sets.

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



change both their extent dimensions linearly. The presented
approach provides very fast query time at the expense of
some extra storage, which, however, is linear to the number
of changes in the frame evolution. We have shown the merit
of our method by comparing it with an approach that sees
the frame sequence as simply another dimension and uses
1) a regular 3D R-Tree, 2) a Skeleton Segment R-Tree, and
3) an STR-Tree.

An interesting future direction is to consider objects that
change position and/or extent with nonlinear functions.
Clearly, for this case, the monotonicity property does not
hold. We are examining the existence of efficient algorithms
that approximate the optimal solution with a good approx-
imation ratio.

Another problem that we plan to investigate is the case
of online indexing. This paper considered only the offline
case, where all objects and their evolution is known
beforehand. However, in many real life applications, objects
are inserted in an online fashion in the data set. We expect
that an online version of the optimal greedy algorithm will
give a good approximation of the optimal solution.

Yet another interesting avenue of research is to extend
the techniques presented here to different query scenarios.
This includes queries where the view point changes in time.
One application we can consider is the following: Assume
that the original 2D model that we use to build an animated
movie extends further than the screen, and that the actual
animated movie that we see is in fact a specific cut. The cut
(that is, the visible part of the movie) depends on where we
position the screen window. Assuming that this position
remains constant, we can find all visible objects by
answering a 3D range query. That is, a 2D range query in
the visible screen is translated into a 3D spatiotemporal
query. If, however, the position of the screen does not
remain constant, the shape of the spatiotemporal query
becomes more complicated. Consider, for example, answer-
ing range queries while the screen zooms in or out.
Assuming that the size of the range query on the screen
remains constant relative to the size of the screen, if we are
zooming-in objects will appear larger and fewer objects will
be in the query area. This query can be mapped to a
spatiotemporal query that looks like a pyramid. We can
approximate this query by a number of spatiotemporal
range queries using the same technique that we use to
optimally bound a moving object with minimum bounding
rectangles. When zooming, the viewpoint changes location
along an axis perpendicular to the frame plane. A more

involved problem is answering such range queries when
the viewpoint is translated, as well as moving closer or
further from the frame, or, if we consider 3D objects, when
the view point moves and rotates in space.

While this discussion concentrated on animated movies,
the PPR-tree can be used to index other spatiotemporal
environments as well. The term spatiotemporal implies
spatial data whose geometry changes over time. The
geometry is described by the object's position and extent
[15]. Spatiotemporal data abounds. Examples include atmo-
spheric, geographical, traffic surveillance, social data, etc.
For example, consider maintaining the boundaries of forests
and cities in a 2D map as regions change over time.
Similarly, we may want to store the routes (trajectories) of
moving vehicles in a 3D space.

Depending on the application, the definition of a
spatiotemporal object may change. For example, a 3D object
moving over time will create a 4D volume. However, the
PPR-tree can still index 3D objects plus the time dimension
for persistence. The splitting techniques of the greedy
algorithm for linearly changing objects still apply. For
objects changing their geometry in a nonlinear fashion, the
presented techniques can be used as good heuristics.

ACKNOWLEDGMENTS

This research has been supported by US National Science
Foundation grants IIS-9509527, IIS-9907477, IIS-9733642,
and by the Department of Defense. The authors would like
to thank Elias Koutsoupias for many helpful discussions,
Bernhard Seeger for providing us with the R*-tree code, and
Scott Leutenegger for providing the STR-Tree code.

REFERENCES

[1] S. Adali, K. Candan, S. Chen, K. Erol, and V.S. Subrahmanian,
ªThe Advanced Video Information System: Data Structures and
Query Processing,º ACM Multimedia Systems, vol. 4, no. 4, pp. 172-
186, 1996.

[2] P.K. Agarwal, L. Arge, and J. Erickson, ªIndexing Moving Points,º
Proc. 19th ACM-Principles of Database Systems, 2000.

[3] L. Arge, ªThe Buffer Tree: A New Technique for Optimal I/O
Algorithms,º Proc. Workshop Algorithms and Data Structures, LNCS
955, pp. 334-345, 1995.

[4] L. Arge, ªExternal-Memory Algorithms with Applications in
Geographic Information Systems,º Algorithmic Foundations of
Geographic Information Systems, LNCS 1340, 1997.

[5] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer, ªAn
Asymptotically Optimal Multiversion B-Tree,º Very Large Database
J., vol. 5, no. 4, pp. 264-275, 1996.

KOLLIOS ET AL.: INDEXING ANIMATED OBJECTS USING SPATIOTEMPORAL ACCESS METHODS 775

Fig. 33. Construction cost for MV data set. Fig. 34. Construction cost for GN data set.

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



[6] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, ªThe
R*-tree: An Efficient and Robust Access Method For Points
and Rectangles,º Proc. ACM-SIGMOD Int'l Conf. Management of
Data, pp. 322-331, May 1990.

[7] J.L. Bentley, ªAlgorithms for Klee's Rectangle Problems,º
technical report, Computer Science Department, Carnegie-Mellon
Univ., Pittsburgh, Penn. 1977.

[8] S.F. Chang, W. Chen, H. Meng, H. Sundaram, and D. Zhong,
ªVideoQÐAn Automatic Content-Based Video Search System
Using Visual Cues,º Proc. Fifth ACM Multimedia Conf., pp. 313-324,
1997.

[9] S.F. Chang, W. Chen, H. Meng, H. Sundaram, and D. Zhong, ªA
Fully Automated Content Based Video Search Engine Supporting
Spatio-Temporal Queries,º IEEE Trans. Circuits and Systems for
Video Technology, vol. 8, no. 5, pp. 602-615, 1998.

[10] K.L. Cheung and A. Wai-Chee Fu, ªEnhanced Nearest Neighbor
Search on the R-Tree,º SIGMOD Record, vol. 27, no. 3, pp. 16-21,
1998.

[11] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms.
Cambridge, Mass.: MIT Press, 1990.

[12] S. Dagtas, W. Al-Khatib, A. Ghafoor, and A. Khokhar, ªTrail-
Based Approach for Video Data Indexing and Retrieval,º Proc.
IEEE Int'l Conf. Multimedia Computing and Systems, pp. 235-239,
1999.

[13] V. Delis, D. Papadias, and N. Mamoulis, ªAssessing Multimedia
Similarity: A Framework for Structure and Motion,º Proc. ACM
Multimedia, pp. 333-338, 1998.

[14] J. Driscoll, N. Sarnak, D. Sleator, and R.E. Tarjan, ªMaking Data
Structures Persistent,º Proc. 18h Ann. ACM Symp. Theory of
Computing, 1986.

[15] M. Erwig, R.H. Guting, M. Schneider, and M. Vazirgiannis,
ªSpatio-Temporal Data Types: An Approach to Modeling and
Querying Moving Objects in Databases,º GeoInformatica, vol. 3,
no. 3, pp. 269-296, 1999.

[16] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D.
Petkovic, and W. Equitz., ªEfficient and Effective Querying by
Image Content,º J. Intelligent Information Systems, vol. 3, nos. 3/4,
pp. 231-262, 1994.

[17] A. Guttman, ªR-Trees: A Dynamic Index Structure For Spatial
Searching,º Proc. ACM-SIGMOD Int'l Conf. Management of Data,
pp. 47-57, June 1984.

[18] A. Hamrapur, A. Gupta, B. Horowitz, C.F. Shu, C. Fuller, J. Bach,
M. Gorkani, and R. Jain, ªVirage Video Engine,º Proc. SPIE,
pp. 188-197, 1997.

[19] J.M. Hellerstein, E. Koutsoupias, and C. Papadimitriou, ªOn the
Analysis of Indexing Schemes,º Proc. 16th ACM SIGACT-SIGMOD-
SIGART Symp. Principles of Database Systems, pp. 249-256, May 1997.

[20] H. Jiang and A. Elmagarmid, ªSpatial and Temporal Content-
Based Access to Hypervideo Databases,º Very Large Database J.,
vol. 7, no. 4, pp. 226-238, 1998.

[21] C.S. Jensen and R.T. Snodgrass, ªTemporal Data Management,º
IEEE Trans. Knowledge and Data Eng., vol. 11, no. 1, pp. 36-44, Jan./
Feb. 1999.

[22] I. Kamel and C. Faloutsos, ªHilbert R-Tree: An Improved R-Tree
Using Fractals,º Proc. 20th Very Large Database Conf., pp. 500-509,
1994.

[23] G. Kollios, D. Gunopulos, and V.J. Tsotras, ªOn Indexing Mobile
Objects,º Proc. 18th ACM-Principles of Database Systems, pp. 261-
272, 1999.

[24] C. Kolovson and M. Stonebraker, ªSegment Indexes: Dynamic
Indexing Techniques for Multi-Dimensional Interval Data,º Proc.
ACM SIGMOD Conf., pp. 138-147, 1991.

[25] A. Kumar, V.J. Tsotras, and C. Faloutsos, ªDesigning Access
Methods for Bitemporal Databases,º IEEE Trans. Knowledge and
Data Eng. vol. 10, no. 1, pp. 1-20, 1998.

[26] S.T. Leutenegger, M.A. Lopez, and J.M. Edgington, ªSTR: A
Simple and Efficient Algorithm for R-Tree Packing,º Int'l Conf.
Data Eng., 1997.

[27] J.Z. Li, I. Goralwalla, M.T. Ozsu, and D. Szafron, ªModeling Video
Temporal Relationship in an Object Database Management
System,º IS&T/SPIE Int'l Symp. Electronic Imaging: Multimedia
Computing and Networking, pp. 80-91, 1997.

[28] D. Lomet and B. Salzberg, ªAccess Methods for Multiversion
Data,º Proc. ACM SIGMOD Conf., pp. 315-324, 1989.

[29] M. Nascimento and J. Silva, ªTowards Historical R-Trees,º Proc.
ACM Symp. Applied Computing, pp. 235-240, 1998.

[30] M. Nascimento, J. Silva, Y. Theodoridis, ªEvaluation of Access
Structures for Discretely Moving Points,º Proc. Spatiotemporial
Database Management, (STDBM '99), LCNS 1678, pp. 171-188, 1999.

[31] J.A. Orenstein, ªRedundancy in Spatial Databases,º Proc. ACM
SIGMOD Conf., pp. 326-336, 1986.

[32] J.A. Orenstein, ªA Comparison of Spatial Query Processing
Techniques for Native and Parameter Spaces,º Proc. ACM
SIGMOD Conf., pp. 343-352, 1990.

[33] D. Pfoser, C. Jensen, and Y. Theodoridis, ªNovel Approaches in
Query Processing for Moving Objects,º Proc. 26th Very Large
Databases Conf., pp. 395-406, 2000.

[34] S.V. Raghavan and S.K. Tripathi, Networked Multimedia Systems:
Concepts, Architectures, and Design. Prentice Hall, 1998.

[35] N. Roussopoulos, S. Kelley, F. Vincent, ªNearest Neighbor
Queries,º Proc. ACM-SIGMOD Int'l Conf. Management of Data,
pp. 71-79, June 1992.

[36] S. Saltenis and C. Jensen, ªR-Tree Based Indexing of General
Spatio-Temporal Data,º Technical Report, TR-45, Time Center,
1999.

[37] S. Saltenis, C. Jensen, S. Leutenegger, and M. Lopez, ªIndexing the
Positions of Continuously Moving Objects,º Proc. 19th ACM-
SIGMOD Int'l Conf. Management of Data, 2000.

[38] B. Salzberg and V.J. Tsotras, ªA Comparison of Access Methods
for Time-Evolving Data,º ACM Computing Surveys, June 1999.

[39] H. Samet, The Design and Analysis of Spatial Data Structures.
Reading, Mass.: Addison-Wesley, 1990.

[40] T. Sellis, N. Roussopoulos, and C. Faloutsos, ªThe R+-Tree: A
Dynamic Index for Multi-Dimensional Objects,º Proc. 13rd Int'l
Conf. Very Large Data Bases, pp. 507-518, Sept. 1987.

[41] J.R. Smith and S.F. Chang, ªVisualSEEk: A Fully Automated
Content-Based Image Query System,º Proc. ACM Multimedia,
pp. 87-98, 1996.

[42] A.P. Sistla, C.T. Yu, and R. Venkatasubrahmanian, ªSimilarity
Based Retrieval of Videos,º Proc. IEEE Int'l Conf. Data Eng.,
pp. 181-190, 1997.

[43] V.S. Subrahmanian, Principles of Multimedia Database Systems,
J. Gray, ed., Morgan Kaufmann, 1998.

[44] H. Sundaram, S.F. Chang, ªEfficient Video Sequence Retrieval in
Large Repositories,º Proc. SPIE Storage and Retrieval for Image and
Video Databases, 1999.

[45] Y. Theodoridis and T. Sellis, ªA Model for the Prediction of R-Tree
Performance,º Proc. 15th Symp. Principles of Database Systems
(PODS), pp. 161-171, 1996.

[46] Y. Theodoridis, T. Sellis, A. Papadopoulos, and Y. Manolopoulos,
ªSpecifications for Efficient Indexing in Spatiotemporal Data-
bases,º Proc. Conf. Scientific and Statistical Database Management
(SSDBM), pp. 123-132, 1998.

[47] Y. Theodoridis, J. Silva, and M. Nascimento, ªOn the Generation
of Spatiotemporal Datasets,º Proc. Symp. Large Spatial Databases
(SSD), pp. 147-164, 1999.

[48] V.J. Tsotras and N. Kangelaris, ªThe Snapshot Index, an I/O-
Optimal Access Method for Timeslice Queries,º Information
Systems, vol. 20, no. 3, 1995.

[49] T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos,
ªOverlapping Linear Quadtrees: A Spatio-Temporal Access
Method,º Proc. ACM-Georgaphical Information Systems, pp. 1-7,
1998.

[50] M. Vazirgiannis, Y. Theodoridis, and T.K. Sellis, ªSpatio-Temporal
Composition and Indexing for Large Multimedia Applications,º
Multimedia Systems, vol. 6, no. 4, pp. 284-298, 1998.

[51] P.J. Varman and R.M. Verma, ªAn Efficient Multiversion Access
Structure,º IEEE Trans. Knowledge and Data Eng., vol. 9, no. 3,
pp. 391-409, 1997.

[52] X. Xu, J. Han, and W. Lu, ªRT-Tree: An Improved R-Tree Index
Structure for Spatiotemporal Databases,º Proc. Int'l Symp. Spatial
Data Handling (SDH), 1990.

776 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2001

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.



George Kollios received the Diploma in elec-
trical and computer engineering in 1995 from the
National Technical University of Athens, Greece,
and the MSc and PhD degrees in computer
science from Polytechnic University, New York,
in 1998 and 2000, respectively. He is currently
an assistant professor in the Computer Science
Department at Boston University in Boston,
Massachusetts. His research interests include
temporal and spatiotemporal indexing, index

benchmarking, and data mining. He is a member of ACM, the IEEE,
and IEEE Computer Society.

Vassilis J. Tsotras received the Diploma in
electrical engineering in 1985 from the National
Technical University of Athens, Greece and the
MSc, MPhi, and PhD degrees in electrical
engineering from Columbia University, in 1986,
1988, and 1991, respectively. He is currently an
associate professor in the Department of Com-
puter Science and Engineering, University of
California, Riverside. Before that, he was an
associate professor of computer and information
science at Polytechnic University, Brooklyn,

New York. During the summer of 1997, he was on sabbatical visit at
the Department of Computer Science, University of California, Los
Angeles. His research interests include access methods, temporal and
spatiotemporal databases, semistructured data, and data dissemination.
He received the US National Science Foundation Research Initiation
Award in 1991. He has served as a program committee member at
various database conferences including SIGMOD, VLDB, ICDE, EDBT,
etc. He was the program committee cochair of the Fifth Multimedia
Information Systems (MIS '99) conference and is the general chair of the
Seventh Symposium on Spatial and Temporal Databases (SSTD '01).
His research has been supported by various grants from the US National
Science Foundation, Defense Advanced Research Projects Agency,
and the Department of Defence.

Dimitrios Gunopulos completed his under-
graduate studies at the University of Patras,
Greece, in 1990, and graduated with the MA and
PhD degrees from Princeton University, in 1992
and 1995, respectively. He is an assistant
professor in the Department of Computer
Science and Engineering, at the University of
California, Riverside. His research interests are
in the areas of data mining, databases, web
mining, and algorithms. He has received the US
National Science Foundation CAREER Award

(2000). He has held positions at the IBM Almaden Research Center
(1996-1998) and at the Max-Planck-Institut for Informatics (1995-1996).
His research is supported by NSF, DoD, and ATT.

Alex Delis holds a diploma in computer en-
gineering from the University of Patras and the
MS and PhD degrees in computer science from
the University of Maryland, College Park. He is a
faculty member with the Department of Compu-
ter and Information Science at Polytechnic
University in Brooklyn, New York. His research
interests are in the areas of networked data-
bases, distributed systems, and system evalua-
tion. He received the Best Paper Award in the

14th IEEE International Conference on Distributed Computing Systems
and the US National Science Foundation CAREER Award (1998). He is
a member of the IEEE, ACM, and the Technical Chamber of Greece.

Marios Hadjieleftheriou received the Diploma
in electrical and computer engineering in 1998
from the National Technical University of
Athens, Greece. He is currently a graduate
student in the Computer Science Department
at the University of California, Riverside. His
research interests include temporal, spatiotem-
poral, and multidimensional indexing. He is a
member of the ACM Computer Society.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

KOLLIOS ET AL.: INDEXING ANIMATED OBJECTS USING SPATIOTEMPORAL ACCESS METHODS 777

Authorized licensed use limited to: Alexios Delis. Downloaded on November 22, 2008 at 09:13 from IEEE Xplore.  Restrictions apply.


