
Peer-to-Peer Architectures for Scalable, Efficient
and Reliable Media Services

Vana Kalogeraki
Univ. of California, Riverside

Riverside, CA 92521
vana@cs.ucr.edu

Alex Delis
The Univ. of Athens

Athens, 15771, Greece
ad@di.uoa.gr

Dimitrios Gunopulos
Univ. of California, Riverside

Riverside, CA 92521
dg@cs.ucr.edu

Abstract

In this paper, we propose and study the behavior of a
number of peer-to-peer (P2P)-based distributed computing
systems in order to offer efficient and reliable media ser-
vices over a large-scale heterogeneous network of comput-
ing nodes. Our proposed middleware architectures exploit
features including availability of high-performance links to
networks, usage of exclusive and partial indexing in peers,
making nodes “aware” of the content of their own vicin-
ity, replication of objects and caching of popular items, as
well as full connectivity among servers if feasible. Through
detailed simulation and experimentation, we investigate the
behavior of the suggested P2P architectures for video pro-
vision and examine the trade-offs involved. We show that
under realistic assumptions, the proposed architectures are
resilient to multiple peer-failures, provide timeliness guar-
antees and are scalable with respect to dropped requests
when the number of messages in the network increases.

1. Introduction

The ever improving network infrastructure in combina-
tion with the emerging peer-to-peer (P2P) framework offer
new opportunities for distributed organization of comput-
ing systems. Thus far, most of the work in the area has
concentrated in the exchange/sharing of “small” objects in-
cluding MP3 music files, images, and audio. It is our hy-
pothesis that with certain restrictions on the key distribu-
tion nodes of an P2P infrastructure and the necessary pro-
visions, we will be able to offer diversified and dependable
video services on ad-hoc P2P networks. Prior work in fur-
nishing video over a computer network has exclusively fo-
cused in the creation of video-on-demand (VOD) systems
[3, 7, 24, 18, 31, 10]. Although there have been a number
of proposals, research prototypes, and some VOD products,
it is evident that initial investment required for commercial

use is steep. Such systems are also restricted by the number
of concurrent accesses that they allow as well as load bal-
ancing issues that ensue when the demand for video streams
is skewed [18, 24, 9].

In this paper, we build upon the approach of ad-hoc P2P
networks of resources and propose new architectures that
can efficiently support video-related services. The range of
such services is wide and includes storage and management
of movies, video-clips, and documentaries. In the context
of a P2P infrastructure realization, two issues need to be
considered:

� One should provide fast connections to the end user.
However, this is well within reach as more individuals
choose T1-level (or higher) connections both for their
businesses and homes. In addition, cable and other
specialized modems (ADSL, HDSL, etc.) do provide
for asymmetric connections with impressive down-
stream rates (around 4-10Mb/sec) while maintaining
significant upstream capabilities (close to 0.5Mb/sec).
The corresponding figures for network transmission
for a two hour MPEG-II movie are 8Mb/sec network
bandwidth and 7.2 Gigabytes space per movie.

� The size of a reasonable population of movies can def-
initely increase the disk space requirements into the
Petabyte area. The accommodation of such volumes
calls for collaborative computing that can be carried
out only in a distributed setting.

1.1. Assumptions and Problem Statement

We assume that movies and/or video-clips are main-
tained by a network of computing sites. The latter are
termed “servers” and they are the computing nodes respon-
sible for storage as well as retrieval of the multimedia ele-
ments in discussion. Via the existing networking infrastruc-
ture, servers stream requested clips and movies to user-sites
for viewing and/or processing. We assume that all sites are

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

connected via a multi-hop network. However, the key pro-
vision is that (some of the) peers may be connected via a
low-latency and high-bandwidth networking option capa-
ble of effective shipment and handling of high data vol-
umes; for instance, the network could function even at the
OC3 level [26]. Customers interact with the infrastructure
via (thin) clients that allow for the search and display of
the clips obtained from the network. Fig. 1 depicts the

Video ServerVideo Server

Video Server

Telecom Hub

Telecom Hub

UoA UoA
UoA

UoA UoA

OC3 High Bandwith

Network

Figure 1. Environment for P2P Video Services

typical peer-to-peer computing environment in which we
envision the placement of such P2P video-services. The
video-segments are of considerable volume –at least 0.5
Gigabytes– and are organized by storage managers. The lat-
ter operate on the top of multiple disks resident within the
servers’ chassis. Segments and movies are all entitled, fea-
ture a number of keywords pertinent to their content, date of
creation, names of producers, owner, distributor, and cast,
as well as a summary of their contents and terms and con-
ditions for the video’s usage.

In the above operating environment and while observing
quality of service (QoS) requirements for the delivery of
multi-media data, a number of issues have to be addressed:

1. Architectural organization of video servers and dis-
tributed indexing mechanisms that allow for efficient
retrieval of multimedia data.

2. Routing of queries in the network so that “flooding”
of messages is avoided and compliance with QoS re-
quirements for the delivery of data.

3. Assuring reliability of a P2P network for video ser-
vices in light of server failures. Would replication of
multimedia objects be allowed, guarantees for the re-
sponse time of client requests should be established.
In addition, ensuring that recovery from multiple site
failure is considered critical.

4. Dealing with the dynamic aspects of the systems such
as arrival/departure of a server node, load-balancing
in light of skewed accesses, publishing/withdrawal of
video-segments by users/servers and on-line recreation
of indexes.

The main contributions of this work are that we:

� propose scalable, dynamic and reliable P2P architec-
tures for delivering video services in ad-hoc environ-
ments.

� suggest efficient mechanisms for object replication
and load distribution in the P2P architectures. These
mechanisms are instrumental for ensuring reliable op-
eration and improving the availability and performance
of the services.

� provide an extensive experimental study that establish
the performance, scalability, reliability, and flexibil-
ity of the investigated P2P architectures for video-
services.

1.2. Previous Work

A number of mechanisms have been proposed recently
for providing large-scale storage ([21, 29, 11]), efficient
search and retrieval ([30, 19, 2]) and organizing the peer-
to-peer networks ([27]). The Jxta and Hailstorm initia-
tives intend to offer P2P architectures that follow the fully
distributed and server-based approach respectively [23, 33,
12]. A classification of the users who make use of the free
P2P services is provided in [5, 4]. In [28], a mapping of
the Gnutella network is discussed and statistics about the
path-lengths traversed by user requests are experimentally
derived.

Khazana [8] uses shared “regions” of memory space
among a number of LAN-based sites in a seamless man-
ner in order to assist the delivery of multimedia. In [35],
video staging is used as a tool to retrieve only parts of a
video-stream from a server located across a wide area back-
bone network. The design of a tightly connected distributed
system for the provision of Video-on-Demand and its eval-
uation is discussed in [15]. Techniques that improve the
throughput of long-term storage subsystems for multime-
dia with the use of staggered striping, disk scheduling, and
multi-user editing servers are presented in [7, 6, 14, 20]. In
[25], the design of a fault-tolerant VOD system that is able
to overcome the failure of disk failure is described. The use
of segmentized multimedia objects in proxy servers in advo-
cated in [13] to guarantee quality of service requirement for
video distribution. A middleware layer that achieves perfor-
mance differentiation and soft QoS guarantees is proposed
in [1]. The use of forward error correcting codes in stream-
ing data is used as the basis for Digital Fountain’s solution

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

to media delivery to multiple clients [17]. The functionality
of BeeHive, a novel resource manager that handles transac-
tions with quality of service requirements over the Internet,
is discussed in [32].

In [22], the design of system modules for multi-
resolution media delivery to clients with a variety of net-
work connections is outlined. Possibly the work more
closely related to ours is [34]; however, the latter mostly
deals with file sharing options in the design of P2P appli-
cations. In contrast, our work is the first effort to the best
of our knowledge that designates architectural choices for
the development of P2P video-services with guarantees for
reliability and outlines the dynamic behavior and reconfig-
uration of the peers as needed.

2. Architectures for P2P Video-Services

In this section, we present alternative configurations that
can help create the required underpinning infrastructure for
the realization of reliable video-services.

2.1. Single/Multiple Index site(s)–Multiple Servers
(SIMS/MIMS)

In this architecture, a number of servers form the ba-
sis for managing the storage and retrieval of video objects.
Movies and clips resident in these nodes are allowed to be
viewed by users who check into the system. These objects
can be shipped across the network to requesting users and
other sites and be shared among servers should the latter be
necessary. Peers have a maximum capacity for video ob-
jects and each stored object maintains frequency accesses
and timestamps for the last time they were accessed.

The central feature of the architecture, depicted in Fig. 2,
is that a node undertakes the exclusive role of being the
indexing site. The indexing node is responsible for (1)
brokering of connections between the users and the data
servers and (2) finding and efficiently alerting users about
the location of sought video-objects. This is done through
a set of “global” indexes maintained for the stored objects
in the network. Each stored object is represented through
a triplet that includes the object-ID (associated with search
terms in the Multimedia Indexing module), the IP address
(in which the object is resident) and a port number (through
which the object can be fetched).

We assume that a requesting node maintains an open
connection with the its peer-server throughout the entire
time of the interaction regarding a video object. If the in-
dexing node indicates “local” retrieval from the peer-server,
the objects can be downloaded immediately. Otherwise,
the object will have to be either routed to the peer (from the
node that manages a copy of the object) or the client has to

Disk Units for Video Objects

r
Video−Obejcts

Memory for

Admission
 Control

QoS Manager

Request
Manager

Storage

Manager

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�Broadband

Network

Server for Video−Objects

Multimedia

Indexing

Indexing Node

Query
Manager

User Interface

Requesting Site

Figure 2. SIMS/MIMS Architecture

establish a new connection with the peer bearing the object.
These two options can be summarized as follows:

1. First Cache–Then Deliver: The item is first cached to
the server that the requesting site is attached to and
then it is distributed. The condition that enables such
a copy is that an object has become popular. The lat-
ter is quantified by constraints that indicate that a ob-
ject has received k% of the most recent � requests.
The Indexing Node has to also be alerted to this ef-
fect. Users download objects directly from their corre-
sponding serving peers.

2. Forward Object: The data server managing the item
streams the object via the network directly to the re-
questing site. In this case, users download copies from
peers that manage object copies.

If more than two servers can furnish the sought data objects,
simple heuristic policies can be applied depending on the
least loaded peer, proximity of the user to peer (as this is
manifested by the number of hops needed in the network),
as well as on-going traffic at the segments of the network.
This information could be easily provided to the Indexing
site with piggybacked messages.

To ensure reliable operation of the network in light of
node failure and/or time outs, we propose a simple yet ef-
fective replication policy that calls for the mirroring of an
object in the network to at least another additional node.
The selection of the new node can be done randomly or
based on load-balancing heuristics. In conjunction with the
possible caching and subsequently floating copies (due to
First Cache–Then Deliver operation above), the P2Psystem
will be able to recover from more than two site failure. As
peers reach their capacity, there is obviously need for house-
keeping by doing garbage collection. Objects can be elim-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

inated in a least recently requested object fashion and pro-
vided that at least two copies exist in the network. The latter
can be determined by issuing a query message to the index-
ing node and receiving more than two object hooks.

2.2. Multiple Independent Indexed Servers (MIIS)

In this architecture, peers maintain their own multimedia
data. In addition, each peer features local access structures
that help identify and retrieve objects of interest. Servers are
also aware of the contents of all their (sibling) peer-servers
in the P2Pnetwork. These are peers that are a few (usually 2
or 3) hops away in the network. To this end, peers maintain
partial indexes for the video and/or clips held by sibling
nodes. The rationale behind such partial indexes is to offer
distributed “hooks” in the computing vicinity. Fig. 3 de-
picts this architecture term Multiple Independent Indexing
Servers (MIIS). Servers, as in the SIMS/MIMS configura-
tions, maintain open connections with all their server peers
as the assumption is that their networking substrate displays
low-latency and high bandwidth characteristics.

Periodically, servers propagate updates to their server
peers about newly arrived movies/clips so that a consistent
global view is achieved in the network. A low-entropy pro-
tocol (that may function after a sufficient inactive period be-
tween any two sites has elapsed) can be used to propagate
appropriate changes of meta-data to other peer nodes in the
P2Pinfrastructure.

Disk Units for Video Objects

r
Video−Obejcts

Memory for Storage

Manager

Multimedia

Indexing

QoS Manager
Query
Manager

Admission
 Control

Request
Manager

User Interface

Requesting Site

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Partial Video

Object Index

Broadband
Network

Server for

Multiple Independent
Nodes (MIIS)

Figure 3. MIIS Architecture

A user can connect to either its closest/local server or a
node of her choice (by issuing ping and receiving pong
messages). By contacting a peer-server, users initiate object
requests by using the payload of query messages. When a
server receives a request, it searches through its local repos-
itory. If the object is found locally, it is presented to the

requesting site (through a query reply message). Oth-
erwise, the peer uses its partial index access objects stored
in a sibling (peer):

� If the object is found to be available in a sibling, the
handling server can satisfy the pending request ei-
ther re-directing the user to the remote server (that
has the object) (forward option), or by obtaining the
movie/clip locally due to popularity (cache first-then
deliver option).

� Otherwise, the handling server simply forwards the
query message to all its peers for further processing.
The latter will ultimately satisfy the request as it trig-
gers the searching of all servers in the P2Pnetwork.

Whenever object caching takes place, the peer refreshes its
local index accordingly and notifies a queue. This is done
so that siblings in a forthcoming opportunity are notified
about the change and change the contents of their own local

indexes. We want to avoid hard consistency of data items
among servers and consequently, we do not adhere to any
such protocol. Clearly, not all objects are available in all
sites but should the cache first-then deliver option be used, it
is guaranteed that at least the most popular video/clips will
be present (due to caching) in multiple locations offering
reduced object access latency and increased reliability.

2.3. Fragmented And Multiple Servers (FAMS)

This scheme, follows the fundamental design choices of
the Gnutella network. Subsequently, there is neither central-
ized data server not global indexing sites for the multimedia
objects. Each peer essentially is a video-service provider
and maintains a local set of movie and/or video clips files
along with their meta-data. The key features of this archi-
tecture is that no upper limit in the number of servers exists
and the servers are not fully connected. Fig. 4 depicts the
organization of a server. It is worth noting that nodes could
be connected even with low-bandwidth links and the topol-
ogy of the resulting grid could be random. In addition, they
are no explicit quality of service modules on the peers. By
simply restricting their connections to clients to a handful
or so, peers ensure timely delivery of multimedia objects.

Each node in the P2Pnetwork maintains a Peer-List
which keeps track of the IP-addresses of its own peer sites.
The latter make up the sites with which a node is/was con-
nected in the (recent) past and thus, it is likely to connect
again (or remain connected) in the near future. The number
of connections the node maintains is typically limited by the
peer’s resources and the type of network links that exist be-
tween the peer and the rest of the network. It is worthwhile
pointing out that nodes are connected in an ad-hoc manner
and no peer has a global view of the system “as is” at any

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Disk Units for Video Objects

Storage

Manager

Multimedia

Indexing

Request
Manager

Dispatching
Request

Receiving

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Network

Download

Manager

FAMS Server

Figure 4. FAMS Architecture

particular moment [16]. This creates both problems and op-
portunities; the topology of the network is not known and
can change dynamically over time. Every node only knows
about its first-line peers. On the other hand, in light of site
failures, the overall system can still function (almost cer-
tainly with longer response times).

In order to make our FAMS model more pragmatic,
while providing video services, we impose the following
two assumptions:

� We disallow downloading of multimedia objects
through low bandwidth connections that may appear
in Peer-Lists if a faster connection is available. Al-
though a connection to a peer may exist, it might be
not viable in order to sustain the presumed quality of
service requirements.

� We assume that any video segment is available from
at least two peers in line with the reliability rule sug-
gested in the SIMS/MIIS architectures. This policy
permits “new releases” to have at least one replica ran-
domly created in some node in the P2Pnetwork. The
downloading option allows for further caching of
objects and propagation of their corresponding meta-
data.

To search for a object in the network, a node sends a
query message to its peers including a “constraint” that
essentially articulates the search operation. Typically this
constraint is a set of keywords (meta-data) attempting to
outline what is being sought. A peer receiving a query
message evaluates the constraint locally against the meta-
data in its own local storage manager. If the evaluation is
successful, the peer will generate a reply message back
to the originating node which includes the object(s) corre-
sponding to the constraint. Otherwise, a new query is ini-
tiated from the peer in discussion to the nodes in its own

Peer List. If the segment is available in the network, this re-
cursive operation guarantees ultimate retrieval. However, in
practice we limit the depth of the recursion to avoid flood-
ing the network with messages. User sites can download
the object(s) of their choice directly from the network peers
and commence viewing whenever is deemed feasible.

As there is no specialized site for indexing and/or man-
agement of meta-data, deployment of new nodes in the net-
work is straightforward. Also, when new items are publi-
cized by a single node, the only task that needs to happen
is that at least another copy is floated. This will at least
guarantee successful operation in a single node failure.

3. Experimental Evaluation

In this section, we discuss our experimental evaluation
of the proposed peer-to-peer architectures for video-service
provision. By employing a number of different workloads,
we have estimated performance indicators and carried out
sensitivity analyses. In this context, our main goals were to:
� investigate the “average” behavior of the suggested

configurations in the presence of uniform and skewed
requests.

� examine the reliability features of each architecture
and the effect of the proposed replication/caching pol-
icy as well as to experimentally gauge the levels for
continuous operation despite failure of multiple nodes.

� carry a competitive scalability analysis and quantify
the number of requests unable to be serviced by every
architecture.

In order to carry out our experimental objectives, we devel-
oped detailed queuing network models for all architectures
(discussed in the following subsection) and based on those
models we created four extensive simulation packages. The
software was developed in C++ and the size of the packages
ranges from 2k-2.5k lines of source code; the packages run
on the Linux RedHat7.1 distribution. The key parameters
used across all simulation packages along with their values
are outlined in Table 1.

We ran experiments with 10,000 requests for continuous
objects. In all configurations, the requests “arrive” sequen-
tially. Each time interval, a random user selects a movie and
submits the request. We used two distributions to model the
movie selection. In the first case, the distribution of the
requests is uniform. In the second, one tenth of the multi-
media objects are popular movies and represent half of the
requests. The other half of the requests is uniformly dis-
tributed to the rest of the objects. The popular objects are
randomly distributed to the servers. Also, we assumed that
all the multimedia objects have the same size, and take the
same time to download. We varied this download duration
of the multimedia objects between 100 and 1,000 time units
in different experiments. Each movie/clip download, keeps

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

0

2

4

6

8

10

0 20 40 60 80 100 120

A
v

er
ag

e
N

u
m

 o
f

M
es

sa
g

es

Number of Requests (x 80)

Average Number of Messages

Figure 5. MIIS Architec-
ture: Average number of
messages per request to
find an object.

0

10

20

30

40

50

60

70

0 50 100 150 200

A
v

er
ag

e
N

u
m

 o
f

M
es

sa
g

es

Number of Requests (x 40)

Average Number of Messages

Figure 6. FAMS Architec-
ture: Average number of
messages per user re-
quest to find an object.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

M
o

v
ie

 R
ep

li
ca

ti
o

n
 D

eg
re

e

Number of Requests (x 500)

Replication Degree for Popular Movies

Figure 7. MIIS Architec-
ture: Average Replica-
tion Degree for Popular
Movies.

Parameter SIMS/MIMS MIIS FAMS

NumPeers 10 10 100
NumObjects 1000 1000 1000
ConnServer 10-20 10-20 2-10
FracObjects 200 200 20
RepliDegree 2 2 2 (init)
NoIndSits 1 N/A N/A
V icinityObjs N/A finite num finite num
NetworkType Star fully connected random
RandNetDgr N/A 10 10
RespT ime 100 100 100

Table 1. Key Simulation Parameters

one server connection busy. In all architectures, we assume
that there is an upper limit in the number of users that can
be simultaneously served by a single site. This number is
in the range of 10 to 20 connections for the SIMS/MIMS
and MIIS architectures and smaller (in the range of 2 to 10
connections) in the FAMS architecture.

4. Description of the Experiments

4.1. Search Performance

In the first set of experiments, we evaluated the efficiency
of each of the architectures. This was done by measuring
the average number of messages that have to be exchanged
between users and servers for each request before down-
loading commences. Here, we do not consider the time it
takes for a server to search its index. For datasets in the
range of 104� 10

6 movies/clips, we expect the logarithmic
search time to be reasonably short compared to the commu-
nication time among servers.

In the SIMS/MIMS architecture, the number of mes-
sages remains small. Upon login, a user sends a ping mes-
sage to connect to one of the well-known servers in the net-
work. The server accepts the connection by replying with a
pong message. If the movie/clip is available, the download
process can begin. Otherwise, the user queries the indexing
node for movies/clips in the network. Therefore, for each
user request, only two or four messages are needed to
find a movie. If the user request is denied by the Admis-
sion Control manager and the user re-issues his request, the
latter is viewed as an entirely new request.

Figure 5 shows that the average number of messages per
user request in the MIIS architecture. To search for a movie,
the user sends a query request to its local server. If the
peer has the movie, or has its location in the local index,
then it replies with a query reply message that contains
the location of the movie for download. On the other hand,
if the server has no information about the location of the
movie, it has to initiate a search in the network. Since we
assume that the between server connections are always on,
the server can broadcast the query to all other servers. The
figure also shows that the average number of messages de-
creases with the number of user requests over time. As more
users request movies from the server, the server learns about
the location of the movies and therefore re-directs the users
to those servers directly. This reduces the number of the
messages in the network.

The average number of messages per user request is
much higher in the FAMS architecture (Figure 6) compared
to the other architectures. The reason is that in this ar-
chitecture there are no dedicated servers where the users
find movies/clips. Also, since there is a larger number of
servers in the network, each peer has only a partial index
of the movies of its “vicinity”. When the server has zero-
knowledge of the location of a multimedia object, it initiates

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

a Breadth-First-Search in the network. As a result, the num-
ber of messages propagated in the network is large. Similar
to the MIIS architecture, the performance of the FAMS ar-
chitecture improves as the server “learns” about the location
of the movies in the network. However, the improvement is
small because the server learns about only a small propor-
tion of the movies that are available in its peers (compared
to the MIIS architecture, and for the same replication degree
of the movies).

4.2. Replication Algorithm

In the second set of experiments, we evaluated the per-
formance of our replication algorithm. Our goal was to
investigate the replication degree of the popular and the
non-popular movies as the number of requests increases.
We ran experiments in the context of the MIIS architecture
only. The reason was, that, in the SIMS/MIMS architec-
ture the algorithm cannot be directly applied as we assume
that servers are not directly connected with each other. On
the other hand, the connections in the FAMS architecture
form a graph with relatively low degree, and servers are not
connected to most of the other servers directly. To do the
replication efficiently, we would have to open direct con-
nections between servers, and change the topology of the
network dynamically.

Figure 7 depicts the average Replication Degree of the
popular movies in the SIMS/MIMS architecture as a func-
tion of the user requests. To verify our results, we chose
to run experiments in a larger network with 100 dedicated
movie servers, 10,000 movies/clips and 10,000 peers. At
first, the replication degree for all movies is 2. If a server
peer receives more than three requests for a movie not lo-
cally available, it caches the multimedia object. The latter
is an indicator that the clip/movie in discussion is a popu-
lar one. As Figure 7 shows, the replication degree of the
popular movies increases quickly. Eventually, most of the
servers cache a copy of the popular movies. As a result,
the number of messages needed to find a movie decreases
continuously. Figure 8 shows the average Replication De-
gree for the non-popular movies. Our experimental results
indicate that only a few peers cache locally a copy of the
non-popular movies. The reason is that these movies are
requested less frequently and a maximum of four replicas
seems to be sufficient to satisfy the user requests.

4.3. Reliability

To evaluate the reliability of the different architectures,
we measured the number of movies that are no longer avail-
able in the system as servers fail. Figure 9 displays the num-
ber of movies lost in the SIMS/MIMS architecture when
30% of the servers fail over various replication degrees for

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40 45

M
ov

ie
 R

ep
lic

at
io

n
D

eg
re

e

Number of Requests (x 500)

Replication Degree for Non-Popular Movies

Figure 8. MIIS Architecture: Aver-
age Replication Degree for Non-
Popular Movies.

the movies/clips. The number of objects no longer available
increases in this case due to the higher probability that all
object copies are located in the “faulty” peers. With repli-
cation degree 2 and 30% of the servers failing, 8% of the
movies can be lost. Our experiments indicate that when ad-
ditional servers maintain object copies, only a few movies
are eventually lost.

In the MIIS architecture, the number of movies lost are
initially the same compared to SIMS/MIMS for the same
replication degree and same number of faulty servers, as
shown in Figure 10. Here too the number of movies lost for
30% faulty Servers and replication degree 2 increases con-
siderably compared to the number of movies lost when the
replication degree is larger, or the number of faulty servers
smaller. However, in the MIIS architecture, as the operation
of the system progresses, more copies of the popular movies
are cached into the servers, therefore the number of movies
lost decreases with the user requests. The improvement is
evident, as a comparison of Figures 9 and 10 shows, but it
is slow because mainly only popular movies are replicated.

Finally, we run a set of experiments to quantify the num-
ber of objects lost in the FAMS architecture when Servers
fail over different replication degrees. Figure 11 shows that
only very few movies/clips are lost when 10% of the servers
fail respectively. Since there is a large number of servers
where the objects are uniformly distributed among, each
server has a small number of objects, so the probability that
ten servers with the same movie will fail simultaneously is
small. Clearly, FAMS is the most reliable architecture re-
garding the number of server failures.

4.4. Scalability

In the fourth set of experiments, we evaluated the scala-
bility of the architectures by measuring the number of user
requests that every architectures rejects when the maximum

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

N
u

m
b

er
 o

f
M

o
v

ie
s

L
o

st

Number of Requests (x 100)

Number of Movies Lost (ReplDegree = 2, Fail = 3)
Number of Movies Lost (ReplDegree = 3, Fail = 3)
Number of Movies Lost (ReplDegree = 4, Fail = 3)

Figure 9. SIMS/MIMS Ar-
chitecture: Number of
movies lost when 30% of
the Servers fail at movie
replication degrees 2, 3,
and 4.

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

N
u

m
b

er
 o

f
M

o
v

ie
s

L
o

st

Number of Requests (x 100)

Number of Movies Lost (ReplDegree = 2, Fail = 3)
Number of Movies Lost (ReplDegree = 3, Fail = 3)
Number of Movies Lost (ReplDegree = 4, Fail = 3)

Figure 10. MIIS Architec-
ture: Number of Objects
lost when 30% of the
Servers fail at initial repli-
cation degrees 2, 3 and 4.

0

10

20

30

40

50

60

0 20 40 60 80 100

N
u

m
b

er
 o

f
M

o
v

ie
s

L
o

st

Number of Requests

Number of Movies Lost (ReplDegree = 2, Fail = 10)
Number of Movies Lost (ReplDegree = 3, Fail = 10)
Number of Movies Lost (ReplDegree = 4, Fail = 10)

Figure 11. FAMSArchitec-
ture: Number of movies
lost when 10% of the
Servers fail atmovie repli-
cation degrees 2, 3 and 4.

number of connections allowed is exceeded.
Figure 12 shows the number of rejected requests for the

SIMS/MIMS architecture. The server can facilitate 10 to 20
concurrent open connections. Our results indicate that the
architecture can service 87% of the requests (approximately
1,300 rejections) when the maximum number of connec-
tions per server is 10. Also, the results show that as the
maximum number of connections for the server increases
to 15 and more, almost no requests are rejected.

The MIIS architecture demonstrates better scalability
performance compared to SIMS/MIMS (Figure 13). The
architecture can service 88% of the requests (1,200 rejec-
tions) when the maximum number of open connections per
server is 10, but 95% when this number raises to 12 and al-
most 100% for 20. The main reason for that is that it allows
the popular movies to replicate, so a server that is busy uses
its index to redirect a user request to another server that can
service the request (if that server is not busy itself).

In Figure 14, we show the number of failed requests in
FAMS. Since the servers in this architecture are likely to
be less powerful, we assume 2, 5, 7 or 10 maximum num-
ber of simultaneously open connections per server. Allow-
ing only 2 connections per server results to 2,000 dropped
requests. However, increasing the limit (of network con-
nections) quickly reduces the number of dropped requests,
and in fact even allowing 5 connections per server results in
0.25% requests rejected.

5. Conclusions

In this paper, we have investigated a number of peer-
to-peer architectures that offer scalable, reliable and timeli-
ness support to media services over a network of computing

nodes. These architectures are:

� Single/Multiple Index site(s)–Multiple Servers
(SIMS/MIMS): peers function independently but
the indexing of network objects happens either via
accessing a single node (SIMS) or multiple dedicated
for this purpose nodes (MIMS).

� Multiple Independent Indexed Servers (MIIS): peers
feature managers that locally store movies/objects as
well as partial pointers/hooks for the objects available
in their network vicinity.

� Fragmented and Multiple Servers (FAMS): fully dis-
tributed and independent peers function as data storing
servers that connect in an ad-hoc manner to form a ran-
dom network.

We have outlined the operational protocols for the above
frameworks follow and qualitatively compared them. We
evaluate the various trade-offs that such systems present via
extensive simulation experiments and under a number of di-
verse settings. We have sought to quantify issues related to
search performance for multimedia objects, the behavior of
the replication algorithm utilized, reliability, scalability and
timeliness. In particular, we have evaluated:

1. the efficiency with which each of the architectures can
reply to a given user request: for each architecture we
count how many messages on average have to be ex-
changed between servers before the movie download
can begin. It is evident that the SIMS/MIMS archi-
tecture needs the smallest number of messages to start
downloading. Our experimental results indicate that
on average the MIIS architecture achieves very simi-
lar performance. The reason is that as the number of

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

N
u

m
b

er
 o

f
R

eq
u

es
ts

 R
ej

ec
te

d

Number of Requests (x 100)

10 Connections per Peer
12 Connections per Peer
20 Connections per Peer

Figure 12. SIMS/MIMS Ar-
chitecture: Cumulative
Number of Requests Re-
jected for Maximum Num-
ber of Open Connections
10, 12 and 20.

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

N
u

m
b

er
 o

f
R

eq
u

es
ts

 R
ej

ec
te

d

Number of Requests (x 100)

10 Connections per Peer
12 Connections per Peer
20 Connections per Peer

Figure 13. MIIS Architec-
ture: Cumulative Num-
ber of Requests Rejected
for Maximum Number of
Open Connections 10, 12
and 20.

0

5

10

15

20

25

0 20 40 60 80 100

N
u

m
b

er
 o

f
R

eq
u

es
ts

 R
ej

ec
te

d

Number of Requests (x 100)

5 Connections per Peer
7 Connections per Peer

10 Connections per Peer

Figure 14. FAMSArchitec-
ture: Cumulative Num-
ber of Requests Rejected
for Maximum Number of
Open Connections 5, 7,
and 10.

user requests increases, each server adds the locations
of more movies in its local index, and it tries to down-
load the most popular movies. With limited connec-
tions per server and no centralized indexing, the num-
ber of messages in the FAMS architecture can increase
dramatically. The messages are propagated over many
hops from one server to another until the multimedia
objects are found.

2. the performance of the movie replication algorithm we
proposed in the context of the MIIS architecture: we
show how the replication degree of the popular and the
non-popular movies changes as the number of requests
increases. Our experiments show that the replication
degree of the popular movies increases quickly. As a
result, the cache hit rates for the popular movies con-
tinuously increase. In addition, the number of mes-
sages needed to find a movie/clip decreases continu-
ously.

3. the reliability of the different architectures by mea-
suring the number of movies no longer available in
the system, as servers fail: our experimental results
show that the FAMS architecture is the most reliable
one because different server peers have a variety of
movies. Also, our results show that as the system exe-
cutes, the reliability of the MIIS architecture improves.
This is due to the fact that more copies of popular ob-
jects are cached into servers, therefore the number of
movies/clips lost decreases with the user requests.

4. the scalability of the architectures by measuring the
number of user requests rejected by each of the archi-
tectures: in the SIMS/MIMS architecture, the index-
ing server can become a bottleneck as the number of

user requests increases. However, the server peers do
guarantee QoS once their requests are accepted. In the
FAMS architecture the number of rejected requests is
very small, but these may be slow connections, there-
fore it is difficult to guarantee QoS support.

It is worth mentioning that FAMS is likely the most in-
expensive option as no particular computational features are
required of the participating sites. It is our belief however
that schemes similar to SIMS/MIMS and MIIS will benefit
the area of multimedia delivery the most as the close collab-
oration of some dedicated storage peers helps in the timely
and efficient delivery of multimedia data. In our experi-
ments, all the distributed architectures (SIMS/MIMS, MIIS,
and FAMS) have shown impressive reliability and scalabil-
ity furnished by only a small degree of replication.

Acknowledgments: A. Delis was on a leave from Poly-
technic University and was partially supported by NSF un-
der grant IIS-9733642 and D. Gunopulos was supported by
grants IIS-9984729 and ITR-0220148.

References

[1] T. Abdelzaher and K. Shin. QoS Provisioning with qCon-
tracts in Web and Multimedia Servers. In Proceedings of
the 20th IEEE Real-Time Systems Symposium, Phoenix, Ari-
zona, December 1999.

[2] K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt. Im-
proving Data Access in P2P Systems. IEEE Internet Com-
puting, 6(1):58–67, January/February 2002.

[3] S. Adali, K. Candan, S.-S. Chen, K. Erol, and V. Subrahma-
nian. Advanced Video Information Systems. ACMMultime-
dia Systems Journal, 4(4):172–186, 1996.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

[4] L. Adamic, R. Lukose, A. Puniyani, and B. Hu-
berman. Search in Power-Law Networks.
Technical report, Xerox Parc Research Center,
http://www.parc.xerox.com/istl/groups/iea, Palo Alto,
CA, 2000.

[5] E. Adar and B. Huberman. Free Riding on Gnutella.
Technical report, Xerox Parc Research Center,
http://www.parc.xerox.com/istl/groups/iea/papers/plsearch,
Palo Alto, CA, 2000.

[6] W. Aref, I. Kamel, and S. Ghandeharizadeh. Disk Schedul-
ing in Video Editing Systems. IEEE Transactions on Knowl-
edge and Data Engineering, 13(6):933–950, 2001.

[7] S. Berson, S. Ghandeharizadeh, R. R. Muntz, and X. Ju.
Staggered Striping in Multimedia Information Systems. In
Proceedings of the 1994 ACM SIGMOD International Con-
ference on Management of Data, Minneapolis, Minnesota,
May 24-27, 1994, pages 79–90. ACM Press, 1994.

[8] J. Carter, A. Ranganathan, and S. Susarla. Khazana: An
Infrastructure for Building Distributed Services. In Pro-
ceedings of the 18th IEEE International Conference on Dis-
tributed Computing Systems, Amsterdam, The Netherlands,
May 1998.

[9] S. Carter, J. Paris, S. Mohan, and D. Long. A Dynamic
Heuristic Broadcasting Protocol for Video-On-Demand. In
Proceedings of the 21st IEEE International Conference on
Distributed Computing Systems, Phoenix, CA, May 2001.

[10] M. Chen, D. Kandlur, and P. Yu. Storage and Retrieval
Methods to Support Fully Interactive Playout in a Disk-
Array-Based Video Server. ACM Multimedia Systems Jour-
nal, 3(3):126–135, July 1995.

[11] G. Chockler, D. Dolev, R. Friedman, and R. Vitenberg. Im-
plementing a Caching Service for Distributed CORBA Ob-
jects. In Proceedings of the IFIP/ACM International Confer-
ence on Distributed System Platforms and Open Distributed
Processing (Middleware 2000), Hudson River Valley, NY,
April 2000.

[12] M. Corporation. Hailstorm Software Architecture.
http://www.microsoft.com/net/hailstorm.asp.

[13] H. Fahmi, M. Latif, S. Sedigh-Ali, A. Gafoor, P. Liu, and
L. Hsu. Proxy Servers for Scalable Interactive Video Sup-
port. IEEE Computer, 34(9):54–60, September 2001.

[14] S. Ghandeharizadeh and R. Muntz. Design and Imple-
mentation of Scalable Continuous Media Servers. Parallel
Computing, Special Issues on Applications, Parallel Data
Servers and Applications, 24(1):91–122, January 1998.

[15] L. Golubchik, R. Muntz, C.-F. Chou, and S. Berson. Design
of Fault-Tolerant Large-Scale VOD Servers With Emphasis
on High-Performance and Low-Cost. IEEE Transactions on
Parallel and Distributed Systems, 12(4):363–386, 2001.

[16] Z. Haas and S. Tabrizi. On Some Challenges and Design
Choices in Ad-Hoc Communications. In Proceedings of
IEEE MILCOM, Bedford, MA, October 1998.

[17] G. Horn, P. Knudsgaard, S. Lassen, M. Luby, and J. Ras-
mussen. A Scalable and Reliable Paradigm for Media on
Demand. IEEE Computer, 34(9):40–45, September 2001.

[18] J. Hsieh, M. Lin, J. Liu, D.-C. Du, and T. Ruwart. Per-
formance of a Mass Storage System for Video-On-Demand.
In Proceedings of the IEEE INFOCOMConference, Boston,
MA, 1995.

[19] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti.
Distributed Information Retrieval in Peer-to-Peer Networks.
In Proceedings of the Eleventh International Conference on
Information and Knowledge Management, November 2002.

[20] S. H. Kim and S. Ghandeharizadeh. Design of Multi-user
Editing Servers for Continuous Media. In Proceedings of the
8th Workshop on Research Issues in Database Engineering
(RIDE’98), February 1998.

[21] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. OceanStore: An Archi-
tecture for Global-Scale Persistent Storage. In Proceedings
of ASPLOS, Cambridge, MA, 2000.

[22] R. Lienhart, M. Holliman, Y.-K. Chen, I. Kozintsev, and
M. Yeung. Improving Media Services on P2P Networks.
IEEE Internet Computing, 6(1):73–77, January/February
2002.

[23] S. Microsystems. Jxta. http://www.jxta.org.
[24] B. Özden, A. Biliris, R. Rastogi, and A. Silberschatz. A

Disk-Based Storage Architecture for Movie On Demand
Servers. Information Systems, 20(6):465–482, 1995.

[25] B. Özden, R. Rastogi, P. Shenoy, and A. Silberschatz.
Fault-tolerant Architectures for Continuous Media Servers.
In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, Montreal, Quebec,
Canada, June 4-6, 1996, pages 79–90. ACM Press, 1996.

[26] C. Partridge. Gigabit Networking. Addison-Wesley, 1993.
[27] M. Ramanathan, V. Kalogeraki, and J. Pruyne. Finding good

peers in peer-to-peer networks. In Proceedings of the In-
ternational Parallel and Distributed Computing Symposium,
April 2002.

[28] M. Ripeanu, A. Iamnitchi, and I. Foster. Mapping the
Gnutella Network. IEEE Internet Computing, 6(1):50–57,
January/February 2002.

[29] A. Rowstron and P. Druschel. Storage Management and
Caching in PAST, a Large-scale Persistent Peer-To-Peer
Storage Utility. In Proceedings of the 18th SOSP, Toronto,
Canada, 2001.

[30] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakr-
ishnan. Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications. In Proceedings of ACM SIGCOMM
Conference, San Diego, CA, August 2001.

[31] M. Vernick, C. Venkatramani, and T. Chiueh. Adventures
in Building the Stony Brook Video Server. In Proceedings
of the Forth ACM International Conference on Multimedia,
Boston, MA, November 1996.

[32] A. Victor, J. Stankovic, and S. H. Son. QoS Support for
Real-Time Databases. In IEEE Workshop on QoS Support
for Real-Time Internet Applications, Vancouver, BC, June
1999.

[33] S. Waterhouse, D. Doolin, G. Kan, and Y. Faybishenko. Dis-
tributed Search in P2P Networks. IEEE Internet Computing,
6(1):68–72, January/February 2002.

[34] B. Yang and H. Garcia-Molina. Comparing Hybrid Peer-to-
Peer Systems. In Proceedings of the 27th VLDBConference,
Rome, Italy, September 2001.

[35] Z. Zhang, Y. Wang, D. Du, and D. Shu. Video Staging: a
Proxy-server-based Approach to End-to-End Video Deliv-
ery over Wide-area Networks. IEEE/ACM Transactions on
Networking, 8(4):419–442, August 2000.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	IPDPS 2003
	Return to Main Menu

