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Abstract—We present a decentralized approach towards scalable and energy-efficient management of virtual machine (VM) instances
that are provisioned by large, enterprise clouds. In our approach, the computation resources of the data center are effectively organized
into a hypercube structure. The hypercube seamlessly scales up and down as resources are either added or removed in response to
changes in the number of provisioned VM instances. Without supervision from any central components, each compute node operates
autonomously and manages its own workload by applying a set of distributed load balancing rules and algorithms. On one hand,
underutilized nodes attempt to shift their workload to their hypercube neighbors and switch off. On the other, overutilized nodes attempt
to migrate a subset of their VM instances so as to reduce their power consumption and prevent degradation of their own resources,
which in turn may lead to SLA violations. In both cases, the compute nodes in our approach do not overload their counterparts in order
to improve their own energy footprint. An evaluation and comparative study of the proposed approach provides evidence of its merits in
terms of elasticity, energy efficiency, and scalability, as well as of its feasibility in the presence of high workload rates.

Index Terms—K.6.4.a Centralization/decentralization, H.3.4.b Distributed systems, B.9.2 Energy-aware systems
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1 INTRODUCTION

THE continuing growth of cloud computing [1] [2] and its
immediate uptake by the industry have yielded a large

number of cloud-based services spanning the infrastructure,
platform, and software levels. However, as the demand
for cloud services continues to increase at a global scale,
so does the energy consumption of the service providers’
data centers and, ultimately, their negative impact on the
environment. Nowadays, enterprise-scale cloud computing
infrastructures consume huge amounts of electrical energy,
contributing to high operational costs and carbon footprints
to the environment [3]. Still, the majority of enterprise
cloud data centers utilize only a fraction of their avail-
able resources, while a considerable part of their power
consumption is lost due to both over-provisioned and idle
resources [4]. It therefore becomes important for cloud
service providers to adopt appropriate measures in order
to attain energy-efficient processing and utilization of their
computing infrastructure.

In computation–intended data centers, the workload
gets essentially translated into a number of provisioned
virtual machine (VM) instances. To address the aforemen-
tioned problems in such settings, the technology of dynamic
VM consolidation has been devised [5], widely studied, and
applied [6] [7] [8]. In a nutshell, dynamic VM consolidation
continuously strives to reduce the energy consumption of
the data center by packing the running VM instances to
as few physical machines as possible, and consequently
switching off the unnecessary resources. Combined with
the use of live VM migration [9], [10], which refers to
the process of moving a running VM instance between
different physical compute nodes without disconnecting the
client, VM consolidation has become feasible in terms of
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cost [11] [12], and it can considerably improve the energy
footprint of cloud data centers.

Still, in the presence of enterprise clouds consisting of
hundreds to even thousands of physical machines utilized
for the provision of large numbers of VM instances, energy-
efficient load balancing through VM consolidation becomes
a challenging task. Indeed, the problem of VM consolidation
is an applied form of bin packing, which is by nature a com-
binatorial NP-hard problem [13] and therefore, expensive
to compute when large numbers of physical machines and
thousands of VM instances are involved. To date, most of
the existing approaches rely on centralized [14], hierarchi-
cal [15], or ring [16] topologies, all of which exhibit certain
performance limitations as both data centers and their work-
load scale out. Consequently, it is critical for cloud service
providers to select an appropriate and scalable data center
architecture in order to carry out the VM consolidation
process in an efficient way.

1.1 Contribution

The main contribution of this work is the design and evalu-
ation of a fully decentralized, energy-aware load balancing
scheme for enterprise clouds. Our objective is to over-
come the inherent scalability and performance limitations
of centralized and hierarchical approaches. The proposed
approach implements dynamic VM consolidation and relies
on live VM migration. Specifically, the physical machines
of the data center that are used to host the VM instances
are effectively self-organized in a highly scalable hypercube
overlay network [17]. Each physical machine is allowed
to operate autonomously and manages its own workload
which is expressed as the number of locally hosted VM
instances. In this context, the overall objective of our dis-
tributed load balancer is to maintain as few physical ma-
chines as needed for provisioning the current workload of
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the data center. Empowered by our suggested distributed
algorithms, all physical machines cooperatively contribute
towards achieving this shared goal, without supervision
and/or help from any central components. Most impor-
tantly, physical machines are not aggressively switched off
as this could lead to overloading of their counterparts, and
subsequently cause SLA violations.

Using hypercube to logically organize the physical ma-
chines of a data center has many advantages over the afore-
mentioned centralized and/or hierarchical approaches. To
begin with, the number of connections that need to be main-
tained by the physical machines is significantly reduced.
Consequently, as the number of messages exchanged is also
proportional to the number of open connections, the overall
system attains a much more effective management of its
available resources, even at large scale. The small number of
physical connections becomes particularly valuable in cases
where the data center spans different geographical locations
and the physical machines must communicate over WAN
connections. Besides, being peers to each other, all physical
machines equally contribute to the execution of the NP-hard
VM consolidation task, while working autonomously at the
same time. In this way we avoid the potential emergence
of performance bottlenecks and/or single points of failure.
Finally, hypercube exhibits strong resilience to high churn
rates. In other words, the hypercube structure can easily
recover from frequent node departures, which result from
switching off underutilized nodes upon VM consolidation.
Hence, as we will show in the following sections, the hyper-
cube topology is suitable to support energy-efficient load
balancing in enterprise clouds.

In summary, the salient features of our approach are:
• Decentralization: our load balancer is fully decentralized,

and operates through distributed algorithms that are
carried out by each physical machine individually. The
hypercube overlay is considerably flexible and efficient,
and as such, our approach can easily scale to large data
centers.

• Elasticity: the data center’s size, i.e., the number of
active physical machines, is scaled up and down as
the overall workload is increased and decreased. Physi-
cal machines are authonomously switched on and off
depending on the number of VM instances leading
to enhanced efficiency in terms of the overall energy
consumption.

• Cost effectiveness: The protocols for the maintenance of
the hypercube topology exhibit an O(log2N) complex-
ity, with N being the number of physical machines.
Hence, their additional operational cost is insignificant
compared to the overall energy costs of running the
data center. Moreover, our load balancer dynamically
consolidates the VM instances and reduces the number
of turned on physical machines, while at the same time,
it tries to keep the number of overutilized physical
machines as low as possible.

1.2 Paper Structure

In the following section, we present an analysis of the
relative literature and pinpoint the added value of our work
in the context of energy-efficient workload management in

private, enterprise clouds. Then, we proceed in Section 3
with the detailed presentation of our proposed approach.
An experimental, simulation-based evaluation and com-
parative study of our approach along with the retrieved
measurements are presented and discussed in Section 4,
before we conclude this paper and identify paths for future
work in Section 5.

2 RELATED WORK

Green Cloud computing [18] [19] through VM consolidation
is a relatively new research topic, however, it has received
extensive attention in the last few years as data center op-
erators struggle to minimize their energy consumption and
thereby, their operational costs. In this section, we survey re-
lated work in the field of energy-efficient load balancing for
private cloud environments so as to appropriately position
our approach and its contribution.

In their recent work [20], Sampaio and Barbosa propose a
mechanism for the dynamic consolidation of VMs in as few
physical machines (PM) as possible; the aim is to reduce the
consumed energy of a private cloud without jeopardizing
the compute nodes reliability. The approach is implemented
via a sliding-window condition detection mechanism and
relies on the use of a centralized cloud manager that carries
out the VM-to-PM mappings based on periodically collected
information.

The ecoCloud approach, proposed by Mastroianni et
al. [21], is another effort for power-efficient VM consoli-
dation. In ecoCloud, the placement and migration of VM
instances are driven by probabilistic processes considering
both, the CPU and RAM utilization. ecoCloud enables load
balancing decisions to be taken based on local information,
although the framework still relies on a central data center
manager for the coordination of the VM host servers.

Beloglazov and Buyya described the architecture and
specification of an energy efficient resource management
system for virtualized cloud data centers in their past
work [22]. The presented system is semi-decentralized as
it has a hierarchical architecture, while VM consolidation is
performed through a distributed solution of the bin-packing
problem. In another, more recent work [23], Beloglazov et
al. present a set of algorithms for energy-efficient mapping
of VMs to suitable cloud resources in addition to dynamic
consolidation of VM resource partitions. The algorithms
are implemented by a Green Cloud computing infrastructure,
which introduces an additional layer to the typical cloud
architecture. This infrastructure comprises a set of central-
ized components, among which are the i) energy monitor
which observes energy consumption caused by VMs and
physical machines, and ii) VM manager which is in charge
of provisioning new VMs as well as reallocating VMs across
physical machines on the basis of the information collected
by the energy monitor.

SCORCH, proposed by Dougherty et al. [24], is a model-
driven approach for optimizing the configuration, energy
consumption, and operating cost of cloud infrastructures.
In this approach, energy efficiency is sought through the use
of a shared queue containing prebooted and preconfigured
VM instances that can be rapidly provisioned.
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Bruneo et al. presented a performance analysis frame-
work, based on stochastic reward nets, that is able to imple-
ment resource allocation strategies in a green cloud infras-
tructure [25]. A series of evaluation results give evidence of
the effectiveness of the proposed strategies. Besides, Lee and
Zomaya presented two energy-conscious task consolidation
heuristics, which aim to maximize resource utilization and
explicitly take into account both active and idle energy con-
sumption [26]. In both aforementioned works, it is not clari-
fied whether the proposed solutions can be implemented in
a decentralized manner or not.

In an effort to constrain the frequent switching on/off of
the compute nodes in a cloud, and thereby reduce the corre-
sponding power consumption, Li et al. proposed a demand
forecast approach [27] that could be used in conjunction
with dynamic VM consolidation solutions. The proposed
approach allocates a VM instance to the appropriate physi-
cal machine based on the variant number of client requests
over time.

Mazzucco et al. have proposed and evaluated energy-
aware allocation policies that aim to maximize the average
revenue received by the cloud provider per time unit [28].
This is achieved by improving the utilization of the server
farm through powering off excess servers. The proposed
policies are based on dynamic estimates of user demand,
and models of system behavior. It is also shown that these
policies perform well under different traffic conditions.

Another approach based on live VM migration for en-
ergy savings in the Eucalyptus cloud computing environ-
ment [29] was proposed by Graubner et al [30]. In this
approach, a hierarchical organization of the data center
components is required, whereby a cluster controller coor-
dinates with the node controllers in order to resolve the VM
relocations.

V-MAN, proposed by Marzolla et al. [31], is among the
very few decentralized approaches to VM consolidation in
large cloud data centers. V-MAN employs the NEWSCAST
gossip protocol [32] on top of an unstructured peer-to-peer
overlay. In addition, it can quickly converge with an almost-
optimal VM placement starting from arbitrary initial VM al-
locations. Thus, V-MAN reduces the number of active hosts
and improves the energy footprint of the data center. In the
V-MAN topology, nodes obtain a local view and aware only
of a subset of the data center’s resources. V-MAN does not
consider the VM migration costs, while its load balancer is
driven exclusively by the number of VM instances hosted
by each node. The latter is not always proportional to the
power consumed. Furthermore, in its continuous effort to
consolidate the VM instances within the smallest possible
number of active nodes, V-MAN appears to not consider
the potential overuse of active nodes resources which may
lead to SLA violations. In this context, V-MAN would be un-
able to effectively handle situations where the workload is
progressively increased for long periods of time. In contrast,
our suggested approach ensures that no compute node will
be switched off at the expense of overloading other nodes.

Barbagallo et al. proposed a self-organizing algorithm
to redistribute load among servers [33]. According to this
algorithm, each server node creates a scout, which then
travels from one node to the other, following the established
links between them and collecting information about them.

Subsequently, based on the collected information and a
probability distribution, the server can decide whether to
migrate a subset of its currently provisioning VM instances
to the visited servers, or not. Similarly to our work, the
goal of this approach is to bring the network from a state
of load randomly distributed among nodes to a situation
where portion of the servers are used with their maximum
efficiency and the remaining are switched off. Unlike our
approach, the supported model defines a binary state for
nodes. Moreover, the approach works under the assump-
tion that the servers are somehow grouped and connected
together. By and large, this could entail the risk of server
nodes ending up as islands without the ability to connect and
communicate –essentially migrate VMs– with other nodes in
the data center. In contrast, our hypercube-based approach
ensures that, at any given time and in all circumstances, all
compute nodes cooperatively partake in the creation of a
“global” load-balancing strategy.

In a recent work by Hellerstein [34], the Harmony re-
source monitoring and management system is employed
in a data center to classify and cluster heterogeneous tasks
(VMs), which are then distributed to the available, poten-
tially heterogeneous compute nodes, in an energy-aware
fashion. Harmony does not impose any specific topology on
the compute nodes, as it is implied that the optimization
algorithms are executed by a centralized task scheduler.
Nevertheless, the proposed scheme could be combined
with decentralized load-balancers such as our proposed ap-
proach or V-MAN, in order to enable a fine-grained selection
mechanism for VM live migration.

Driven by their finding that network elements consider-
ably contribute to the energy costs of data centers, Fang et al.
proposed the VMPlanner approach [35] for network–power
reduction in virtualization-based data centers. VMPlanner
aims at optimizing both the virtual machine placement and
the traffic flow routing so as to turn off as many unneeded
network elements as possible for power saving. The whole
approach is formalized as an optimization problem, which
is solved by VMPlanner with the use of approximation
algorithms. The VMFlow [36] framework is another ap-
proach similar to VMPlanner that takes into account both
the network topology and traffic in order to accomplish
network power reduction while satisfying as many network
consumers as possible.

When compared to the above reviewed approaches,
our proposal deploys a fully decentralized architecture and
utilizes distributed load-balancing algorithms that in con-
junction empower compute nodes to operate autonomously.
Thanks to those features, our approach can scale and is
therefore applicable to enterprise-grade data centers that
consist of possibly thousands of compute nodes provision-
ing large numbers of VM instances. Moreover, the hyper-
cube protocols ensure that, the compute nodes can join and
depart from the network without affecting the overlay’s
completeness and stability of its structure. Finally, the load
balancing and VM migration decisions are taken solely
based on the power consumption of the compute nodes
which makes our approach independent of the VM nature
and specificities.
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3 THE PROPOSED APPROACH

This section presents the architecture, representation model,
and algorithms of our proposed approach towards decen-
tralized and energy-efficient workload management in pri-
vate cloud data centers.

3.1 Data Center Structure

A private, enterprise cloud data center typically consists of
one or more physical controller nodes, whose purpose is to
maintain the overall cloud–OS [37], and a farm of physical
compute nodes, which are used to provision VM instances.
Further, the data center usually relies on a shared storage
space for storing the VM disk images. Since our goal is to
enable decentralized workload management, we organize
the data center’s compute nodes in an n-dimensional binary
hypercube topology [17]. Hypercubes particularly possess a
series of attributes, which are also essential to our approach:

• Network symmetry: All nodes in a hypercube topology
are equivalent and so, no node incorporates a more
prominent position than the others.

• Cost effectiveness: The hypercube topology exhibits an
O(log2 N) complexity with respect to the messages
that have to be sent, for a node to join or leave the
network. Hence, the execution of the respective join and
departure protocols does not inflict notable overheads
on the overall performance of the compute nodes and
the data center at large.

• Churn resilience: It is always possible for the hypercube
topology to recover from sudden node losses, even at
large scale.

By organizing the data center’s compute nodes in a
hypercube structure, each one of them is directly connected
to at most n neighbors, while the maximum number of
compute nodes is N = 2n.
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Fig. 1. Topology of a 4-dimensional binary hypercube.

For instance, in a 4-dimensional binary hypercube, the
compute nodes are linked as shown in Fig. 1. Each link is
given a numeric label that denotes the dimension in which
the two linked nodes are neighbors of each other. In this
example, compute node A is only connected to compute
nodes B, C , D, and E, which are its neighbors in the
hypercube dimensions 0, 1, 2, and 3, respectively.

The data center scales up and down as compute nodes
are added and removed, according to the hypercube node-
join and node-departure algorithms, which ensure that the
hypercube structure will remain as complete and compact
as possible [38]. In addition, we assume that the data center

supports live VM migration, as this technique is currently
supported by most major hypervisor technologies, such as
Xen [39] or VMware [40], making it possible to migrate a
VM instance from one compute node to another within the
data center with near-zero downtime.

3.2 Compute Nodes

Compared to the other system resources of a compute node,
such as memory and network, the CPU consumes the main
part of its power, and its utilization is typically proportional
to the overall system load [23]. Based on this fact, we focus
on managing the CPU power consumption of the compute
nodes in the data center. Hence, in the remainder of this
paper, we will use the phrases ”CPU power consumption”
and ”power consumption” interchangeably.

Each compute node in the data center is represented by
a tuple as follows:

c = {id,W (t), p(t), s(t), Nh, E} (1)

In the above tuple, id is the unique identifier of the
compute node within the data center, W (t) is its current
workload, p(t) is its current CPU power consumption, s(t) is its
current state, while Nh = {hd = {idd, sd(t)}}N−1

d=0 is a set
that is used as the node’s cache maintaining the identity and
status of the hypercube nodes. With Nh, it is easy for the
compute node to identify which of the contained nodes are
its neighbors in the topology, as their respective identities
differ by only one bit from its own identity. Furthermore, in
the tuple c, E denotes its power profile, which specifies the
following constant properties:

– pidle defines the amount of power consumed by the
compute mode when idle, i.e., when the compute node
is not hosting any VM instances.

– pmin defines the level of power consumption, below
which the compute node should try to migrate all its
locally running virtual machines and shut down.

– pmax defines the critical level of power consumption,
above which the compute node’s performance is signif-
icantly degraded as its hardware resources, particularly
the CPU, are over-utilized.

For the above properties, it naturally holds that:

pidle < pmin < pmax (2)

The current workload of a compute node amounts to the
number of VMs that are locally running:

W = {vmj}kj=1 (3)

In turn, each VM vmj is represented as a tuple

vmj = {idjvm, pjvm} (4)

where idjvm is the VM’s unique identifier within the data
center, and pjvm is the VM’s current CPU power consump-
tion.

At any given time t, a VM j being hosted by compute
node i introduces a CPU power overhead pjvm(t). Assuming
that node i is active and hosting k VMs at time t, its overall
CPU power consumption is
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pi(t) = piidle +

k∑
j=1

pjvm(t) (5)

In Equation 5 we have omitted the CPU power con-
sumption induced by the non-VM activities of the node, and
the hypercube maintenance protocols, as the overall energy
footprint of an active compute node is predominantly de-
fined by the CPU utilization of its hosted VMs.

Based on its current power consumption pi(t) at any
given time t, the state si(t) of a compute node i takes one of
the following values:

si(t) =



switched-off pi(t) = 0

idle pi(t) = piidle

underutilized piidle < pi(t) ≤ pimin

ok pimin < pi(t) < pimax

overutilized pi(t) ≥ pimax

(6)

At any given time t, a compute node is considered as
active, if s(t) 6= switched-off. All the active compute nodes
in the data center periodically exchange heartbeat messages
with their hypercube neighbors, as mandated by the hy-
percube protocol [17]. In our case, this inherent mechanism
of the hypercube topology is further leveraged as follows.
At the end of each heartbeat period, Th, each node sends
to its neighbors the delta between the last and the new
contents of its maintained set, Nh. In other words, each node
transmits only those entries, which correspond to nodes
with a changed status, while each such entry contributes
a total of 3 + log2N bits in the heartbeat payload (3 bits
needed for encoding the status, and log2N bits needed for
encoding the node identity in the hypercube).

It can be easily shown that, within at most n = log2N
heartbeat periods, each node in the hypercube will become
aware of the statuses of all other nodes. Hence, on the
basis of the suggested scheme, the compute nodes are also
periodically synchronized every T = c · n · Th seconds,
where n is the hypercube dimension, and c > 0 is an integer
parameter set by the data center’s administration to regulate
the frequency of synchronization.
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Fig. 2. A random three-dimensional hypercube.

For instance, let’s consider the compute nodes of a three-
dimensional hypercube of Fig. 2. In this snapshot, the red
nodes (c1, c5, c7) are overutilized, the green ones (c2, c3) are
ok, the blue ones (c4, c8) are underutilized, while the grey
one (c6) is switched-off. For the sake of the example, we

assume that the local cache, Nh, of each node is currently
empty. Now, let us describe how the compute node c1 will
populate its local cache during the course of three heartbeat
periods. At the end of the first period, c1 will receive three
heartbeat messages from its immediate neighbors, c2, c3,
and c5, which, in the worst case, will only contain their
own state. Hence, at this stage, we have N c1

h = {c2, c3, c5}.
When the second period ends, c1 will again receive three
heartbeat messages from the same nodes as previously. This
time, however, the heartbeat messages will be enriched with
additional information. Specifically, the heartbeat message
from c2 will at least include the states of nodes c4 and c6.
Similarly, the heartbeat message from c3 will at least include
the states of nodes c4 and c7, while the heartbeat message
from c5 will at least include the states of nodes c7 and c6. At
this point, the local cache of c1 has been updated with the
new content: N c1

h = {c2, c3, c4, c5, c6, c7}.
At the end of the third heartbeat period, all heartbeat

messages received by c1 will only contain the state of node
c8, thus allowing c1 to obtain a “global view” of the data
center. It should be noted that, depending on the timing of
exchanged heartbeat messages, it could be possible for c1
to receive the state of c8 already by the end of the second
heartbeat period. In any case, each compute node in our
example requires at most three heartbeat periods in order to
fully populate its local cache.

On the basis of this representation model of the compute
nodes, and given the hypercube topology in which they
are organized, we present in the following subsections the
details of our decentralized and energy-efficient workload
management approach.

3.3 Initial VM Placement

The data center clients can request the creation and alloca-
tion of new VM instances at any time, given that the data
center has not exceeded its maximum capacity, i.e., at least
one of its compute nodes is not in the overutilized state. In
similar fashion, VM instances can be terminated at any time.
In our approach, the data center is able to initially place VM
instances to its compute nodes in a completely decentralized
manner, by leveraging the hypercube topology. When the
provision of a new VM instance is requested by the client,
an active compute node is selected by one of the data centers
controller nodes, by performing a random walk within the
hypercube. The selected compute node assumes the VM
initiator role and executes the VM placement process of
Algorithm 1.

The VM initiator first checks the contents of its local set,
Nh, in order to verify that the data center has not reached
its maximum capacity. If not, the VM initiator retrieves the
nodes that are currently in the ok state. If no such nodes are
found, the VM initiator proceeds with the retrieval of the
currently underutilized nodes from Nh. Likewise, if no such
nodes are found, the VM initiator retrieves any idle nodes,
and, in the worst case, all nodes designated as switched-off.

Eventually, the VM initiator sorts the list of retrieved
nodes in ascending order by proximity in terms of their
relative position in the hypercube. Then, it extracts the
first entry in order to send the new VM instance to the
corresponding node. Although the target node and the VM
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Algorithm 1: Initial VM placement
input : An active compute node (VM initiator), c
input : The VM instance, vm
result: true in success, or false in failure

1 begin
2 Nh ← get local cache of c
3 if all nodes in Nh are overutilized then
4 return false
5 end
6 L← get all ok nodes from Nh

7 if L 6= ∅ then
8 sort L in ascending order by proximity
9 for h ∈ L do

10 if pvm ≥ (phmax − ph(t)) then
11 place vm to h
12 return true
13 end
14 end
15 if |L| = |Nh| then
16 h← get first element of L
17 place vm to h
18 return true
19 end
20 end
21 L← get all underutilized nodes from Nh

22 if L = ∅ then
23 L← get all idle nodes from Nh

24 if L = ∅ then
25 L← get all switched-off nodes from Nh

26 if L = ∅ then
27 return false
28 end
29 end
30 end
31 sort L in ascending order by proximity
32 h← get first element of L
33 place vm to h
34 return true
35 end

initiator may be not directly neighbored, the latter can effec-
tively reach the former thanks to the hypercube’s shortest-
path routing mechanism [41]. It should be also noted that, if
the target node h is in the ok state, the VM instance will
be sent to it only under the premise that the following
condition holds true:

pvm ≤ (phmax − ph(t)) (7)

In other words, the VM placement algorithm will avoid
bringing an ok node into the overutilized state, unless no
other nodes can accept the VM instance without suffer-
ing similar consequence (i.e., themselves becoming overuti-
lized).

Example. Let’s demonstrate how the initial VM place-
ment algorithm works. For simplicity and brevity, we con-
sider the 3-dimensional binary hypercube comprising eight
compute nodes of Fig. 3. Let’s assume that a new VM
provisioning request arrives at the data center, and that the
random walk within the hypercube that was initiated upon
receipt of the request lands on compute node c1. This node
will become the VM initiator. According to the content of its
local cache, the only node currently being in the ok state is
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Fig. 3. Illustration of the initial VM placement algorithm in a three-
dimensional binary hypercube with five overutilized, one ok, and two
switched-off nodes.

c8. Hence, c1 will attempt to place the new VM instance on
c8.

Since c8 and c1 are not direct hypercube neighbors, c1
has to resolve the shortest routing path to c8. This is readily
done by using the unique hypercube identifiers of the two
nodes [41]. In our example, it turns out the shortest routing
path is c1 → c2 → c4 → c8.

Using this route, c1 starts the negotiation with c8, asking
for its current power consumption, pc8(t), and its energy
profile, Ec8 . Based on this information, c1 verifies that c8 has
the capacity to provision the new VM instance, and there-
fore it sends the related package to this compute node. At
this point, the initial VM placement algorithm successfully
terminates.

3.4 Load Balancing Strategy

At the end of each synchronization period T , each compute
node i = 1..|Ct|, with |Ct| denoting the current number of
active compute nodes, selects among the following actions
based on its current power consumption:

– If pi(t) ≥ pimax, the compute node will try to migrate
as many VMs as needed in order to reduce its power
consumption below the maximum threshold.

– If pi(t) ≤ pimin, the compute node will try to migrate
all its hosted VMs in order to switch off.

– Finally, if pimin < ei(t) < pimax, the compute node will
maintain all its hosted VMs until the end of the next
period.

As the last action requires no further explanation we
focus on how the first two actions are realized by each
compute node.

3.4.1 Partial Migration
If a compute node has exceeded its maximum power con-
sumption threshold, it has become overutilized and is likely
to violate the SLAs of the VM instances that is currently
hosting. To mitigate this risk, the overutilized compute node
will start a partial VM migration process in order to shift
part of its current workload to one or more nodes in the
hypercube, whose current status is ok, idle, underutilized,
or switched-off , so as to eventually reduce its power con-
sumption to an acceptable level. Algorithm 2 sketches this
procedure.

The compute node retrieves its local cache of hypercube
nodes, Nh, (sorted in descending order according to their
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Algorithm 2: Partial VM migration
input : Compute node c = {id,W (t), p(t), s(t), Nh, E}

1 begin
2 sort Nh in descending order by power

consumption
3 foreach compute node h ∈ Nh do
4 if h has state sh(t) = overutilized then
5 continue
6 end
7 while true do
8 if |W (t)| = 0 or s(t) 6= overutilized then
9 return

10 end
11 vm← get next VM instance from W (t)
12 if pvm ≥ (phmax − ph(t)) then
13 continue
14 end
15 if hwReqMet (h, vm) then
16 if sh(t) = switched-off then
17 switch on h
18 end
19 migrate vm from c to h
20 end
21 end
22 end
23 end

current power consumption), and, for each one, it performs
the following steps: it first examines the node’s current
power consumption and power profile. This information
is immediately available to the compute node, as it is
communicated between the hypercube neighbors through
the periodically exchanged hypercube heartbeat messages.
Based on this information, the compute node checks if the
currently processed node is overutilized. If so, the compute
node moves on to the next entry of Nh. Otherwise, the
compute node enters a loop in an effort to transfer as many
VM instances as possible. The decision to migrate -or not- a
VM instance is determined by the condition of Equation 7.

The above equation ensures that, by accepting VM in-
stances from other nodes, each compute node will not
become itself overutilized. Hence, as long as the condition
of Equation 7 is not met, and the VM instance’s hardware
requirements are met, the currently selected VM instance
will be migrated to the currently selected node. If the latter
is not switched on, the compute node will have to switch it
on before beginning the live migration.

The aforementioned process is repeated until (i) all con-
tents of Nh have been processed, (ii) the compute node
has adequately reduced its power consumption, or (iii) the
compute node’s workload becomes empty.

3.4.2 Full Migration
At the end of each synchronization period T , and after all
overutilized nodes have completed their respective VM mi-
grations, if a compute node is found to be underutilized, it is
for the benefit of the data center’s overall power consump-
tion to attempt to shift all its workload and subsequently be
switched off.

The full migration process of Algorithm 3 resembles the
one used for partial VM migration, though there are two
differences:

Algorithm 3: Full VM migration
input : Compute node c = {id,W (t), p(t), s(t), Nh, E}

1 begin
2 sort Nh in descending order by power

consumption
3 foreach compute node h ∈ Nh do
4 if sh(t) ∈ {switched-off, overutilized} then
5 continue
6 end
7 while true do
8 if W (t) = ∅ or sh(t) = overutilized then
9 break

10 end
11 vm← get next VM instance from W (t)
12 if pvm ≥ (phmax − ph(t)) then
13 continue
14 end
15 if hwReqMet (h, vm) then
16 migrate vm from c to h
17 end
18 end
19 if W (t) = ∅ then
20 switch off compute node c
21 break
22 end
23 end
24 end

• Switched-off compute nodes are ignored. The reason is,
we would not improve the power consumption of the
data center if we switched off a compute node at the
expense of switching on one or more of its neighbors.

• The algorithm attempts to shift the entire workload
(VM instances) of the compute node, so that upon
completion, the compute node can shut down.

Concluding, we should indicate that the full migration
process does not guarantee that the compute node will
always manage to migrate all its VM instances and switch
off. The extent of workload shifting primarily depends on
the state of other nodes in the hypercube topology. Again,
our algorithms do not aim at shutting down compute nodes
with the side-effect of overutilization of the data center’s
remaining resources, as such a strategy would increase the
danger of SLA violations, and would negatively contribute
to the overall reliability of the data center.

3.5 Workload Management Example

Let’s now demonstrate how our workload management
approach works: consider a data center that consists of eight
homogeneous compute nodes, all organized into a three-
dimensional binary hypercube. The compute nodes have a
common power profile:

pidle = 160W, pmin = 180W, pmax = 250W

We assume that the data center has just started its
operation, and thus each node is only aware of its imme-
diate neighbors within the hypercube. As it is shown in
the first, left-side part of Fig. 4, currently only five out of
the eight compute nodes are active, and are provisioning
VM instances which, for the sake of simplicity, consume
5W each. The example illustrates how the distributed load
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VM instances Power consumption State VM instances Power consumption State
c1 20 260W overutilized 17 245W ok
c2 8 200W ok 15 235W ok
c3 16 240W ok 17 245W ok
c4 0 0W switched off 0 0W switched off
c5 2 170W underutilized 0 0W switched off
c6 3 175W underutilized 0 0W switched off
c7 0 0W switched off 0 0W switched off
c8 0 0W switched off 0 0W switched off

49 1045W 49 725W

Before load balancingCompute 
node

After load balancing

Fig. 5. Summary of the data center’s status before and after the application of load balancing.

balancing scheme is applied. Our narration is divided in
three phases that take place simultaneously and pertain to
the VM migration strategies of compute nodes c1, c5, and
c6, as follows:

Phase 1: At the end of period T , compute node c1 is
hosting 20 VM instances, has a power consumption of 260W,
and is therefore considered overutilized. To remedy this, c1
will attempt to shift part of its workload to one or more of
the not overloaded nodes, namely c2, c3, c5, and c6, until its
power consumption drops below the acceptable threshold
pmax = 250W. After retrieving their current state from its
local cache, Nh, c1 will start with the most utilized ones,
and will thus first try to migrate VM instances to its ok
neighbor c3, which currently has a power consumption of
240W. Taking the first VM instance out of its workload, c1
assesses the condition as expressed in Equation 7, and finds
out that it can perform the migration. Continuing with the
next VM instance, c1 reassesses the condition, but this time it
turns out that c3 cannot accept any more workload without
moving to the overutilized state. Hence, c1 picks the next
neighbor, c2, and repeats the same process. As the current
power consumption of c2 is 200W, c1 is allowed to shift vm2

to it along with the next VM instance, vm3. At this point,
the power consumption of c1 has dropped to 245W, and
its state has become ok. Hence, the partial VM migration
process successfully terminates.

Phase 2: Now, let us examine compute node c5, which
is underutilized as it is currently hosting two VM instances,
and is consuming 170W. According to our load balancing
approach, c5 will try to migrate both VM instances and
switch off. Like already described, c5 first retrieves from its
local cache the current state and power consumption of the
other nodes. Since all nodes are synchronized, at this time
the state of c1 is still overutilized, c3 and c2 are ok, while the
state of neighbor c6 is underutilized. As Fig. 4 shows, there
are no other active nodes. Hence, c5 will migrate its two
VM instances to c2 through c6 and switch off. The power

consumption of c2 will be increased by 20W.
Phase 3: While the activities of phases 1 and 2 take

place, compute node c6, which is also underutilized and
currently hosting three VM instances, will try to shift all
its workload to other non-overloaded nodes in order to
switch off. At this point, c6 knows of two ok nodes: c2
and c3. Starting with the closest one, c6 will eventually
manage to migrate all three VM instances to c2, eventually
raising its power consumption to 225W (remember that,
around the same time, c2 accepts two VM instances from
c1). Now, while migrating its VM instances, c2 also receives
the two VM instances from c5, which in the meantime has
switched off. Since c2 is still in ok state and is able to accept
more workload without becoming overutilized, c6 will also
forward those last two VM instances and will finally shut
down.

Fig. 5 summarizes the condition of the data center before
and after the synchronized, distributed load balancing. As it
can be seen also in the right-side part of Fig. 4, at the end of
this synchronization period, the load balancer managed to
i) effectively remedy the overutilization of compute node c1,
ii) consolidate the workload in three compute nodes, namely
c1, c2, and c3, and iii) switch off two underutilized compute
nodes (c5 and c6) that became idle in the process.

4 EVALUATION

This section presents the outcomes of an experimental
evaluation that we conducted by benchmarking our pro-
posed approach (referred to as HyperCube Load Balancer,
abbreviated to HCLB, hereinafter) against the V-MAN load
balancer [31]. We selected V-MAN particularly because of
the fact that, like our approach, it operates in a decen-
tralized manner based on a peer-to-peer overlay topology,
although it is less structured than the hypercube. The goal
was to assess the similarities and differences between the
two approaches, and identify the potential trade-offs in
choosing one approach over the other. In order to evaluate
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Fig. 6. Number of active compute nodes in the presence of random changes to the overall workload.
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Fig. 7. Overall Energy consumption of the compute nodes in the presence of random changes to the overall workload.

our approach in pragmatic enterprise-scale cloud infras-
tructures, we carried out a series of experiments with the
use of a simulation-based implementation in Java. The ex-
periments aimed at examining the following main aspects:
i) elasticity: adapting to random workload changes; ii) erad-
ication of under/over-utilized nodes: balancing underutilized
and overutilized physical machines; iii) power consumption:
energy costs per hour for the data center.

In our simulator prototype, we specified a data center
with maximum capacity of 1024 compute nodes. The nodes
were organized in a 10-dimensional hypercube overlay in
the case of HCLB. while in the case of V-MAN each node was
initialized with ten neighbors. Without loss of generality,
we considered the compute nodes homogeneous in terms of
both software and hardware1, all with the same CPU power
profile as follows: power consumption when idle was set at
162 W, the minimum threshold below which the compute
node is characterized in our approach as underutilized
was set at 180 W, while the maximum power consumption
threshold was set at 250 W.

In all conducted experiments, we simulated the opera-
tion of the data center over a 48-hour period, with a per-
second sampling rate of the utilization and power con-
sumption of the individual compute nodes. We set the load
balancing period to 60 seconds, which was also the dura-
tion of each simulation round. Each running VM instance
contributed 10 W overhead in the CPU power consumption

1. This is, however, not a hard requirement in our approach, as our
migration algorithms show.

of its compute node host. Besides, as the live migration
creates an extra CPU load (it has been shown though that
the induced overhead is low [11]), we charged an additional
20 W overhead per individual VM migration, and fixed its
duration to 10 seconds. Finally, the cost of switching on/off
an individual compute node was set to an average value of
100 W, and the switch on/off duration was also set to a fixed
amount of 10 seconds.

4.1 Load Balancing on Random Workload Changes
In the first experiment, we assessed the elasticity attained
by the data center thanks to the energy-efficient workload
management of both our approach and V-MAN. In this
context, elasticity amounts to the number of active (i.e.
switched on) compute nodes in relation to the current
workload. For both cases, we initialized the data center
with 1024 idle compute nodes and randomly distributed
16 VM instances among them. Then, we engaged in a
process of increasing/decreasing the workload by randomly
adding/removing 4 VM instances per second, for the whole
48-hour duration of the experiment.

Fig. 6 illustrates the dynamic behavior and elastic adap-
tation of the system resources, in response to the aforemen-
tioned random workload changes. As it can be seen, the
behavior exhibited by the system was similar in both cases:
the number of switched on nodes was dramatically reduced
after the first simulation round, given the small number of
VM instances. From that point on, the number of active
nodes at the end of each simulation round was analogous to
the number of VM instances.
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Fig. 8. Background activity (compute node switch-ons, switch-offs, and VM migrations) in the presence of random changes to the overall workload.

HCLB 

0 

200 

400 

600 

800 

1000 

1200 

0 4 8 12 16 20 24 28 32 36 40 44 48 

Id
le

 c
om

pu
te

 n
od

es
 

Simulation time (hrs) 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

0 4 8 12 16 20 24 28 32 36 40 44 48 

U
nd

er
ut

ili
ze

d 
co

m
pu

te
 n

od
es

 

Simulation time (hrs) 

0 

50 

100 

150 

200 

250 

300 

0 4 8 12 16 20 24 28 32 36 40 44 48 

O
k 

co
m

pu
te

 n
od

es
 

Simulation time (hrs) 

Fig. 9. Changes of state of the active compute nodes in HCLB.

In both HCLB and V-MAN, such elastic reaction to work-
load changes positively affected the energy consumption
of the data center, as shown in Fig. 7. Indeed, following
the workload trend, the data center’s energy consumption
was increased and decreased as the compute nodes were
switched on and off. Hence, the experiment verified that,
thanks to the dynamic and distributed load balancing of
our approach, the data center as a whole is able to readjust
its overall energy consumption by consolidating the VM
instances in as few compute nodes as deemed necessary.
Furthermore, the measured energy efficiency was similar to
that of V-MAN, which was expected to some extent, as in
both approaches the compute nodes are able to exploit their
“global view” of the overall status of the data center upon
load balancing.

Fig. 8 illustrates the background activity of the data
center, in terms of the number of VM migrations, as well
as the number of compute node switch-ons and switch-
offs that were triggered by each load balancer over the
course of the simulated 48-hour operation. As it can be
seen, HCLB and V-MAN carried out similar numbers of

switch-ons and -offs in order to re-adjust their resources and
re-distribute the VM instances, responding to the random
changes in the overall workload. Hence, the number of
shutdowns of the compute nodes in both cases is explained
by the constant effort of the two algorithms to turn off
any idle or underutilized compute nodes, whenever those
appear. Still, the number of VM migrations was higher in the
case of HCLB. As the measurements demonstrated, HCLB
chose to switch on additional compute nodes instead of
overloading the already active ones, whenever an increase
in the workload occurred, whereas V-MAN tended to use as
few compute nodes as possible, without paying attention to
their potential overuse.

The above finding is clearly manifested in Fig. 9 and
Fig. 10, which show the states of the active compute nodes in
HCLB and V-MAN, respectively, throughout the experiment.
In the HCLB case, the vast majority of the active compute
nodes was in ok state, meaning they operated within accept-
able power range, not being underutilized or overutilized.
Due to our hypercube-based load balancing scheme, all
underutilized nodes were easily detected at the end of each
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Fig. 10. Changes of state of the active compute nodes in V-MAN.
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Fig. 11. Energy consumption overheads in the presence of random changes to the overall workload.

simulation round, and were effectively switched off after
migrating their VM instances to the available ok nodes. On
the other side, V-MAN maintained a considerable number
of active compute nodes in the overutilized state, instead
of trying to reduce their workload by migrating some of
their VM instances to other nodes. While such decision
produced some minor benefits in terms of reduced energy
consumption, it is safe to argue that it is also likely to yield
SLA violations in the long term, as the performance of the
overutilized nodes will be gradually deteriorated.

Finally, the key difference in the behavior of the two
approaches is also reflected in the measured energy con-
sumption overheads that were inflicted by the background
activity of the data center (i.e., the VM migrations and the
switching on/off of compute nodes) during the experiment,
as shown in Fig. 11. Nevertheless, compared to the energy
consumption of the active compute nodes, the measure-

ments suggest that those overheads are not significant, al-
though in a real-world setting there may be more variations
in the time needed for a switch off/on, or for a live VM
migration.

4.2 Load Balancing on Increasing Workload
In the second experiment, we performed a stress test on
the data center. Specifically, we initialized the data center
with 1024 compute nodes in idle state, and then started just
adding workload with a rate of 2 VM instances per minute,
for the entire 48-hour period. The goal was to measure the
energy consumption of the data center in the two cases
of using HCLB and V-MAN, as well as to observe the
utilization of the data center’s compute nodes in response
to the progressively increasing workload.

The left-side part of Fig. 12 illustrates the energy con-
sumption measurements. Apparently there was no signifi-
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Fig. 12. Comparison of energy consumption while balancing a continuously increasing (left-side) or decreasing (right-side) workload.
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Fig. 13. Changes in the utilization and state of compute nodes in order to balance a continuously increasing workload.
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Fig. 14. Changes in the utilization and state of compute nodes in order to balance a continuously decreasing workload.

cant difference between HCLB and V-MAN, while the over-
all consumption was at all times analogous to the current
workload. At the end of the first hour of the experiment,
the data center had employed 15 active compute nodes
out of the 1024 available compute nodes, switching off
the remaining ones in order to reduce its overall energy
consumption.

Following the same behavioral pattern, as the workload
increased, more compute nodes where turned on and uti-
lized to provision the added VM instances. At the end of
the experiment, more than half of the available compute
nodes had effectively become active, while the data center
still managed to reserve 290 switched off compute nodes.
Still, the two approaches managed their compute nodes
in a different manner. As it can be seen in Fig. 13, HCLB
exclusively used compute nodes in the ok state, with the

load balancing algorithms making sure no compute node
was overloaded, even if that led to switching on additional
nodes. On the other hand, the V-MAN load balancer packed
as many VM instances as possible to the available compute
nodes, eventually managing to switch off more nodes than
HCLB, though at the expense of bringing the active ones into
the overutilized state. Again, as it was evidenced in the pre-
vious experiment, the energy benefits of V-MAN compared
to HCLB were limited, while the risk of violating SLAs due
to reduced performance of the overutilized compute nodes
was naturally increased.

4.3 Load Balancing on Decreasing Workload

The third and final experiment was a reverse take of the
previous stress test, where we assessed the behaviour of
the data center in response to a progressively decreasing
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workload. The goal was to evaluate the ability of the HCLB
and V-MAN load balancing mechanisms to quickly switch
off any unnecessary resources in order to reduce the energy
footprint of the data center. More specifically, we initialized
the data center with 1024 overutilized compute nodes, and
then started reducing the number of VM instances at a rate
of 200 per hour.

As Fig. 12 (the right-side part) and Fig. 14 show, both
approaches exhibited an almost identical behavior in re-
ducing the energy consumption, as in this case both HCLB
and V-MAN started switching off the unnecessary compute
nodes. Still, it is worth noting that, the two approaches again
managed the active compute nodes in a different manner. In
addition to switching off any underutilized or idle compute
nodes, and whenever there was a chance to do so, HCLB
shifted part of the workload from overutilized nodes to the
ones operating at the ok state. This way, HCLB managed
to eliminate all overutilized compute nodes from the data
center much sooner than V-MAN.

Throughout the conducted experiments, it became clear
that, although the energy footprint generated by the two
approaches is comparable, V-MAN tends to overutilize its
nodes. Over time, such behavior will most likely lead to
SLA violations. In contrast, HCLB systematically avoids
pushing its compute nodes into the overutilized state, re-
fraining so from such load balancing-induced violations.
Moreover, HCLB offers a comprehensive set of protocols
that allow for VM instances to gracefully join and depart
the cloud infrastructure. As such, we consider HCLB as a
more appropriate choice for enterprise-grade data centers
where the cloud service provider reputation always remains
at stake.

5 CONCLUSION

We presented a fully decentralized approach for manag-
ing the workload of large, enterprise cloud data centers
in an energy-efficient manner. Our approach comprises a
hypercube overlay for the organization of the data center’s
compute nodes, and a set of distributed load balancing
algorithms, which rely on live VM migration to shift work-
load between nodes, with the dual goal to i) minimize the
active resources of the data center, and thereby its energy
consumption, and ii) avoid overloading of compute nodes.

We conducted a series of simulation-based experiments
in order to evaluate our proposed approach. The results
suggest that our decentralized load balancer is scalable, as
it operates in a similar way regardless of the data center
size, and energy-efficient. Moreover, it enables automated
elasticity as the data center’s compute nodes are switched
on and off on demand, in response to the changes in the data
center’s overall workload. Our experimental results also
showed that the cummulative cost of live VM migrations
along with that of switching on and off compute nodes is
insignificant compared to the energy savings attained by
our approach.

In future work, we plan to implement and integrate our
decentralized wokload manager in an open-source cloud
operating system, such as e.g., OpenStack [37] or Open-
Nebula [42]. Such implementation will also allows us to

experiment with real-world use cases, although such ex-
perimentation is likely to be carried out at a smaller scale
than our simulations, due to lack of access to large-scale
physical resources. Furthermore, we would like to expand
our model in order to consider the power consumptions
inflicted by other resources of the data center, such as the
compute nodes disk, RAM memory, and network, even
though those are usually overruled by the CPU power
consumption. Along the same line, we plan to investigate
ways to introduce additional parameters into our load-
balancing algorithms, so as accommodate less homogeneous
settings where, on the one hand, the compute nodes offer
different hardware and/or software resources, while the
VM instances pose different hardware requirements too.
Communication-aware VM scheduling approaches such as
the one proposed by Guan et al. [43] could also be effectively
combined with our load-balancing scheme to allow for
a more fine-grained selection of the VM instances to be
migrated. Finally, we are interested in incorporating appro-
priate VM and VM migration power–metering techniques
and mechanisms [44] [45] that will allow us to assess the
efficacy of our approach on the basis of more accurate and
pragmatic power metrics.
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