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Managing Statistical Behavior of Large Data
Sets in Shared-Nothing Architectures

Isidore Rigoutsos, Member, IEEE, and Alex Delis, Member, IEEE

Abstract—Increasingly larger data sets are being stored in networked architectures. Many of the available data structures are not
easily amenable to parallel realizations. Hashing schemes show promise in that respect for the simple reason that the underlying
data structure can be decomposed and spread among the set of cooperating nodes with minimal communication and maintenance
requirements. In all cases, storage utilization and load balancing are issues that need to be addressed. One can identify two basic
approaches to tackle the problem. One way is to address it as part of the design of the data structure that is used to store and
retrieve the data. The other is to maintain the data structure intact but address the problem separately. The method that we present
here falls in the latter category and is applicable whenever a hash table is the preferred data structure. Intrinsically attached to the
used hash table is a hashing function that allows one to partition a possibly unbounded set of data items into a finite set of groups;
the hashing function provides the partitioning by assigning each data item to one of the groups. In general, the hashing function
cannot guarantee that the various groups will have the same cardinality, on average, for all possible data item distributions. In this
paper, we propose a two-stage methodology that uses the knowledge of the hashing function to reorganize the group assignments
so that the resulting groups have similar expected cardinalities. The method is generally applicable and independent of the used
hashing function. We show the power of the methodology using both synthetic and real-world databases. The derived quasi-uniform
storage occupancy and associated load-balancing gains are significant.

Index Terms—Hashing, large databases, statistical behavior, uniform occupancy, load balancing, shared-nothing architectures.
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1 INTRODUCTION

N recent years, there has been a tendency to store and
manipulate increasingly larger data sets on networked

architectures. We use the term networked architectures to
refer to both loosely coupled collections of processors and
networks of workstations; the following discussion will
assume that we work on shared-nothing architectures.

It has been noted that although the vast majority of the
popular data structures are very effective in uniprocessor
environments, their decomposition and maintenance in
parallel settings is not a straightforward exercise [26], [11],
[30], [22]. In this respect, hashing schemes have shown
promise owing to the fact that the underlying hash table
structure can be shared among several cooperating nodes
while at the same time imposing minimal communication
and maintenance burden [6]. Whenever a data structure is
shared among many nodes and independent of whether
they are tightly or loosely coupled, there is always the con-
cern of efficient storage utilization and of course of load
balancing during storage and subsequent data manipula-
tion (i.e., insertion, deletion, update) operations.

There are two schools of thought that tackle the problem
from different angles, using different premises. In the first
approach, the above issues are addressed at the level of the

data structure design: The data structure is designed so that
the problems relating to efficient data decomposition and
storage occur infrequently. The second approach calls for
not interfering with the original data structure but rather
treating the problem in an orthogonal manner. The meth-
odology that we are proposing here is pertinent to this sec-
ond category. In particular, we assume that the core data
structure is a hash table and is used to access the member
items of the database.

Intrinsically attached to each hash table is a hashing
function h that in essence allows one to partition a possibly
unbounded set ' of data items {di/i = 1, …, D}, into a finite
set * = {gi/i = 1, …, G} of groups: The function h provides
the partitioning by assigning each data item to one of the
groups. Moreover, both the domain and the range of a
hashing function can be either continuous or discrete.
Whenever a hashing function h assumes values in a subset
of R

k, k ∈ N, then typically a form of quantization is im-
posed on those values and a subsequent straightforward
mapping to an array stride effected, thus allowing for ar-
ray-based implementations. For the purposes of our discus-
sion, and unless otherwise stated, we will assume that such
a quantization is available.

Although conventional hashing techniques perform suf-
ficiently well with small size databases [36], [46], it has be-
come increasingly evident that one must be cautious when
using such techniques with very large data sets [31], [39].
High volume data sets make apparent the statistical prop-
erties of the employed hashing function. Such properties
are manifested by the patterns of utilization demonstrated
by the hash table buckets. Nonuniform occupancy of (dis-
tributed) buckets leads to nonuniform storage requirements,
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ineffective load balancing, and increased query response
time. This adversely affects the benefits that one seeks to
gain through the use of hashing. The stated nonuniform
occupancy of the hash table’s buckets has frequently been
observed in the past and with databases from different ap-
plication domains: databases of biological sequences [39]
databases of small drug molecules [40], databases of 2 − D
contours [27], and elsewhere [38], [45]. In most of these
cases, the employed hash table has been multidimensional.
We conjecture that this nonuniformity is not specific to a
particular data type, but instead is endemic to all access
methods that are built around a hashing scheme.

The nonuniform distribution over the space of invariants
results in different lengths for the (distributed) hash table
buckets. Since the length of the longest such bucket impacts on
the time needed to process the data during a query, nonuni-
form distribution will adversely affect performance. On the
other hand, a uniform distribution not only will reduce execu-
tion time but can also result in a much more efficient storage of
the hash table structure. Additionally, in a networked imple-
mentation of the method, an almost constant occupancy of all
the hash table buckets results in an improved load balancing
among the processors/workstations [44], [25], [14]. To this
point, and to the best of our knowledge, there exists very little
published work [9], [37] on determining and exploiting the
distributions that one can anticipate.

We can essentially identify three different approaches in
the existing bibliography for addressing the general prob-
lem of nonuniform utilization of hashing buckets. First, one
can increase the dimensionality of the hashing function [5],
[31]. Second, use of database-specific heuristics can im-
prove the occupancy pattern of the hash table buckets [24],
[8]. Alternatively, Gray-encoding [12], [21] has been used to
treat multidimensional arrays as linear spaces that are trav-
ersed accordingly; but as such, this approach cannot guar-
antee optimal performance independently of the access
patterns. Finally, a third alternative is the one that is at the
center of our work here: We begin with the knowledge of
the actual hashing function that the retrieval system uses
and derive expressions for the distribution of bucket occu-
pancy over the space of possible indices. We then exploit
the derived distribution and show how to effectively im-
prove the performance of the hashing approach, using a
two-stage process.

It should be stressed at this point that the method is gen-
eral and, in principle, is applicable every time that a hash-
ing function is used by a retrieval system independent of
whether this function is known to the user or not. Indeed,
in those cases that the actual hashing function is not
known, one can still estimate it using numerical methods
and an appropriate mix of database objects to be stored:
Once this estimate is available the second stage of our
scheme is directly applicable.

The scheme we propose exploits the knowledge of the
hashing function h to reorganize the group assignments in
such a manner so that the various gi, i = 1, …, G have the
same average occupancy. We will show the effectiveness of
the methodology on both synthetic and real-world databases,
and for several hashing functions. The resulting gains in
storage utilization and load balancing are significant.

We will describe and discuss our scheme using several
hashing functions that have been used extensively with
spatial databases of polygonal two-dimensional contours.
For the experiments we have used both synthetic work-
loads, as well as real-world data (database of fingerprints).
The obtained experimental results demonstrate that the
proposed framework leads to significant benefits when
large databases need to be created and maintained.

The paper is organized as follows: Section 2 introduces
the data set that will be used throughout this presentation
and describes the first stage of our framework. Section 3
discusses the impact of the probability density function of
the hash keys on performance, whereas Section 4 describes
the second stage of our framework. Several additional
hashing functions and Zipf-distributed data properties are
introduced in Section 5. Section 6 presents results derived
from synthetic data sets and a real-world (fingerprint) da-
tabase. Related work is discussed in Section 7, while con-
clusions are found in Section 8.

2 BEGINNING WITH A HASHING FUNCTION

Let us consider a data set ' comprising D data items di, i =
1, …, D. Each of the data items is represented by a set of
properties and their respective values. These values can be
categorical or numerical. Since categorical values can easily
be remapped to numerical ones, we will concentrate, with-
out loss of generality, on numerical data only. For the pur-
poses of our discussion, we assume a retrieval system that
uses a hash table as its core data structure.

Associated with the hash table is a hashing function h;
the function operates on a subset of a data item’s properties
and generates a hash key that is used to identify and access
a hash bucket. The domain of h is either a finite or an infi-
nite set and is typically multidimensional. In the general
case, the range of h is a subset of Rk, where k is an integer,
i.e., when applied to a data item di, the function h will gen-
erate one k-dimensional representation (a k-tuple) for di; the
k-tuple remains invariant or quasi-invariant under a set of
“transformations” that di can undergo. Often, the desire for
resilience to input noise and fault tolerance calls for h to
generate a redundant representation of di and, thus, more
than one k-tuples.

The k-tuples are points in a k-dimensional space of repre-
sentations. There is at least one point representing each data
item and, typically, hashing functions are designed so that
“similar” data items have corresponding points that are
“close” to each other in the representation space. In essence,
a well-behaving hashing function is one that will map data
items that differ a little to representations that also do not
differ much. Appropriate metrics, such as Euclidean, Ma-
halanobis, etc., have been devised to evaluate data-item
similarity and quantify it through computation of the dis-
tance between the point-representations of the items. It
should be mentioned that this is a short, simplified de-
scription of the general problem and that a large body of
relevant literature exists. The interested reader can refer to
[18], [10] for more information.

The raw k-tuples that the hashing function produces
cannot be easily used; instead, a form of quantization is
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typically applied. The ith component of all k-tuples that the
hashing function will generate on the data items di assumes
a range of values: Linear or nonlinear quantization of this
interval into m steps allows the remapping of the ith com-
ponent of the tuple to an integer in the interval [0, m). Op-
erating similarly on each of the tuple’s components (possi-
bly using different quantization schemes for each compo-
nent) permits one to derive a k-tuple of integer indices that
identifies a hash bucket: In this manner, we can associate
data item representations with hash table locations.

One issue that is relevant to this discussion is that of the
distributions of the various data item properties in '. Each
of the properties is assumed to take values from a (possibly
unbounded) domain following a certain distribution. For
example, if the data items are community member records,
the ith property could be a person’s height. It is known that
people’s height is a Gaussianly distributed variable; conse-
quently, the values assumed by the ith property in this case
will follow a Gaussian distribution with a certain mean
value (e.g., 5 feet 6 inches) and a certain standard deviation
(e.g., 6 inches). Let us denote by f the probability density
function (pdf for short) that describes the distribution of
values that the ith property exhibits. We will describe later
how this information is used.

In what follows, we will assume that the retrieval system
under consideration exposes the knowledge of the hashing
function h it uses to associate data items with hash buckets.
It is also worth noting that when an expression for h is not
directly available, it can still be approximated using nu-
merical methods.1 In order to facilitate the understanding of
the proposed method, we will define a specific hashing
function which we will use to demonstrate the operations
needed to implement our scheme. We next describe in more
detail the selected hashing function and provide the ration-
ale for this particular choice.

2.1 A Hashing Function on Spatial Data
Let us consider the simple world of two-dimensional po-
lygonal contours, such as the various shapes found in a
Chinese tangram set. For simplicity, we treat each such
shape as a collection of the respective contour’s corner points:
Every point has an associated pair of coordinates (x, y), and

1. We will return to this issue later in the discussion.

the data item is simply a collection of (x, y) pairs. In Fig. 1, we
show such a data item M whose contour consists of n = 5
points with position vectors q1, q2, q3, q4, and q5, respectively.

Consider now any triplet of corner points, {qi/i = 1, 2, 3}
from the contour of a given shape, e.g., points “4,” “1,” and
“3.” Observe that the triangle formed by these points will
remain unchanged if M is rotated or translated (or both)
with respect to its original placement. This means that we
can actually express the distance of any point q from the
midpoint of “4” and “1” as a linear combination of the unit
vectors (q4 − q1)/iq4 − q1i and ((q4 − q1)

'/iq4 − q1i).
2 This set

of operations is captured more succinctly by the expression:
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and the set of points “4” and “1” is known as the basis. In
the above equation and for the above selection of points, q
refers to q3.

It is easy to verify that, because of the rigidity property
of the formed triangle, the produced tuples (u, v) will not
change (i.e., will remain invariant) under rotation and
translation transformations of the model M, i.e., if the set of
points in M is rotated and translated on the plane (Fig. 2),
and the above-described procedure is repeated for the new
positions of the three selected points, the (u, v) that will
now be generated will be the same as before.

If we fix the first two points of the triplet, i.e., “4” and
“1,” then as the third point of the triplet assumes the iden-
tity of any of the remaining n − 2 points of M, (1) will gen-
erate one (u, v) pair for each formed triangle. We can repeat
the above process for a different selection of the first two
points of the triplet (e.g., “2” and “4,” instead of “4” and
“1”). For each one of the n(n − 1) choices for the first pair
there will be n − 2 choice for the third point of the triplet
giving rise to a total of n(n − 1)(n − 2) pairs (u, v). The set of
these pairs can be used to represent the shape under con-
sideration in a redundant manner.

This particular hashing function, coupled with a redundant
representation and used on a database of two-dimensional
contours formed the origin of an approach to a model-
based object recognition computer system in the mid 1980s.

2. The ' symbol indicates the vector that is perpendicular to its argu-
ment, i.e., q' ⋅ q = 0. And the operator i  i returns the norm of its operand.

          

Fig. 1. A model M consisting of five points.
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The approach is known as geometric hashing and since then
it has found applications in numerous domains [16], [33],
[40]. The one distinguishing characteristic of geometric
hashing is that it can quickly generate hypotheses about the
identity of the models appearing in a query scene even
when objects are partially visible. The method achieves that
through a two-phase approach:

1)� storage and
2)� look-up.

During the storage phase, the hash bucket that can be de-
rived from each quantized pair (u, v) is accessed and an
entry containing a description of the model and the basis
pair under consideration is made in that bucket. The stor-
age phase takes place off-line and entries are made for all
identifiable subsets of point features and for all the models.
During the look-up phase, the system is presented with a
query that may contain one or more models. Point features
are identified in the scene and subsets of those features are
used to access the hash table in a manner similar to that of
the storage phase. However, instead of making an entry
into the accessed bucket, all entries contained therein are
retrieved and used to hypothesize the identity and posi-
tion/orientation of one of the recognizable models in the
query scene. A voting step identifies the most likely candi-
date whose presence in the scene is in turn verified. The
reason for the redundant representation of each model by
means of multiple entries in the hash table is related to the
requirement that a model be recognized even in the pres-
ence of occlusion. If a model is partially visible, it is the
features that can be identified that will generate the indices
with which one could access the hash table. For more in-
formation on geometric hashing and reviews of the field,
the reader can refer to [27].

It is easy to verify that solving (1) for u and v provides us
with solutions that are real numbers and each can assume
any value in the interval (−∞, +∞). But, the finite size of the
used array forces us to restrict our attention to only a finite-
size region of the entire R2 domain. In implementations of
hash-based systems, the employed hash tables are typically
made to occupy that part of the region of R2 which accounts
for over 90 percent of the total number of entries. Quanti-
zation of the u and v values that correspond to the selected
region produces a natural mapping to the set of integers: It
is these integer values that are used as indices that identify
and access hash buckets.

The hashing function that (1) implements is ideal to store
and retrieve the objects of our example database of two-
dimensional tangram shapes when only rigid transforma-
tions (i.e., rotation and translation) are allowed. One can
envision an extension to the task of similarity-based re-
trieval that also allows for the scaling of the tangram
shapes. In this case, the shape of Fig. 1 and a scaled-down
version of it ought to be considered identical. The above
hashing function can easily be modified to accommodate
this extension and we will return to this in Section 5. Or,
one could also allow for “shear” transformations of the tan-
gram shapes; this is equivalent to saying that the tangram
shape of Fig. 1 is identical to the result obtained when a
general linear transformation is applied to it. A different
modification of the above hashing function allows us to
generate retrieval systems that would tackle the problem in
this case. As can be seen, the hashing function we will be
using as an example with the needed modifications can be
used in a gamut of different tasks and will provide a plat-
form for explaining our method.

As stated before, it is necessary to make some assump-
tions regarding the distribution of values for each of the
properties of a data item di. Alternatively, one can derive an
approximation of these distributions through a histogram-
ing of the observed values. For simplicity we will begin
with an assumed model for the distribution of values and
show in the process how one can use a numerical technique
to derive approximations when a model is not available.
For the example of the tangram shapes, the observable
properties of each data item (i.e., of each shape) is the x and
y coordinates of the corner points. Typical choices are Gaus-
sian and uniformly distributed values for the x and y; in the
sequel, we will examine various combinations of hashing
functions and corner point distributions and will demon-
strate different ways to tackle the variations of the problem.

3 THE IMPACT OF THE HASH KEY DENSITY
FUNCTION

In this section, we will discuss the impact of the hashing
function on the hash buckets access patterns of the table
that implements it.

Let us use the symbol f to denote the probability density
function of the corner points of our tangram models. If the
invariant tuples (u, v) and the associated resulting hash
keys are produced using (1), it is known from probability

Fig. 2. Rotation and translation of the shape.
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theory that the expected joint–pdf fUV(u, v) for u, and v is
given by the expression:

f u v

f x u v y u v f x y f x y J dx dy dx dy

UV ,

, , , , , , ( )

0 5
0 5 0 52 7 2 7 2 7
=

−
1 1 2 2

1
1 1 2 24 2

R

where f(⋅, ⋅) is the pdf of the properties under consideration
(in this case the corner point coordinates) and J is the Jaco-
bian of the mapping carried out by the (1).

Let us next assume that the points comprising the tan-
gram shapes of ' are drawn from a two-dimensional
Gaussian distribution

N 0 0
0, σ

σ
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that is centered at (0, 0) and has the same standard devia-
tion σ in both the x and y. The selection of a Gaussian proc-
ess for modeling the distribution of the corner points is by
no means limiting [41], [34]: In fact, in many application
domains (e.g., pick-and-place systems, airplane identifica-
tion systems, personal identification systems, etc.), the
Gaussian assumption closely captures the observed distri-
bution of model feature points. Carrying out the substitu-
tions in the previous expressions and computing the four-
integral gives us that the expected joint pdf for u and v is:

f u v eUV

u v
, .0 5 4 9 4 9

= ⋅
− +1

3 2

32 2 2

πσ
σ

(3)

The range of values for each of the u, v is the interval
[−∞, ∞]. As mentioned previously, instead of the entire R × R,
only a small region (subset of R × R) is considered and,
through quantization, mapped to the hash table: If a produced
invariant falls outside the region considered, no entry is made
into the hash table. How one determines the size of the region
to map to the hash table is a problem specific task and directly
related to the hashing function that is used. Typically, a region
[u1, u2] × [v1, v2] is selected in such a way that:

f u v du dvUVv

v

u

u
, . ,0 5 ≥ 0 9

1

2

1

2
(4)

i.e., one makes sure that a large part of the entire distribu-
tion’s support is included. In this manner, one can guaran-
tee that the same percentage of the total number of possible
hash entries will actually be made in the hash table. It is
easy to see that hash functions that give rise to distributions
with slow decaying characteristics will necessitate that one
map larger regions of the space of invariants to the hash
table: Any regular tessellation of the corresponding region
will produce a hash table with a few buckets containing a
large number of entries, whereas the majority of the buckets
will contain a handful of entries, or will be empty.

Returning again to our specific example, we can see that
the derived expression for the joint pdf implies that there is
a strong preference for generating invariant tuples (u, v)
with small values for u, and v. In Fig. 3a, we depict fUV(u, v)
as a mesh (the center of the mesh has been shifted to (50, 50, 0)
for visualization purposes) for the case where the tangrams’
corner points are generated by a Gaussian process and the
hashing function used is that of (1).

Fig. 3b shows the contours of the pdf. The height at each
mesh point directly expresses the degree of preference for
the corresponding value of (u, v). We can also think in terms
of the number of entries that will be entered during storage
in the hash bucket corresponding to a choice of (u, v): The
height at a given mesh point is directly proportional to the
number of entries that will exist in the respective bucket.
Analogous conclusions can be drawn for the impact of the
hashing function on the access patterns of the hash buckets:
Those buckets that correspond to mesh points with large
height values will be accessed more frequently than the
remaining buckets. We conjecture that this observation of
an existing bias is endemic to hashing-based retrieval sys-
tems [24]. And as we have already mentioned, such biases
will translate into:

       

(a) (b)

Fig. 3. Mesh (a) and contours (b) for the Probability Density Function of fUV(u, v) of (3). For visualization purposes, the center has been shifted
to (50, 50, 0).
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1)� reduced discrimination power as a result of the prefer-
ence for certain locations of the hash table over others;

2)�poor load sharing characteristics [47], [48];
3)�uneven I/O patterns; and,
4)�poor overall usage of the hash table data structure.

What if the corner points of our tangrams followed a
distribution other than the Gaussian that we assumed so
far? For example, these points could be uniformly distrib-
uted over the unit disc instead, i.e., f(x, y) would be 1 eve-
rywhere in the unit disc and 0 anywhere else on R2. In prin-
ciple, substitution of this new expression for f in (2) would
suffice to derive the expected joint pdf for the values of u
and v. Unfortunately, and to the best of our knowledge, an
analytical derivation of the expression for fUV in this particular
case has not yet been possible. But a different approach can be
taken and used whenever derivation of a closed-form expres-
sion via analytical methods proves intractable.

In such cases, one resorts to numerical approaches for
obtaining approximations fUV

∗  to the actual expression for

fUV. The idea here is that one can guess the functional form

of fUV, express it in a parametric manner, and compute the
best values of the parameters leading to a best fit to the
available data. In essence, this approach bypasses the
evaluation of the integral mentioned above and attempts to
directly estimate its value directly from the observable data.
Here, by “estimating its value” we mean that we derive a
functional expression in terms of the variables u and v; this

expression is an approximation of fUV but suffices for the
purposes of our methodology.

The approximation process begins by accessing the
available numerical data that represent a discrete version of
the function to be approximated; these data are typically
the product of a Monte-Carlo simulation process. The ap-
proximate process proceeds with the guessing of the func-
tional form of fUV which is expected to best approximate the
data. There is no available “recipe” that prescribes a specific
way to proceed with this guessing. Typically, producing
combinations by selecting functions from a pool containing
standard functions (e.g., log, exp, x, x2, Gaussian, Cauchy,
etc.) suffices. The objective is to determine a suitable func-
tional expression that can be used to describe the available
data. The method by which one can arrive at such a deter-
mination is data dependent and based on the empirical
evaluation of the data. Occasionally, a number of different
functional forms with varying degrees of quality of fit may
need to be tried before a best such form can be selected.

Note that this methodology can also be used to generate
an estimate of the distribution of values of the various
properties of the data items di under consideration: First, a
histogram of those values is produced and, then, a numeri-
cal approximation of it derived using the process we just
outlined.

Once a functional form has been selected, it is typically
of parametric form. Frequently, the expression for fUV

∗  in-
corporates the unknown parameters in a nonlinear manner:
for example, the expression f(u, v) = (a(u − b)2 + c(v − d)2)3 is
nonlinear in all of the parameters a, b, c, and d. In situations
like this, the values of the parameters need to be computed.

This can be achieved by numerical methods such as the
simplex method [35].

Since the evaluation of the above integral proved intrac-
table when the corner points were uniformly distributed
over the unit disc, we applied the outlined recipe in order
to derive a numerical approximation of it. It was deter-

mined that the function f u v au bvUV
∗ = +,0 5 4 91 2 2 2

 provided

the best approximation and the simplex method helped us
determine the values of a, b, and c as

f u v
u v

UV
∗ =

+ +�
�

�
�

,
. . .

.0 5
4 9

1

4 7 3 9 36 72 2 2 2       (5)

We should stress that approximating the probability density
function instead of analytically deriving it is of no conse-
quence to the methodology we are suggesting: Indeed, in

the following analysis fUV would merely need to be re-

placed by fUV
∗  (cf. (5)).

4 THE REST OF THE SOLUTION FRAMEWORK

The second and last part of the suggested framework re-

quires that the joint probability density function fUV, or an

approximation fUV
∗  of it be available. As we saw in the pre-

vious section, fUV can either be computed from (2) or ap-
proximated via numerical methods. To simplify the nota-

tion, and without loss of generality, we will overload fUV

and use it to denote both fUV and fUV
∗ .

Once the pdf function f(u, v) is available, the framework
that we are suggesting calls for the computation of a trans-
formation that maps the original distribution to the uniform
distribution over a closed region (in particular, a rectangle).
This new mapping can be seen as a rehashing function:

g : R2 → R2

that is used to evenly distribute the hash bucket entries
over a rectangular hash table. Notice that the domain of the
function g is precisely the range of function h, i.e., the set of
possible invariant tuples (u, v).

The synthesis (g o h) is a new hashing function that oper-
ates on the data items di and generates invariant tuples (u′, v′)
such that the equally spaced hash buckets in this re-mapped
space will have a uniform expected population.

For the specific hashing function h that we have been
using as an example, let us assume that we have a set of
two continuous, stochastic variables U and V. These are the
stochastic variables that will assume the values (u, v) pro-
duced by the hashing function h. The stochastic-variable-
pair members are assumed to be identically and independ-
ently distributed with a joint probability density function
fUV. We define two functions New_u( ) and New_v( ) on
these variables as:

New_u(U, V) : R2 → R

and

New_v(U, V) : R2 → R.
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These two functions are assumed to have continuous par-
tial derivatives of the first order in all of R

2 and define a
mapping T : (U, V) ∈ R

2 → R
2 ] (New_U, New_V). Then,

the joint pdf fNew_U,New_V of the stochastic variables New_U =
New_u( ) and New_V = New_v( ) is given by:

f New u New v

f U New u New v V New u New v

J dU dV

New U New V

UV

_ , _ _ , _

_ , _ , _ , _

, ( )

0 5
0 5 0 52 7

=

−
R

2

1
6

where J is the Jacobian of the transformation T; given the
above assumptions, the Jacobian is defined all over R2 and
is ≠ 0. The objective of the framework’s second stage is to
compute the transformation (mapping) T so that the re-
sulting joint pdf fNew_U,New_V is uniform over a closed region.
These mappings are typically case-dependent. Occasionally,
more than one mappings may produce the desired prop-
erty. As a rule of thumb, the following mapping can fre-
quently be computed easily and has the desired properties:3

T u v f u v du dv f u v du dv
vu

0 0
00

, , , , .2 7 0 5 0 5= ��
�
�−∞−∞

∞

−∞

∞

−∞
  (7)

As already stated, other mappings will occasionally be
possible. We will demonstrate this statement in the context
of the hashing function of (1). In order to simplify the com-
putation of the mapping that is suggested above, we first
remap the Cartesian coordinates to polar ones. The coordi-
nates in the Cartesian domain are nothing but the invari-
ants u and v that are produced by the original hashing
function. If ρ and θ denote the polar coordinates, then by

definition we have that ρ = +u v2 2  and θ = arctan(u, v).
Rewriting (3) in polar coordinates, we have that:

f eρ θ
πσ

ρ σ
, .1 6 4 9

= ⋅
−1

3 2

32 2

(8)

Notice that although the range of values for u and v was the
interval [−∞, ∞], for the polar coordinates ρ and θ the re-
spective ranges are [0, ∞) and [0, 2π), and this needs to be
taken into account when deriving the remapping T. Notice
that:

f d d eρ θ θ ρ ρ
π ρ σρ

,1 6 4 9
0

2 3

0
1 0

2 2
0 = −

�
��

�
��

−
         (9)

and that:

f d dρ θ θ ρ ρ θ
θ

,1 6 =
∞

000

0
, (10)

we can see that the remapping T in this case will be equal to:

T u v h u v h u v

e
v uu v

, , , ,

,
,

, ( )

0 5 0 5 0 52 7
0 52 74 9 4 9

=

= −
+�

��
�
��

− +

1 2

3
1

2
2 11

2 2 2σ π
π

atan

where

1)� we have used the function atan2 instead of arctan be-
cause the former returns the phase in the interval [−π, π],
and

3. This operation is in essence histogram equalization [34], and has been
used in many contexts [1].

2)�we have divided the atan2 component by 2π so that
both components assume values between 0 and 1,
and the remapped invariants will be uniformly dis-
tributed over the region [0, 1] × [0, 1] of the space of
invariants.

We conclude this section by noting that it suffices to use as
a hashing function the synthesis g o h, where the functions g
and h have been derived above. Indeed, given the proper-
ties of the component functions g and h, it is clear that the
synthesis g o h is a function that will map a set of feature
points to an invariant tuple whose distribution will exhibit
the above listed desired properties.

The above procedure can of course be repeated in the
case of corner points that are assumed to be uniformly dis-
tributed over the unit disc: In this case, only an approxima-
tion for fUV is available. In this case, the remapping T will
be equal to:

T u v h u v h u v

au bv

c

au bv c

au bv c

v u

, , , ,

,

, . ( )

0 5 0 5 0 52 7

0 5 1 6 0 5 1 6
0 5 1 6

0 52 7 0 58

=

=
+�

���
�
���

+
+

+ +�
��

�
��

�

�

����
+

1 2

2 2

2

2 2 2

2 2 2 4

2 2

2 2 12

π
π

π π

atan

atan

5 OTHER HASHING FUNCTIONS AND PROPERTY
DISTRIBUTIONS

The outline of the two steps of the suggested framework
uses the hashing function h of (1). As already mentioned,
this hashing function is appropriate whenever the tangram
shapes of our database can undergo rigid transformations,
i.e., rotations and translations. We will now extend the
problem of matching the tangram shapes when the more
general similarity and affine transformations are possible.
In this manner, we will demonstrate the generality of the
framework through application to other hashing functions.
We will also consider Zipf-distributed properties of data
items and derive the respective formulas.

When the tangram shapes can undergo scaling trans-
formations in addition to rotation and translation, the
hashing function of (1) needs to be modified slightly. The
new equation is

q
q q

q q q q−
+�

��
�
�� = − + −

⊥4 1
4 1 4 12 u v2 7 2 7 .       (13)

In this expression, we used the notation associated with Fig. 1.
Equation (13) expresses the distance between the midpoint
of “4” and “1” and any of the remaining points of M as lin-
ear combination of the vectors (q4 − q1) and ((q4 − q1)

' . It is
easy to verify that solving this equation for u and v pro-
vides two numbers that remain invariant under similarity
transformations of the tangram shape under consideration.

Finally, the tangram shapes may be allowed to undergo an
affine transformation, the most general transformation on the
plane that also incorporates “shear” in addition to rotation,
translation and scaling. The relevant expression in this case
is different from the ones we have already presented. The
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most important difference has to do with the fact that three
(not two) points are needed now to form a basis:

q
q q q

q q q q−
+ +�

��
�
�� = − + −4 2 1

4 1 2 13 u v2 7 2 7.      (14)

Notice also that it is the distance from the barycenter of the
triangle formed by the three points participating in the
formation of the basis that is now expressed as a linear
combination of two distinct vectors.

Of course, and as already stated, there is also the issue of
the distribution of properties (in this case corner-point po-
sitions) of our data items, a consideration that is orthogonal
to the choice of the hashing function.

We have repeated the above outlined steps of the
framework for several combinations of hashing functions
and property distributions. Additionally, we have exam-
ined the case where the properties follow a Zipf law. We
treat the Zipf-law distributed properties as a special case
and discuss it separately below; the remaining two cases
are shown in Table 1. For each of the two combinations
shown there, we list the expression for the joint pdf of the
invariants u and v together with the function T = (h1(u, v),
h2(u, v)) that will remap (u, v) to (u′, v′) so that the latter are
uniformly distributed over a closed region of the space of
invariants.

Property distributions frequently encountered in database
applications follow Zipf’s law, Zk [49], [20]. To further validate
our methodology, we generated synthetic tangram shapes
whose corner-points followed a two-dimensional Zipf distri-
bution with constant k; the tangram shapes were allowed to
undergo a similarity transformation. We considered three dis-
tinct cases of the Zipf distribution, those corresponding to k =
0.1, k = 0.2, and k = 0.5, and repeated our methodology.

Derivation of an expression for the joint pdf by evalua-
tion of the integral in (2) proved impossible. Consequently,
a numerical approach was followed. We discovered that a
good functional form to approximate all three distinct joint
pdfs was given by:

f u v
A

B u C v D
,0 5

4 9
=

+ +2 2 2 (15)

with the values of A, B, C, and D being dependent on the
value of k used. In fact, using the simplex method we de-
termined the values of the unknown constants in each of
the three cases k = 0.1, k = 0.2, and k = 0.5.

Given this last expression and following the outlined
methodology, it is possible to verify that the appropriate
remapping equations are:

T =

= ⋅ +
+

�
��

�
�� ⋅ +

+

�
��

�
��

�
��

�
��

h u v h u v

B

D Bu
u

C

D Cv
v

1 2

2 2

1
2 1

1
2 1 16

, , ,

, . ( )

0 5 0 52 7

This remapping can be used in all three cases, after the ap-
propriate values have been substituted for B, C, and D.

But there is also an alternative remapping that one could
use. This second remapping entails first translating the
Cartesian coordinates (u, v) into polar (ρ, θ) and then ap-
plying our outlined methodology. For this particular ex-
pression, the way to carry out the translation is by making
use of the mapping:

ρ

θ

= +

=

B u C v

Cv Bu

2 2 2

2

4 9
3 8atan , .

Once the remapping to polar coordinates has been carried
out, it is straightforward to verify that an alternative re-
mapping, Talter would be:

Talter h u v h u v

D

D Bu Cv

Cv Bu

=

= −
+ +

+�
�
��

�
�
��

1 2

2 21 0
2

2 17

, , ,

. ,
,

. ( )

0 5 0 52 7
3 84 9atan π

π

As before, this remapping can be used in all three cases,
after the appropriate values have been substituted for B, C,
and D.

Table 2 shows the values for A, B, C, and D, as these have
been determined by the simplex method for each of the
three Zipf distributions that we examined. In the experi-
mental results section, we will show graphically the results
and quality of this remapping for k = 0.2.

6 EXPERIMENTAL RESULTS

In this section, we first show results that demonstrate how
even a very simple hashing functions can lead to a nonuni-
form distribution of generated invariants; we also demonstrate
how the quality of a hashing function can be misjudged if the
used hash table does not contain a sufficiently large number of
entries. We then present the results derived from both syn-
thetic and real data and discuss the merits of our framework.

6.1 Even Simple Hashing Functions May Create
Problems

Let us assume a data set consisting of 100,000 entries de-
scribing one-dimensional line segments. These segments

TABLE 1
TWO MORE COMBINATIONS OF HASHING FUNCTION AND FEATURE DISTRIBUTIONS
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are to be recognized independent of any translation trans-
formations they may be subject to. The vertices of each line
segment are selected uniformly from the unit interval [−0.5,
0, 5]. One way to represent such segments is by means of
their length. Since all lengths will assume values in the in-
terval [0, 1], we can quantize this interval with B many
buckets and use a line segment’s length to decide which
bucket to store any relevant information (i.e., the line seg-
ment’s identity, etc.). A hashing function for this example
would be:

h(xi, xj) = |xi − xj|q,

where xi and xj are the coordinates of the line segment under
consideration, and q indicates that the absolute value has been
“quantized.” Despite the fact that the vertices of each line
segment are drawn with uniform probability from the unit
interval, the occupancy density over the entire set of buckets
shows preference for some values from the range of possible
values of h over others. This is shown in Fig. 4, which depicts
the discretized pdf for h. Apparently, shorter segments are
more populous, resulting into a highly skewed pdf curve.

In a more complex setting, the data set contains 100,000
two-dimensional triangular shapes. These shapes are to be
recognised independent of any rotation, translation, and
scaling they may have undergone; in other words, if a tri-
angle ∆ is one of the triangles in the set, M is a rotation ma-
trix, T a translation matrix, and s a scaling factor, then when
presented with the triangle:

∆′ = M(s∆) +T,

the system should identify it as being identical to ∆ by re-
trieving all relevant information about ∆ from the data set.
For simplicity purposes, we assume that the vertices of all
the model triangles that will ever be stored in the data set
are drawn with uniform probability from the unit square

[−0.5, 0.5] × [−0.5, 0.5]. Let us denote by x yi ij j
,�� �� , j = 1, 2, 3,

the three vertices of the ith model triangle that is in the data
set. One hashing function that can “encode” model trian-
gles in a manner that is rotation, translation, and scaling
independent is the following:

h x y x y x yi i i i i i i i q1 1 2 2 3 3 1 2
, , , , , , ,4 9 4 9= α α

where α i1
 and α i2

 denote the angles at the vertices 1 and 2,

of the ith triangle in the data set, expressed in radians, and q
denotes that the values of the two-tuple of invariants have
been “quantized.” Notice that since:

α α α πi i i1 2 3
+ + = ,

inclusion of the angle α i3
 in the hashing function is re-

dundant. Once again, the occupancy density over the
entire set of buckets shows preference for several values
from the range of possible values of h(⋅, ⋅, ⋅, ⋅, ⋅, ⋅) over
others. And this is despite the fact that the vertices of
each triangle ∆ are drawn with uniform probability from
the unit square. Fig. 5 shows the mesh and contours of
the discretized joint probability density function for this
second hashing function. Similar to Fig. 4, the obtained
pdf shows a highly skewed behavior that certainly leads
to uneven load distribution and diverse storage require-
ments for buckets.

6.2 Misjudging the Quality of a Hashing Function
At times, it is possible that the quality of the used hash
functions can be misjudged. The goal of this experiment
is to show this fact. A 30 × 30 bucket hash table is used to
accommodate 1,200, 12,000, 120,000, and 1,200,000 entries
in four different settings. The allowed transformation is
rigid and the points were assumed to be Gaussianly dis-
tributed. The used hashing function (3) was kept the
same during the experiments but only the number of
hash entries increased by an order of magnitude each
time. We have generated the meshes for the occupancies
of the hash table buckets resulting from these four differ-
ent settings. The meshes obtained for the 1,200 and
12,000 populations resulted in visually flat-looking meshes.
However, the meshes and contours for 120,000, and
1,200,000 entries in the hash table buckets (shown in Fig. 6)
reveal significant statistical behavior. The scaling of the
axes is the same in order to show the appearance of sta-
tistical behavior as the number of entries increased. For
hash functions of different dimensionality, the number of
stored entries required before this statistical behavior
reveals itself is expected to be different. Nevertheless,
the continuous increase of the population will ultimately
reveal statistical behavior.

TABLE 2
THE VALUES OF THE PARAMETERS IN THE APPROXIMATING

EXPRESSION FOR VARIOUS CHOICES OF THE ZIPF’S CONSTANT k

Fig. 4. The pdf for the length of the line segments shown discretized
over a set of 100 intervals (x-axis).
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6.3 The Efficiency of the Suggested Framework
So far, we have focused on the used hashing function and
assumed properties for the distribution of the coordinates
of the feature points comprising a model. We now present

results from experiments that use both a synthetically gen-
erated and a real-world database.

In particular, we carried out a Monte-Carlo simulation to
synthetically derive tangram-like shapes such as those used

Fig. 5. Mesh and contours for the pdf for the angles of a triangle; the vertices of the formed triangles were uniformly distributed within the unit
square. The x- and y-axis have been divided into 100 distinct intervals and the shown extent corresponds to one π exactly.

Fig. 6. Mesh and contours for the occupancy of the hash table when 120,000 and 1,200,000 entries, respectively, are used. The employed hashing
function is the one of (3).
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in our discussion. The corner points of these shapes were
drawn

1)� from a two-dimensional Gaussian distribution and
2)� from a uniform over the unit disc distribution.

We used the corner point coordinates and the shown hashing
functions to make entries for each object in a two-dimensional
hash table. For each entry, we determined the identity of the
receiving bucket by applying the synthesis g o h to the coordi-
nates of the triplet of vertices that gave rise to the entry in
question, We kept track of two hash tables: One was the table
that resulted from use of the hashing function h, whereas the
second was the table we obtained for g o h. Both hash tables
comprised an equal number of hash buckets; the fact that both
tables had the same number of buckets facilitated the evalua-
tion of the method. Indeed, the hash entries were distributed
over the same size hash tables but using the two hashing
functions h and g o h. A ring of buckets in the periphery of the
table for g o h was intentionally left unused in order to improve
the visualization of the results.

The height of the mesh at a given hash bucket location is
proportional to the number of entries in the bucket. There is

a total of 10 million entries stored in each of the two hash
tables. Notice that each of the meshes has a “reference
spike” in one of the corners: The spike’s height is equal to
the number of entries of the fullest bucket in the hash table
corresponding to h and provides a measure of the benefits
obtained when g o h is used. These results indicate that the
occupancy behavior for both h and g o h is in full agreement
with the predictions of our analysis above. It is worthwhile
noting that the shown pdf’s which were derived after ap-
plying the h functions contain at least 97.5 percent of the
generated hash entries; recall that the hash table can only
accommodate a finite region of the entire space of invari-
ants and, thus, not all of the generated entries will land in-
side the hash table. Naturally, when the synthesis of func-
tions is used, all of the generated hash entries landed in the
hash table.

Fig. 7 shows the meshes for the occupancies of the buck-
ets when the tangrams’ corner points followed a Gaussian
distribution and the hashing function was that of (1). Fig. 8
shows the respective two meshes when the tangrams’ cor-
ner points are distributed uniformly over the unit disc; the
hashing function is again that of (1). In Fig. 9, we show the

     

         (a) (b)

Fig. 7. The synthesized corner-points follow a Gaussian distribution. (a) Mesh for the pdf corresponding to the hashing function of (1). (b) Mesh for
the pdf when the appropriate remapping function is used.

     

         (a) (b)

Fig. 8. The synthesized corner-points are uniformly distributed over the unit disc. (a) Mesh for the pdf corresponding to the hashing function of (1).
(b) Mesh for the pdf when the appropriate remapping function is used.
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mesh for the occupancies of the buckets for the hash tables
corresponding to Case 2 of Table 1.

Next, we present the results we obtained from our
Monte-Carlo simulations using Zipf-distributed properties.
In particular, the x and y coordinates of the tangrams’ cor-
ner points were drawn independently from the Zipf distri-
bution that corresponded to k value of 0.2. The formulae
from the previous section were used to produce the hash
tables for h and g o h. The tangram shapes were allowed
to undergo similarity transformations. Fig. 10 shows the
meshes for the occupancies of the buckets for the hash ta-
bles corresponding to the hashing function of (13) (similar-
ity transformation) and the resulting flat-like g o h in the
case where k = 0.2. The results corresponding to the cases
k = 0.1 and k = 0.5 were identical in flavor. Hence, the re-
spective graphs are omitted for brevity.

Finally, we show results obtained using a real-world
database. The elements to be recognized were fingerprints
of 600 individuals. Each fingerprint was represented as a
collection of minutiae, i.e., points of interest corresponding

to the locations of things like bifurcations, swirls, ridge
terminations, etc. The minutiae were used to derived the
models ultimately stored in the hash structure. The only
information available was the positional information about
a fingerprint’s minutiae. In that respect, the models were
not any different than the tangrams used in our discussion.
The allowed transformation was 2D-affine and the feature
points were distributed uniformly over the image square
(512 pixels × 512 pixels).

What makes this case different is the fact that when the
features are uniformly distributed over a convex domain
(i.e., square, disc, ellipse, etc.), the affine-invariant hashing
function of (14) exhibits a few unusual and unexpected
properties. In a companion report [38], we study an alter-
native affine hashing function and how it behaves when the
feature domain is convex and unspecified. Fig. 11 shows the
meshes for both the hashing function and the correspond-
ing g o h transformation. Notice that unlike the functions
that we have examined so far, this affine-invariant hashing
function exhibits a discontinuity. Due to the fact that both

      

(a) (b)

Fig. 9. The synthesized corner-points are Gaussian distributed. (a) Mesh for the pdf corresponding to the hashing function of Case 2 in Table 1.
(b) Mesh for the pdf when the respective remapping function is used.

      

       (a) (b)

Fig. 10. (a) Mesh for the pdf corresponding to the similarity transformation, with the features following a Zipf distribution with k = 0.2. (b) Mesh for
the pdf mesh corresponding to g o h.
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the description of the used hashing function as well as of
the remapping g o h are fairly involved, details are omitted;
the interested reader can refer to [38]. It should be stressed,
however, that it was the methodology outlined in this dis-
cussion that was used in that case and resulted in the quasi-
flat pdf of Fig. 11.

7 RELATED WORK

Work related to our effort falls into three categories: hash-
ing, multidimensional indexing techniques, and distribu-
tion of access structures.

An extensive survey of hashing functions and strategies
for handling overflow in buckets is discussed in [24]. In
[36], a number of hashing functions are tested and their
performance verified against data of very modest sizes.
Bentley and Friedman [4] provide a definition of the range-
search problem on multiple attributes. Multidimensional
data (known also as k-d data) are accessed and processed
by representations in lower dimensions. A number of ap-
proaches take the view that k-d data can be transformed in
one-dimensional representations and, thus, traditional ac-
cess methods can be used for their manipulation. Gutman’s
R–trees and variations [17], [43], [3] use this idea. The hB-
tree [42] is based on the k-d tree and splits are done using
several attributes, unlike in R-trees, where splits are done
using a hyper-plane. The tree is not balanced and can be-
come severely skewed, thus affecting search time. In [12],
Gray coding is used as the technique for the mapping to one–
dimension. Peano and Hilbert curves have also been used in
the same context [21]. The usual assumptions of uniformity
and independence are contended in [13]. The concept of the
fractal dimension is proposed as the means to describe the
deviation from uniformity. The Grid File [32] follows an ap-
proach orthogonal to ours, where the data space is split and
merged depending on the population of the buckets. Guen-
ther and Buchmann [15] present a taxonomy of spatial access
methods and highlight some of their deficiencies.

As the volume of databases may exceed the available
size of storage devices on a single machine, their data have
to be handled by an environment that provides multiple
disk units and possibly processors. Early work on distrib-
uted structures can be found in [11]. Bastani et al. [2] ad-
dress the issue of reliability in distributed indexing. In [23],
a structure called the “Multiplexed R-tree” is proposed; this
is essentially a single R-tree with pointers spanning disks.
Honishi et al. [19] proposed a method where the index
structure is partitioned into subtrees indexed by a hash
structure. Matsliach and Shmueli [30] presented a parallel
access method suitable for shared-memory multiprocessor
systems. Johnson et al. [22] propose the use of the dB-tree,
which is based on the B-link tree [28], as a solution suitable
for parallel striped file systems. This is done by storing
ranges of index keys in an abstraction called an extent,
which is indexed by a B-link tree. By tightly integrating the
conceptual network topology and the search structure to be
distributed, Kroll and Widmayer [26] simplify the distribu-
tion of nodes among processors.

In many instances, deterioration of the performance hap-
pens due to uneven load distribution [7], [44], [29], [25],
[47]. In the context of our work, our objective has been to
have the various data records evenly distributed among a
set of available buckets. In this manner, we can guarantee
an even partitioning of the incurred load among the avail-
able processors (or workstations) by equally distributing
the hash table buckets. Desirable scalability properties re-
sult as the probability density function fgoh of the invariants is
flat-like over the entire finite region of the new produced val-
ues. This implies that for a given regular discretization of the
interval of produced invariant values, the preference for an
entry ending in a given hash table bucket is, on the average,
constant and independent of the bucket under consideration.
Furthermore, such an occupancy behavior implies that the
employed invariants provide us with the maximum possible
degree of discrimination among the stored objects.

       

(a)    (b)

Fig. 11. (a) Mesh for the pdf corresponding to the affine-invariant hashing function mentioned in the text. The database used contains fingerprints
from 600 individuals and the features under consideration are the fingerprint minutiae together with their positional information. The features were
uniformly distributed over the image square (512 pixels × 512 pixels). (b) Mesh for the pdf mesh corresponding to g o h.
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8 CONCLUSIONS

Very large data sets expose the statistical properties of
hashing functions as they create nonuniform bucket occu-
pancy distributions in the hash tables. In this paper, we pre-
sent a two-stage methodology used to remap data sets so
that the resulting hashing scheme exhibit competitive per-
formance characteristics. We showcase it with an actual
hashing function for a spatial database and derive expres-
sions for the distribution of bucket occupancy over the
space of possible indices via a parametric estimation step,
or, whenever possible, through an analytical determination
of a closed form expression. The derived distribution is
then exploited using methods from probability theory to
redesign the hashing function so that exhibits flat-looking
occupancy properties for its hash table buckets.

The presented framework helps us to achieve desirable
scalability features. Given a fixed size hash table, increasing
the number of stored entries by a factor k will result in a
performance slowdown by the same factor: The employed
hashing scheme guarantees that the bucket occupancy, al-
though k times as high now as before, will continue being
constant on the average across the set of hash table buckets.
The increase in the load and storage requirements will im-
pact all of the available processors (or workstations)
equally. Similar arguments apply to the case where the
amount of available processing power increases by a factor k:
There will be a corresponding decrease in the load and
storage requirements at every processor (or workstation)
resulting in a system that exhibits a k-fold improvement in
performance.

While there is a wealth of hashing techniques and dis-
tributed/parallel access methods, none of these techniques
deals with the retrieval of objects based solely on partial
information. These methods rely on explicit keys such as
unique keywords and spatial characteristics. More impor-
tantly, none deals with the probabilistic behavior of hashing
indices. By introducing our framework and the stochastic
treatment of the bucket occupancy patterns, our aim is to
fulfill the following major requirements:

•� Storage of a very large number of data using multiple
key “features” in hash table access structures. This large
number reveals highly skewed occupancy patterns.

•� Easy application of our framework in a parallel and
multicomputer architectures to solve realistic problems
offering very short response times.

•� Exploitation of the resulting occupancy distributions
in order to generate hash access tables with close-to-
uniform occupancy patterns.

•� Ability to query data objects based on partial information.

The framework is also essentially immune to “large-scale”
insertions and deletions of objects as it is capable of main-
taining similar utilization rates throughout all the used
hashing buckets.

Although we have demonstrated the approach in the
context of a specific example, the methodology should be
treated as a general framework that allows us to predict
and subsequently improve the performance of hashing-
based retrieval systems. Furthermore, the dimensionality of
the hashing function h is by no means restricted to two.

Indeed, any dimension can be assumed for h; the suggested
methodology will remain directly applicable.
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