
Nefeli: Hint-based Execution
of Workloads in Clouds

Konstantinos Tsakalozos#1, Mema Roussopoulos#2, Vangelis Floros∗ and Alex Delis#3

#Univ. of Athens, Athens, 15748, Greece{k.tsakalozos1, mema2, ad3}@di.uoa.gr
∗Greek Research & Technology Network, Athens, 11527, Greeceefloros@grnet.gr

Abstract—Virtualization of computer systems has made feasi-
ble the provision of entire distributed infrastructures in the form
of services. Such services do not expose the internal operational
and physical characteristics of the underlying machinery to
either users or applications. In this way, infrastructuresincluding
computers in data-centers, clusters of workstations, and networks
of machines are shrouded in “clouds”. Mainly through the
deployment of virtual machines, such networks of computing
nodes become cloud-computing environments. In this paper,
we propose Nefeli, a virtual infrastructure gateway that is
capable of effectively handling diverse workloads of jobs in cloud
environments. By and large, users and their workloads remain
agnostic to the internal features of clouds at all times. Exploiting
execution patterns as well as logistical constraints, users provide
Nefeli with hints for the handling of their jobs. Hints provide no
hard requirements for application deployment in terms of pairing
virtual-machines to specific physical cloud elements.Nefeli helps
avoid bottlenecks within the cloud through the realization of
viable virtual machine deployment mappings. As the types of
jobs change over time, deployment mappings must follow suit.
To this end,Nefeli offers mechanisms to migrate virtual machines
as needed to adapt to changing performance needs. Using our
prototype system, we show significant improvements in overall
time needed and energy consumed for the execution of workloads
in both simulated and real cloud computing environments.

I. I NTRODUCTION

Computing “clouds” allow for the transparent access to
diverse physical resources which are made available in the
form of services. In general, cloud services can be classified
according to the level at which they function as [1]:a) Soft-
ware as a Service (SaaS), b) Platform as a Service (PaaS) and
c) Infrastructure as a Service (IaaS). In this paper, we focus on
IaaS-clouds [2] that exploit the use of virtual machines (VMs)
to deploy computing systems on-demand [3], [4], [5]. We
examine the effective deployment ofVMs so that multiple and
diverse workloads can be efficiently handled by the physical
infrastructure. The key benefit in using anIaaS-cloud is that it
shields users and/or applications from all administrativetasks
and resource sharing policies of the underlying machinery.
Moreover, the decoupling of physical resources from system
software offers enhanced server-utilization through collocation
of virtual machines and effective options for node recoveryin
light of failure(s). However, sharing of physical resources may

This work has been partially supported by theD4Science I & II EU FP7
projects.

yield peak performance rates that are below expectation due
to VM contention on particular physical nodes.

In this paper, we describe the design, implementation, and
evaluation ofNefeli, a cloud gateway, that seeks to overcome
contention ofVMs for workloads consisting of diverse tasks
executing in a cloud.Nefeli accepts requests from users for
execution of particular workloads in the cloud and deploys
these workloads within the cloud.Nefeli performs intelligent
placement ofVMs onto physical nodes using user-provided
hints. Users model workloads as patterns of flows of data,
computations, control/synchronization points and necessary
network connections. We refer to these patterns astask-flows
to distinguish these from the traditional workflow concept.
Specifically, task-flows illustrate distinct computational phases
meant to be executed on (distinct) virtual machines. Users
provide hints toNefeli by highlighting points of possible
resource contention in their task-flows.Nefeli uses these hints
to (re-)deployVMs in the cloud in ways that achieve more
efficient execution.

Virtualization as used in currentIaaS-clouds makes de-
ployment ofVMs a straightforward task. However, the large
number of options ofwhere within the cloud to (re)deploy
VMs renders the problem of infrastructure tuning a real
challenge. Moreover, user hints must not be allowed to violate
the cloud abstraction and refer to internals of the physical
hardware layout.Nefeli addresses both of these challenges.

To this date, there have been a number of efforts that attempt
to fine-tune virtual infrastructures for executing specifictypes
of jobs [6], [7]. In those, users “evaluate” the quality of
the mapping of computational resources toVMs [8], [9],
[10] by using either fixed service-level agreements (SLAs)
or high-level conditions. In general, producing an “evaluation
function” is a nontrivial task for it requires expertise of both
the application at hand and the policies regulating resource
sharing within the physical infrastructure [8].

Our key objective in buildingNefeli is to free users from
the task of creating, maintaining and tuning the operation of
VMs in such environments.Nefeli offers a set of predefined
utility functions that help users express task-flows in their
workloads. These utility functions communicate toNefeli
possible favorable virtual resource layouts for the user’stask-
flows. In response to user requests, changing workloads, and
events monitored within the cloud,Nefeli producesVMs to
physical node mappings that are near-optimal for the execution

of admitted task-flows.Nefeli deploys these mappings within
the cloud by issuing the appropriateVM migration calls to
the underlying cloud middleware. In this entire process, users
have no direct contact with the physical infrastructure.

We have created a detailedNefeli prototype and experi-
mented with both simulated and real cloud environments. Our
approach consistently displays significant performance im-
provements when compared with a variety ofVM scheduling
policies. In video transcoding,Nefeli achieves 17% reduction
in processing times while in scientific task-flowsNefeli func-
tioning above a simulated cloud demonstrates up to sixteen
times higher throughput than otherVM scheduling policies.
Significant savings in terms of power consumption are reported
as well. The rest of this paper is organized as follows: Sec-
tion II states the problem we address and Section III outlines
earlier related work. Sections IV–VII present in detail allthe
architectural elements ofNefeli. Section VIII discusses our
experimental findings and finally, Section IX offers concluding
remarks.

II. M ANAGING IaaS–CLOUD V IRTUAL RESOURCES

IaaS-clouds provide for their users a separation of concerns
at the level of hardware as their respective services are
confined in the provision ofVMs; the latter collectively form
virtual infrastructures. Users may consumeIaaS-cloud services
yet they are unable to impose changes on the fundamental
aspects and functional characteristics of the elements of the
underlying physical substrate. Users may only offer minimal
information in order to influence the performance of the infras-
tructure by indicating howVMs are to be actually deployed
on the physical resources [3]. On the other hand, the clouds
or service providers undertake all administrative actionson
physical computing nodes including setting the policy with
which consumer requests are to be handled.

Our conjecture is that both service consumers and producers
possess fragments of information and maintain knowledge
in their own sphere of operation that if combined could
jointly improve the effectiveness of the cloud. Knowledge
of the underlying hardware features, the make-up of the
virtual infrastructure as well as the characterization of the
workload in execution could all contribute to more effective
resource sharing. As the cloud-contract does “prevent” the
physical substrate from revealing most of its organizational
features, user preferences and desired operational conditions
can be mainly routed from theIaaSconsumer to the provider.
Perhaps, the most critical parameter that users have to alert
the cloud about is the nature of the task-flows submitted. In
this paper, we take the view that consumers may communicate
this information in the form of hints. The latter could be used
while trying to appropriately deployVMs. For instance, should
a user requestVMs with the intention of deploying mirrors of
a database, this would be of much importance.VM mirrors
should be placed on different physical nodes so as the system
can successfully handle failures. In similar spirit,VMs that
are to perform parallel jobs –very much in theMapReduce

fashion– should be also spread across different nodes1. Of
course, this deployment pattern is not the only one that users
may ask for. Favoring specificVMs or co-deploying others
may also result into enhanced performance.

Apart from deployment decisions,IaaS consumers have
also no explicit control overVM migrations. Migrations
reshuffle the wayVMs share the same computing nodes so
they may radically hurt or significantly enhance the virtual
infrastructure’s performance. It would be desirable that the
actual placement ofVMs to nodes changes to better address
the needs of changing workloads. For instance in a video-
encoding application, it might seem beneficial to use a highly
distributed setup forVMs across various physical nodes in
order to harness as many CPU-cycles as possible. Occasionally
however, the aforementioned layout might generate significant
network traffic calling for opportunistic collocation ofVMs. It
would be therefore necessary that the cloud should undertake
actions to dynamically redeployVMs to better serve workloads
whose nature may continually change. Overall, the challenge
IaaS-clouds face is how to permit more sophisticated interac-
tion with the users while keeping the latter agnostic of the
cloud internals. Contemporary clouds allow for transparent
operations at the expense of depriving users from the option
of using key virtualization features. By accepting user hints,
Nefeli plays a major role in helping attain favorableVM
deployments. The user remains agnostic of the clouds internals
as any piece of his information arriving at the cloud gateway
strictly refers to the type of the workload(s) the virtual
infrastructure is to serve.

III. R ELATED WORK

The behavior of many distributed applications can be
modeled as recurrent data and control flows (or collectively
workflows) that often follow distinct and specific patterns [11].
Nefeli offers the means to state the existence of such patterns
as task-flows and exploits these patterns to attain betterVM
deployment. We have chosen the term task-flow to illustrate
distinct computational phases that take place on virtualized
machines.

The allocation of resources in distributed environments
requires adaptive policies. In [12], [13], such resource shar-
ing policies are proposed for the execution of jobs on the
GRID. Utility functions [13] are proposed to help quantify
the efficient execution of jobs in light of different resource
sharing disciplines.GRID-jobs are frequently form largeDAGs
and are often split before they are dispatched for execution.
This flow splitting allows for re-adjustment in the management
of resources.Nefeli also provides dynamic management of
(virtual) resources but operates in a much different way,
through migration ofVMs.

In many respects,Nefeli realizes a number of features
envisaged by autonomic computing [14]. Autonomic systems

1Cloud providers such as Amazon [4] allow users to ask forVMs deployed
on different sites. Yet, such ad-hoc engineering solutionscover only portion
of the needs of a user and even worse, they do disclose information on the
cloud’s internal structure.

attempt to self-adjust according to the needs of the applications
they process. Here, specific application requirements are ex-
pressed in a high-level language which are then interpreted
by the tuning component of the systems. In enterprise in-
frastructures, these requirements are described with the help
of service level agreements (SLAs). The level in which an
SLA is satisfied is quantified through user-furnished utility
functions [9], [10]. Although, the stated objective of SLAsis
to make applications agnostic of the system they are running
on, this regularly fails because defining an appropriate utility
function is a nontrivial task. This definition requires both
application expertise and detailed knowledge of the autonomic
model used. Moreover, complex SLA requirements frequently
require significant human intervention [8]. In contrast,Nefeli
uses predefined utility functions that correspond to known
attributes and patterns of all task-flows under execution. The
user chooses from among the predefined utility functions and
uses them to indicate possible points of contention in the
infrastructure. This simplifies the user’s responsibilities as
1) the user need not create his own utility functions from
scratch and2) the user remains unaware of the cloud internals.

In pure virtualized environments Van et al. [6] and Wang et
al. [7] examine the use of SLA utility functions for workload
execution. Each function provides feedback to a global, system
wide optimization mechanism that decides onVM deployment
policies. With Nefeli, we target private clouds on which we
process all workloads as if they were served by a single virtual
infrastructure featuring multiple task-flows. To this end,our
approach uses a single optimization function in which all
deployment preferences are accounted for.

Compared to other existing schedulingVM–based load-
balancing systems [15], [16], [17],Nefeli exhibits two key
differences. First, our approach does not examine the execution
of specific VMs in isolation but considers all task-flows
making up the current workload before rearranging the virtual
infrastructure. Second, the event-based mechanism used byour
approach to triggerVM rearrangements is not bound solely on
specific usage thresholds of resources. Instead,VM -migration
is the outcome of external and/or internal perturbations in
our infrastructure. In this regard, we support both resource
depletion thresholds but also any monitoring mechanism that
users may desire.

Finally, data stream processing systems [18], [19], [20] aim
to produce the most efficient placement of operators in the
network for processing of data flowing from data sources to
interested data consumers. These systems assume a distributed
environment where data sources and data consumers are
widely distributed (geographically or across the Internet) and
task-flows can overlap in terms of operators used and data
streams processed.Nefeli aims to support virtual machine
placement in a cloud computing environment where data
sources are locally stored within the cloud. Moreover, task-
flows from different users are assumed to be independent of
each other and hence the instantiation of aVM for one user’s
task-flow and the specific actions performed by thatVM are
disjoint from otherVMs invoked for the task-flows of other

users.

IV. OVERVIEW OF NEFELI

Nefeli adds a layer between the user and the infrastructure
providingIaaS-cloud services, shown in Figure 1.Nefeli must
interface with the lower level cloud services that handle the
VM lifecycle and perform fundamental administrative tasks.
This interface, denoted as CloudAPI, allows us to query for
specific aspects of the hardware resources as well as manage
the VM deployment and migration. During operation,Nefeli

Note

Note

Note

Cloud Middleware
Extra

Functionalities

Cloud Middleware Connector

VM VM VM...

VM

VM VM

...

.....

H
os

tin
g

N
od

es

M
on

ito
rin

g
T

oo
ls

Event Queue

Cloud API

Nefeli

Task−flows User

Fig. 1. Nefeli’s structured layout and interaction model

needs to obtain the following information:
• Physical node properties:these properties include free

memory, total memory, CPU utilization, the name/ID of
each hosting node and the amount of free disk space.

• The current status of eachVM : in our approach eachVM
may find itself in eitherSTAGINGor RUNNING state.
A VM is considered to beSTAGINGwhen management
operations such as disk image copying during aVM
migration do not permit theVM to run.

• VM properties: these are similar to the properties ac-
quired for hosting nodes;VM properties include the
memory usage and the disk space reserved in each virtual
machine. Also theIP-address of eachVM should be
provided by the cloudAPI so as to be forwarded to the
user as aVM access reference point.

VM deployment operations are handled through the cloud
API of Figure 1 and include:

• Spawn a newVM .
• Shutdown aVM .
• Migrate aVM . For this operation, the names/IDs of the

hosting nodes are needed.
While part of the interactionNefeli has with the physical

infrastructure can be provided by a cloud middleware[3], [5],
[21], there are cases where additional functionality is need.

For instanceOpenNebula v.1.2.0does not expose all host-
related information it gathers. In such cases, we have to realize
any missing functionality and incorporate it in the “Cloud
Middleware Connector” component (Figure 1).

Nefeli has the role of anIaaS-cloud gateway. Users contact-
ing Nefeli request virtual infrastructures created byinstanti-
ating sets ofVMs. Two sample graphs of task-flows executed
in such an infrastructure are displayed in Figure 2. Here, each

1

2 3

4

5
Task−flow A

4

1

3 5

2
Task−flow B

Fig. 2. Task-flow sample graphs

node represents a singleVM while edges indicate control and
data flows. TheVM specifications are accompanied with user
provided deployment “hints”. Hints are expressed as sets of
conditions or constraints pointing out a deployment favoring
specific task-flows within the virtual infrastructure. As the user
must be kept agnostic of the internal deployment decision
algorithms of the cloud, all available constraint types are
provided byNefeli. Constraints, even though important, may
also be contradicting or even impossible to satisfy all at the
same time. Therefore, each constraint is coupled with a weight
value indicating its importance relative to the other hints
provided. In thetask-flow Aof Figure 2 some deployment hints
might be that a)VMs 1 and2 would preferably be deployed
on different hosting nodes and b)VM 4 should be favored
by deploying it in a host without any otherVMs. The latter
constraint points out a possible CPU performance bottleneck
of the task-flow at hand. Table I presents those constraints that
we frequently found applicable in most task-flows tested with
Nefeli. Additional, cloud specific, constraints may allow for
enhanced Internet connectivity or give data locality hints.

TABLE I
COMMONLY USED CONSTRAINTS SUPPORTED BYNefeli.

FavorVM Try to reserve a single hosting node for a specificVM .
MinTraf Deploy on the same host a set ofVMs so as to

minimize traffic over physical network connections.
ParVMs Try to deploy a set ofVMs in separate physical nodes

so as not to compete over the same resources
PowerSave Reduce the number of hosting nodes

used forVM deployment
EmptyNode Offload a specific physical node

A single XML document can be used to contain all user-
provided information. Figure 3 presents all aspects related
to task-flow A. In the first section, theVM specifications
are provided. EachVM is assigned a system-wide identifier.
The user also sets RAM requirements and points to theVM
type that needs to be instantiated by providing the proper

disk image pointer. The secondXML section outlines the
constraints to be taken into account for the deployment of
the virtual infrastructure. As mentioned earlier, there are
two constraints, one forVM deployment in separate nodes
(ParVMs) and one for favoring the deployment ofVM with
ID 4 (FavorVM). In this secondXML section,VM identifiers
are used whenever constraints have to refer to specificVMs.
Since the performance impact of specific constraints may be
greater than that of others, the thirdXML section contains
pertinent user-assigned weights. In this example, the constraint
with ID 1 is more important than that with ID2 and thus,
it receives a weight of0.4 while constraint2 gets a0.3.
Note that the correctness neither of the constraints nor their
weights is questioned. We trust the user has knowledge of the
performance bottlenecks in his task flows. In what follows, we

<VM>

<VM>
<VM>

<VM>

<Constraints>

<FavorVM> <ID>2</ID> <VMID>4</VMID> </FavorVM>
<ParVMs> <ID>1</ID> <VMID>2</VMID> <VMID>3</VMID> </ParVMs>

</Constraints>
<Profiles>

<Weights>
<Profile> <ID>1</ID>

<ConstrID>1</ConstrID> <W>0.4</W>
<ConstrID>2</ConstrID> <W>0.3</W>

</Weights>
</Profile>

</Profiles>

<VM><ID>1</ID> <RAM>512</RAM> <Disk>VM1.img</Disk> </VM>
<ID>2</ID> <RAM>512</RAM> <Disk>VM2.img</Disk> </VM>
<ID>3</ID> <RAM>512</RAM> <Disk>VM3.img</Disk> </VM>
<ID>4</ID> <RAM>512</RAM> <Disk>VM4.img</Disk> </VM>
<ID>5</ID> <RAM>512</RAM> <Disk>VM5.img</Disk> </VM>

 <Virtual Machines>
<Task−flow>

</Task−flow>

 </Virtual Machines>

Fig. 3. Nefeli input derived from sampletask-flow A

discuss howNefeli handles this type of single task-flow input
and then we look at how our approach offers simultaneous
execution of multiple task-flows in more than one virtual
infrastructures, running on the same physical nodes.

V. SINGLE TASK-FLOW EXECUTION

Figure 4 shows the key steps followed starting from the user
input until we reach aVM -to-host mapping, termed deploy-
ment profile. WithV being all theVMs to be deployed andH
the set of physical nodes, a profileM is a function fromV to
H (M : V 7→ H). Nefeli chooses, out of all possible profiles
Mall, one that best suits the constraints expressed for the task-
flow at hand. Profile production uses information gathered not
only from the user hints but also from the cloud administrator
and the physical infrastructure. Combining the user-provided
constraints with theVM specifications, as described in the
XML-document of Figure 3, results in deployment patterns.
These patterns are the outcome of examining user preferences
alone and our approach uses them to matchVM requirements
to physical node resources. This matching process creates the
actual deployment profiles once preferences from the cloud
administration have been taken into account.

A. Constraints

Constraints express user and administration preferences.A
constraint is realized as a utility functionF : Mall 7→ [0, 1]

id: Object

id: Object

Small Note

Constraints

Administration

Deployment

Pofile

Hardware

Specifications

Patterns
Deployment

Specifications of

Virtual Machine
Constraints

User provided XML

Edit layers 0 and 1 as needed

Fig. 4. Nefeli’s operational model

that evaluates a single deployment profile. In the context of
Nefeli, each such function has at its disposal all information
regarding the characteristics of both physical and virtualnodes.
An example of the utility functionFavorVM is presented by
Algorithm 1. Here, we measure the success of a profile in
favoring a specificVM . From the perspective of the physical
infrastructure, favoring aVM means that it shares the same
hosting node withas few aspossibleVMs. To evaluate the
success of a deployment profile in satisfying this constraint, we
first count allVMs co-located with the one we favor and then
we use the total number ofVMs to normalize the result. We
assume that all resources are equally shared among co-located
VMs. Given that all functions areNefeli-provided, we ensure
that such assumptions are consistent across the board for all
constraints. If and when one or more assumptions regarding
resources becomes inaccurate2 then, we will have to provide
new implementations for affected utility functions. The latter
are expected to work in a plug-and-play fashion. Clearly, all
utility functions of Table I are realized in similar fashionbut
for brevity we omit their detailed discussion here.

Algorithm 1 FavorVM Utility Function
Input: VM_ID: ID of the VM to favor

V : Set of virtual machines

M(): Deployment profile function

Output: Satisfaction degree of “Favor Virtual Machine” constraint

Begin
1: host ID := M(VM ID)
2: collocated := 0
3: all VMs := 0
4: for all v ∈ V do
5: if (host ID = M(ID of v)) AND (ID of v != VM ID) then
6: collocated++
7: end if
8: all VMs++
9: end for

10: return (all VMs - collocated)/all VMs

End

2perhaps due to major changes in the infrastructure

B. Profile production

Each possible deployment profilem is assigned a score
computed by the formula:

Score(m) =
∑

Consti∈Cs

wiConsti(m),

where Cs is the set of all constraints andw the respective
weights. In the example of Figure 3 where the two constraints
ParVMs and FavorVM with weights0.3 and 0.4 are used,
the Scoreof a deployment profilem becomes:

Score(m) = 0.4 ∗ ParVMs(m) + 0.3 ∗ FavorVM(m)

The optimal profile (mopt) is the one with the highest score:

Score(mopt) ≥ Score(mq), ∀mq ∈ Mall

whereMall is the set of all deployment profiles.
Finding optimal deployment profiles isNP-hard so we

employ simulated annealing [22] to attain plausible approx-
imations3. In Algorithm 2, we start from a randomVM
deployment, produced byGetRandomProfile, and visit
gradually higher-scoring neighboring deployment profiles. The
neighbors of each deployment profile are generated by a call to
GetNeightborOf. The neighborhoodNm of a deployment
profile m is the set:

Nm = {N ∈ Mall|Prob(N(v) 6= m(v)) = d, ∀v ∈ V },

Here,V is the set of allVMs, Mall is the set of all profiles,
d is the probability for aVM v to be deployed on a hosting
node other than the one set by profilem. Increasingd results
in wider neighborhoods and usually longer paths between suc-
cessively visited neighbors. Yet, too wide neighborhoods result
in almost randomly generated neighbors and thus deployment
profiles of low quality.

Algorithm 2 chooses to updatecurrent_profile
with one of its neighbors based on a probability factor:
eD/T > Random(), whereD is the score improvement we get
using the neighboring profile andT the temperature. Using this
formula, we handle local minimum pits by allowing “jumps”
to lower scoring profiles. However, when the temperature
drops near zero (10−5) only higher scoring neighbors are
visited. Apart from the starting temperature and the numberof
non-improving iterations performed before returning the best
profile (same_iterations), another option for enhancing
the profile quality is the number of timesNefeli runs simulated
annealing. Starting from a different initialVM deployment, we
may reach a different near-optimal solution.

Our approach decouples the profile evaluation and gen-
eration from the process of finding a near-optimalVM -to-
host mapping. This allows us to place constraints into two
categories:

• Soft Constraints: the degree of satisfaction of constraints
that belong in this class contributes to the overall quality
of the produced profile.

3For relatively small infrastructures, simulated annealing performs well.
However, in large infrastructures other, more efficient, methods should be
considered.

Algorithm 2 Simulated-Annealing-based Profile Production
Input: same_iterations: After how many iterations showing no im-

provement will we stop our search

T: Temperature

Score(): Deployment profile score function

Output: A near-optimal deployment profile
1: same = 0
2: best profile = currentprofile = GetRandomProfile()
3: while same<sameiterationsdo
4: new profile = GetNeightborOf(currentprofile)
5: D = Score(new profile) - Score(current profile)
6: if (T > 10−5 AND eD/T > Random()) OR

(T < 10−5 AND D > 0) then
7: current profile = new profile
8: end if
9: if Score(new profile) > Score(best profile) then

10: bestprofile = new profile
11: same = 0
12: end if
13: same++
14: T = 0.99 * T
15: end while

16: return best profile

• Hard Constraints: conditions placed in this group have
to be satisfied to their full extent. Otherwise, task-flows
featuring such constraints are simply not admitted for
execution and receive no further consideration.

Escalating the severity of a soft constraint to hard requires
setting its weight to1.0 in the respective task-flowXML-
description. Soft constraints are used for the computationof
each profile score. Hard constraints are taken into consider-
ation during the generation of new profiles from functions
GetNeightborOf and GetRandomProfile of Algo-
rithm 2. These two functions also take into account the obvious
constraints raising from the limited availability of hardware
resources such as the available main-memory on each hosting
node.

VI. H ANDLING INCREASING NUMBERS OFTASK-FLOWS

As clouds serve many users, each one in need of his
own private infrastructure, multiple task-flows may have to
be active for simultaneous execution. In its simplest form,
multiple task-flow execution appears whenNefeli serves a
single task-flow while a new one is submitted. In this case,
a single deployment profile must be produced taking into
consideration constraints for both task-flows.

Figure 5 shows theXML-description for the second task-
flow of Figure 2. For this task-flow there are two constraints:
a) nodes1 and4 would better be co-located since they will be
producing too much network traffic andb) nodes3 and5 are
to be deployed on different hosting nodes.VM IDs are system-
wide identifiers thus both task-flows of Figure 2 make use of
the sameVMs; the two graphs describe different flows within
the same virtual infrastructure.Nefeli never reveals the set
of VM identifiers to users. Collaborative environments where
users shareVMs, thusVM IDs, in producing task-flows have
to be realized by frameworks in a higher level.

<VM>

<VM>
<VM>

<VM>

<Constraints>

</Constraints>
<Profiles>

<Weights>
<Profile> <ID>1</ID>

<ConstrID>1</ConstrID> <W>0.4</W>
<ConstrID>2</ConstrID> <W>0.3</W>

</Weights>
</Profile>

</Profiles>

<VM><ID>1</ID> <RAM>512</RAM> <Disk>VM1.img</Disk> </VM>
<ID>2</ID> <RAM>512</RAM> <Disk>VM2.img</Disk> </VM>
<ID>3</ID> <RAM>512</RAM> <Disk>VM3.img</Disk> </VM>
<ID>4</ID> <RAM>512</RAM> <Disk>VM4.img</Disk> </VM>
<ID>5</ID> <RAM>512</RAM> <Disk>VM5.img</Disk> </VM>

<MinTraf> <ID>1</ID> <VMID>1</VMID> <VMID>4</VMID> </MinTraf>
<ParVMs> <ID>2</ID> <VMID>3</VMID><VMID>5</VMID> </ParVMs>

<Task−flow>

</Task−flow>

 <Virtual Machines>

 </Virtual Machines>

Fig. 5. Nefeli input derived from sampletask-flow B

Producing a deployment profile for both task-flows of
Figure 2, is done by combining the respective descriptions
of Figures 3 and 5. In this case, the set ofVMs is the same
in both descriptions but the set of constraints to be considered
is the union of all constraints. Constraint weights handling
policies may need to take into account the financial gain from
satisfying specific users. However, such policies are out of
the scope of this paper. We expect them to be enforced at a
higher level also. The score function for a deployment profile
m becomes:

Score(m) = 0.4 ∗ ParVMs1(m) + 0.3 ∗ FavorVM(m) +

+ 0.4 ∗ MinTraf(m) + 0.3 ∗ ParVMs2(m)

whereParVMs1 andParVMs2 are theParVMs constraints
of task-flows A andB respectively.

A task-flow departure also calls for the production of a new
deployment profile. This time the constraints used will haveto
be the ones referring to the task-flows remaining for execution.
TheVMs used explicitly by the terminated task-flow alone will
also have to be removed.

A transition between deployment profiles (as in the case
of adding or removing task-flows) involvesVM migrations
that in the absence of a live migration feature result in
some down time of the virtual infrastructures. In this case,
VMs have to be suspended and copied to other computing
nodes where they can resume their normal operation. To
tackle such inefficiency, the profile creation procedure may
trade profile quality for swifter transitions. To this end, we
define the distance of two profiles to be the number ofVMs
deployed on different hosting nodes in the profiles compared.

Definition: The distanceDist betweenM1, M2 ∈ Mall is:

Dist(M1, M2) = |{v ∈ V : M1(v) 6= M2(v)}|

Given an initial deployment profilems, to reduceVM mi-
gration overheadsNefeli first producesk high scoring profiles
and then picks the one whose transition fromms requires
migrating fewerVMs. LetMb be the set of thek-top scoring
profiles produced, the one (mq) that will be used is:

mq : Dist(mq, ms) ≤ Dist(mi, ms), ∀mi, mq ∈ Mb

With k regulating the tradeoff between migration overhead and
profile quality, we are able to express the virtual infrastruc-
tures’ sensitivity to downtimes.

VII. N EFELI’ S COMPONENTS ANDAPPLICATION

INTERACTION

In Figure 6, we present the environment in which the main
components ofNefeli operate. TheDeployeris the component
that keeps track of all active task-flows. This component up-

Note

P
ro

vi
de

r
C

on
su

m
er

Nefeli − The Cloud Gateway

Solver

Cloud Middleware Connector

N
ot

ifi
ca

tio
n

M
ec

ha
ni

sm

Constraints
Specifications of

Virtual Machines User−monitored Events

Profiles

Deployment

Physical nodes

Monitoring

Administration
Constraints

Infrastructure

DeployerPlanner

Fig. 6. The environmentNefeli operates in.

dates a list of all submitted task-flow descriptions upon arrival
of external events. Event arrival also causes the interaction
betweenDeployerandPlanner. The Deployerprovides a list
of task-flows, constraints and the respective weights, and the
Planner produces a single deployment profile as if it were a
single task-flow. The profile produced is applied using callsto
the cloudAPI.

The event-based mechanism that triggers theDeployer’s
operation is not limited to events caused by new task-flow
submission. This user generated event is not the only one
required to handle task-flows,Nefeli must also be informed of
a task-flow ending. Task-flow termination events come from
either the user or some component of the task-flow itself.

The overall goal ofNefeli is to make choices regarding the
deployment profile based on the user’s needs and the system’s
performance. To this end, we have extended the capabilitiesof
the notification mechanism so thatNefeli receives any kind of
signal that will assist in achieving its goal. We group events
into two classes according to their origin:
• Events activated by direct human intervention:events of
this class include the submission or removal of any number
of task-flows served. This class also includes events that help
users gain full control over the cloud’s andNefeli’s operation.
Consider for example node maintenance tasks that require
specific parts of the hardware infrastructure to be shutdown.
The cloud administration must migrate the hostedVMs to
nodes that will not be affected.Nefeli must provide the means

to support this kind of activity and it does so by responding to
events set by the administrator combined with hard constraints
included in task-flow descriptions. In similar spirit, activation
of constraints such asPowerSave, may be performed on
demand.
• Events triggered by any monitoring activity in the context of
the cluster, the virtual infrastructure or an authorized third
party component:typically, VM redeployment takes place
after a threshold in a resource utilization is exceeded. Through
the cloud middleware connectorNefeli offers hooks for mon-
itoring CPU utilization on bothVMs and hosting nodes.
Other internal activities like network traffic are monitored
through third party monitoring tools (Figure 1) that have to
be installed within the infrastructure. Receiving this type of
event may indicate that the deployment profile currently used
is ineffective. For instance, long time periods with specific
hosting nodes displaying high CPU loads while others stay
idle, mean that theVMs hosted on those nodes have become
a performance bottleneck. Such bottlenecks can be handled by
a redeployment ofVMs. This class of events includes events
coming not only from the physical infrastructure but from the
virtual as well. The virtual infrastructure may signal the end
of a task-flow or even the initiation of a new one. This event
class allows for the development of cloud efficient applications
while keeping them agnostic of the infrastructure on which
they are being executed.

A. Applications-Driven Operation

Users contacting anIaaS-cloud in search of a virtual in-
frastructure are well aware of the task-flows comprising the
workload they need to serve. In such cases,Nefeli allows
users to have control over which specific task-flows are to
be favored.

Figure 7 presents the description of a workload that fur-
nishes more than one task-flow within the same infrastructure.
As in the case of a single task-flow submission theVirtual
Machines section describes allVMs of the virtual infras-
tructure. TheConstraints section describes all constraints
regardless of the task-flow they are referring to. What differ-
entiates task-flows is the weight values with which constraints
are accounted for during deployment profile production. Note
here that if the user wants to optimize theVM deployment
for simultaneous execution of more than one task-flow she
must consider the combination of the respective task-flows in
a new profile and thus provide a combined set of weights. In
the Profiles section the number of weight sets provided
have to be equal to the number of deployment profiles to be
produced. In the workload of Figure 7, there are twoVMs with
IDs 1 and2. Each binds to aFavorVM constraint with IDs1
and2. The user’s intention is to have two deployment profiles
each one with the respective constraint active. Therefore,there
are two deployment profiles in theProfiles section, each
one assigning0.9 weight to the constraint to be active and0.0
to the other one.

The next two sections of the inputXML of Figure 7 refer to
the transition between the deployment profiles. TheEvents

<Constraints>
<FavorVM> <ID>1</ID> <VMID>1</VMID> </FavorVM>
<FavorVM> <ID>2</ID> <VMID>2</VMID> </FavorVM>

</Constraints>

</Weights>

<ConstrID>2</ConstrID> <W>0.0</W>

<ConstrID>1</ConstrID> <W>0.9</W>
<Weights>

<Profile> <ID>1</ID>

</Profile>

</Weights>

<Weights>

</Profile>

<Profile> <ID>2</ID>

<ConstrID>1</ConstrID> <W>0.0</W>

<ConstrID>2</ConstrID> <W>0.9</W>

<Profiles>

</Profiles>

<ID>1</ID> <Period>1000</Period>

<ID>2</ID> <Port>2324</Port> <Msg>Change</Msg>
</Net>

<Time>

</Time>
<Net>

</Transitions>

<Transitions>

<Transition>

<from>1</from> <to>2</to> <event>1</event>

</Transition>

<Transition>

</Transition>

<from>2</from> <to>1</to> <event>2</event>

<Events>

</Events>

</VM>
<ID>2</ID> <RAM>512</RAM> <Disk>VM2.img</Disk>

<VM>
</VM>

<ID>1</ID> <RAM>512</RAM> <Disk>VM1.img</Disk>
<VM>

<Multiple Task−flows>
 <Virtual Machines>

 </Virtual Machines>

</Multiple Task−flows>

Fig. 7. Nefeli input example.

section points out events whose signal will cause a change in
the deployment followed.Nefeli can be extended with user-
provided, application-specific events since their implementa-
tion does not require exposing any information about cloud
internals. CurrentlyNefeli provides two event types (of the
second category of the previews subsection), also used during
our evaluation:

• A time-based event that periodically sends a signal.
• A network-based event that starts a server listening for a

predefined message to arrive.
Both event types are demonstrated in Figure 7. Here, the first
event, with ID 1, will be triggered every1000 seconds as
defined within theTime tag. The second event (Net tag) will
have Nefeli listen for messages coming in to port2324. If
the message received is the stringChange, the event will be
triggered.

All events can be used in boolean expressions formed using
AND, OR andNOT aggregation events. Figure 8 presents one
such expression. The event with ID6 is triggered when the
expression:A OR (B AND (NOT C))evaluates to true.A, B

andC are events with IDs1, 2 and3 respectively. The boolean
event operatorsOR, ANDand NOT make use of other event
IDs to point to their operands.

Events cause transitions between deployment profiles. These

<ID>1</ID> ...

<ID>2</ID> ...

</Event_A><Event_A>

<Event_B>

<Event_C>

</Event_B>

</Event_C><ID>3</ID> ...

<NOT> <ID>4</ID> <Invert_ID>3</Invert_ID> </NOT>

<OR> <ID>6</ID> <EventID>1</EventID> <EventID>5</EventID> </OR>

</Events>

<Events>

<AND> <ID>5</ID> <EventID>2</EventID> <EventID>4</EventID> </AND>

Fig. 8. Combining events into boolean expressions.

transitions are described in the final section of the inputXML
description. In the example of Figure 7, the event with ID1
will cause a transition from the deployment profile1 to profile
2, while activation of the event2 will have the opposite effect.
The outcome of this “Multiple Task-flow” description is that
VM 1 will be favored for 1,000 seconds and thenVM 2 will
be promoted until the messageChange is received. ThisVM
favoring loop will continue as long as the virtual infrastructure
remains on-line.

To serve a workload request indicating execution of multiple
task-flowsNefeli starts with the creation of the first profile
in the respective description document section. As soon this
profile is applied, theDeployerof Nefeli goes over the profile
transitions and registers for receiving those events that will
cause a transition to a next profile. Upon receiving such an
event, theDeployerproduces and applies the transition target
profile. Immediately after that, it unregisters the old events
and registers any new events listed. This profile swapping
continues until the task-flows are removed. Of course, serving
workloads with multiple task-flows does not preventNefeli
from serving separate task-flows at the same time. The key
difference in this kind of task-flow description is that each
time only one profile from theProfiles section is used for
the creation of new deployment profiles.

VIII. E VALUATION

We have implementedNefeli as a Java library to more
readily have it embedded in cloud management systems. Our
experimental evaluation that involves at all times ourNefeli
prototype has a number of key objectives which are to:

• Examine the efficiency of our system as compared to ex-
isting job scheduling alternatives as far as CPU utilization
and throughput rates achieved for diverse sets of task-
flows.

• Investigate the behavior ofNefeli as the number and
features of virtual resources available for processing
change over time.

• Evaluate the overheads involved in deploying and using
Nefeli for interacting with cloud computing systems.

Our evaluation process includes experimentation: witha) di-
verse scientific task-flows executed on simulated infrastruc-
tures andb) applications executed in theIaas-cloud environ-
ment of our laboratory. The difference between simulation
and real application evaluation is in the infrastructure used
– we have done this mainly to maximize flexibility during
our evaluation. We have implemented two cloud middleware
connectors: the first simulates an infrastructure and the second

interacts with OpenNebula[3] through XML-RPC. At this
time, OpenNebulaalong withEucalyptus[5] andNimbus[21]
are all key open-sourceIaaS-cloud middleware projects with
similar if not identical objectives. In what follows, we first
examine scalability and performance issues using the simu-
lated infrastructure and subsequently present the gains ofusing
Nefeli in a real application.

A. Nefeli in a Simulated Cloud Environment

The physical nodes of the simulated infrastructure are
assumed to be connected over a 10Mbps switch in a star
network topology. Each node provides two types of resources:
RAM and CPU-cycles.VMs reserve RAM upon their deploy-
ment4 and consume CPU-cycles to transform input data into
output. The amount of available cycles per second to be shared
among hostedVMs allow us to designate the CPU perfor-
mance rate. We set physical nodes to have 8GB of RAM and
virtual ones 512MB. The behavior of eachVM is designated
by the input-to-outputsize ratio (inputKBytes/outputKBytes)
and the CPU-cycles required to produce a single output unit
(cycles / outputKBytes). The input-to-outputratio quantifies
how much of the input must be consumed in order to produce
a single unit of the output data. Similarly, thecycles-to-output
ratio indicates how many cycles have to be expended in order
to produce a single unit of output (i.e.,Byte). Output bytes
are forwarded to other virtual machines consuming network
bandwidth. Using the above abstraction, a task-flow creation
requires the following: firstly, setting up characteristics of each
VM with both input-to-outputand cycles-to-outputrates and
secondly, defining the network connections designated by the
data paths of the specific task-flow(s) at hand.

The workload we present here is highly influenced by the
Montage-engine that generates sky mosaics [23]. This engine
is used in scientific applications as the wrapper to access
telescope data. It is used by several groups of astronomers
including those inNASA for processing images taken from
space. During operation, numerous input images are scaled,
rotated and filtered using specialized algorithms so that the
images produced correctly map sky-areas. This application
has been split into well defined tasks so that it can be
conventionally executed on cluster environments. Figure 9
depicts processing nodes and the network topology used by
this task-flow. Theinput-to-outputandcycles-to-outputratios
for all VMs, as extracted in [24], are shown in Table II.
The way nodes have been “networked” as well as the data
flow ratios of Table II readily point out potential bottlenecks
of this task-flow and thus, we can easily formulate a number
of user hints to be passed toNefeli. For example, theVMs
in sets{1 , 2 , 3 , 4 }, {5 , 6 , 7 , 8 , 9 , 10 } and{13 , 14 , 15 , 16 }
have to be deployed in different hosting nodes as they operate
in parallel, while nodes{17 , 18 , 19 , 20 } are better placed
on the same hosting node since they operate insequenceand
may consume considerable network bandwidth (as data-flows
in Table II indicate). Table III presents our choice for “relaxed”

4VM deployment may fail due to resource shortage.

1 2 3 4

6 7
10

13

5
8 9

11

12

14 15 16

17

18

19

20

Fig. 9. Montage-like task-flow

TABLE II
VM CHARACTERISTICS FOR THEMontage-LIKE TASK -FLOW.

VM IDs Input-to-Output Cycles-to-Output
{1, 2, 3, 4} 0.5070 0.5830

{5, 6, 7, 8, 9, 10} 29.4070 0.0500
11 1.5000 0.0014
12 30.0000 9.1910

{13, 14, 15, 16} 1.0010 0.7390
17 0.0200 33.4210
18 1.0790 10.9050
19 25.0650 0.5370
20 20.6250 0.0290

weights for each of the constraints used in order to generate
the deployment profiles. The weights in question highlight the
likely presence of bottlenecks and offerNefeli flexibility while
placing variousVMs in different computing nodes. Table III
depicts two sets of constraints: the first is mostly concerned
with throughput attained by the infrastructure and is simply
termedNefeli, while the second includes the restriction that
the lowest number possible of hosting nodes should be active.
The latter essentially has to do with the consumption of power,
often of very high-concern in computing installations, andso
this set is termedNefeli-power. On a Core(TM)2 Duo CPU
T7100 at 1.80GHzproducing a deployment profile for any of
the two Nefeli configuration adds an overhead of less than
6.9 Seconds.

The simulated environment allows us to perform two types
of experiments that would have been otherwise impossible to
perform using a physical infrastructure. Here, we can:a) se-
lectively “increase” the CPU performance,b) offer additional
hosting nodes. In all cases, we measure the throughput of the
entire flow by measuring the outcome of the trailing node; in

TABLE III
TWO SETS OFUSERWEIGHTED CONSTRAINTS FORMontage

Constraints Nefeli Nefeli-power

ParVMs on VMs {1, 2, 3, 4} 0.30 0.30
ParVMs on VMs {5, 6, 7, 8, 9, 10} 0.30 0.30
ParVMs on VMs {13, 14, 15, 16} 0.30 0.30
MinTraf on VMs {17, 18, 19, 20} 0.50 0.50

PowerSave 0.0 0.80

our Montage-like task-flow this is theVM with ID 20. Our
two configurations –Nefeli and Nefeli-power– are compared
against our own implementations of the following scheduling
policies:

• Power Saving:in instantiatingVMs exclusively use the
clause that the number of active hosting nodes be the
smallest possible.

• Random: scheduleVMs randomly. The discipline is
straightforward to implement and bears minimal over-
heads.

• Balance VMs:attempt to distributedVMs equally across
all hosting nodes.

CPU performance: we select6 hosting nodes in this experi-
ment and gradually increase the CPU performance rate up to
200 times. Figure 10 depicts the performance gains obtained
while using the configurationNefeli of Table III. TheRandom
and Balance VMsschedulers demonstrate approximately the
same performance. As theBalance VMs iterates over the
hosting nodes for placing newly instantiatedVMs, it would
appear that it should be more beneficial than itsRandom
counterpart. However, it is not. The reason for this is that it
does not discriminate between whichVMs to be deployed on
the hosts.VMs are chosen randomly, though evenly distributed
to hosts. ThePower Savingproduces less network traffic
than Balance VMsand Random thus it is favored by high
performance CPUs.Nefeli consistently manages to outperform
all other schedulers showing that the potential bottlenecks that
have been user-“hinted” through pertinent constraints have
been addressed successfully. Our approach achieves a factor
of 2 to 16 times in throughput increase.

 0

 100

 200

 300

 400

 500

 600

 700

x10 x40 x70 x100 x130 x160 x200

T
hr

ou
gh

pu
t (

K
B

yt
es

/S
ec

)

CPU performance scale

 Random
 Power

 Balance
 Nefeli

Fig. 10. Montagethroughput under increasing CPU performance

Provide additional physical nodes: increasing the number
of physical nodes results in havinga) more CPU-cycles
available, b) increased overall network bandwidth capacity
andc) increased power consumption. We start with3 hosting
nodes and we gradually reach an infrastructure consisting of 10
nodes. In Figure 11, we present the mean throughput delivered
by the Montageworkload when the three schedulers and the
two Nefeli configurations are used. Even in an infrastructure
with very few nodes the performance gains achieved with
Nefeli are noteworthy. As the number of nodes increases,
all schedulers except thePower Savingdisplay minor per-
formance improvements. ThePower Savingscheduler always

 5

 10

 15

 20

 25

 30

 35

 40

 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

K
B

yt
es

/S
ec

)

Number of hosting nodes

 Random
 Power

 Balance
 Nefeli

 Nefeli-power

Fig. 11. Montage-throughput under increasing number of hosting nodes

uses a fixed number of hosting nodes, in our case two, thus it
displays no improvement.

Power saving schedulers are popular among cloud operators
for they reduce the maintenance cost of the physical plant.
Nodes serving noVMs may enter a “deep-sleep” state in
which they consume far less energy compared to their normal
operation.Nefeli-powermay assist in reducing the number of
active hosting nodes through its power saving constraint in
the production of deployment profiles. Given that power is
consumed only by the active hosting nodes and only during
the period the virtual infrastructure is available, Figure12
shows the task-flow throughput achieved normalized by the
number of active nodes. This average throughput rate per
active host captures the power efficiency of the physical
substrate. Lower values indicate that nodes have to remain on-
line longer periods for producing the same amount of output.
ThePower Savingscheduler always uses exactly two nodes to
deploy all VMs and therefore, it remains largely unaffected
by the addition of extra nodes; it provides an average of
3.1 KBytesper active node.Random, Balance VMsandNefeli
use as many hosting nodes as possible. The trend displayed
by those three policies is a decrease in the average throughput
as nodes are added. As Figure 12 shows,Nefeli-poweroffers
an improvement overNefeli in terms of average throughput
achieved per active node.Nefeli-power also outperforms the
Power Savingscheduler in settings with few hosting nodes,
while both policies perform equally well for more than six
nodes. The reason for this is thatNefeli-power “settles” for
solutions that use more nodes in order to satisfy theParVM
deployment constraints.Nefeli-powerpresents a compromise
between the high throughput rates achieved byNefeli and the
number of active nodes. Figure 11, combined with Figure 12,
completes our view of the power saving constraint used
as it depicts the impact of compromising between overall
performance and number of active nodes.

The outcome of experimenting with simulated cloud en-
vironments points out the potential of our approach. While
outlining likely bottlenecks using “hints” or constraintsNefeli
may drastically enhance the overall performance of the equip-
ment used. Moreover, the user does not violate in any way
the cloud contract as she cannot directly influence the inner
working of what is used beneath the cloud middleware. In

 1

 2

 3

 4

 5

 6

 7

 8

 9

 3 4 5 6 7 8 9 10T
hr

ou
gh

pu
t p

er
 a

ct
iv

e
no

de
 (

K
B

yt
es

/S
ec

)

Number of hosting nodes

 Random
 Power

 Balance
 Nefeli

 Nefeli-power

Fig. 12. Average task-flow throughput per active node when increasing
hosting nodes

the next subsection, we outline our evaluation using a private-
cloud environment runningNefeli and show the gains obtained
while competing with the scheduler of the open-source cloud
middleware used [3].

B. Nefeli in a Private Cloud Environment

We have created a cloud-enabled application that usesNefeli
to perform video and audio transcoding. Such applications
are very well suited for cloud execution as manyVMs can
be simultaneously utilized, each one operating on a separate
fragment of the input media. In addition, the elongated pro-
cessing time ameliorates theVM scheduling and deployment
delays. In our implementation of the application, the output file
format may be any of the following: DVD, SVCD or VCD.
For each of those formats the user is allowed to set an extra
video encoding property regarding regional settings (i.e., if
the encoding is going to produce video according to either
PAL or NTSC standards). Also, we first transcode video and
then we separately work with audio. As soon as the output
format (DVD, SVCD or VCD) and the regional settings (PAL
or NTSC) sought are defined, the transformation commences.
A four step procedure is followed:1) the input file is split
into equally sized parts. The number of parts is equal to the
number ofVMs capable of processing them (3 in this setting).
2) each part is dispatched toVMs performing the appropriate
video transformation,3) once video transformation completes,
all parts are forwarded to theVMs that perform the audio
transformation, and finally,4) all segments are merged into
one transcoded video.

All valid combinations of the three output formats and the
two regional settings for audio and video transformation yield
12 distinct tasks. Each of these tasks is carried out by3 VMs
so that the input file split into three parts and processed in
parallel. In our virtual infrastructure, there is a total of6
VMs deployed on3 physical nodes. Table IV presents the
transformational tasks and the correspondingVMs capable
of serving them. The mapping of transformational tasks-to-
VMs is fixed during the the application’s operation whereas
the VM -to-host mapping is performed dynamically byNefeli.
In an optimalVM deployment virtual machines of video and
audio transcoding tasks are distributed among different hosting
nodes so that they do not compete for CPU cycles. The lines

of Table IV show all allowed transcoding operations each one
requiring its own optimal deployment profile.

TABLE IV
MAPPING OF TRANSFORMATIONAL TASKS TOVM S.

Transformation VMs for Video VMs for Audio
DVD/PAL 1, 2, 3 1, 4, 5

DVD/NTSC 2, 3, 4 2, 5, 6
VCD/PAL 3, 4, 5 3, 6, 1

VCD/NTSC 4, 5, 6 4, 1, 2
SVCD/PAL 5, 6, 1 5, 2, 3

SVCD/NTSC 6, 1, 2 6, 3, 4

The constraints expressed toNefeli for each of the profiles
is to have thoseVMs operating simultaneously –processing
different parts of the input file– deployed in separate phys-
ical nodes since they will be consuming considerable CPU
resources. For example in the optimal mapping of DVD/PAL,
VMs 1, 2, 3 are distributed among different nodes as they
perform the video transformations. Along these lines,VMs 1,
4, 5 have also to be placed in different nodes.

When a user commences the procedure of transcoding,
the application issues its constraints so thatNefeli finds
proper deployment profiles. The communication between the
application andNefeli is based on the events mechanism of the
Deployer. We assign one event for each of the output formats
(DVD, VCD, SVCD) and one for the region property (PAL or
NTSC). These four events are triggered by sending a signal
to ports Nefeli listens to. Format and region related events
are combined into boolean expressions before invoking the
Deployer to take appropriate action. For instance, requesting
a DVD/PAL transformation will trigger events “DVD” and
“PAL”.

The transcoding application is setup on a rack whose three
dedicated nodes work under the supervision ofNefeli. All
systems are connected through a1 GBps Ethernet switch.
Each physical node is equipped with8 GB of RAM and
a Intel(R) Core(TM)2 CPU 6600 at 2.40GHz CPU. Live
migration is not available andVMs images are fetched from
a file server. TheVM hypervisor we use is Xen 3.2-1 [25]
and the cloud middleware isOpenNebula v.1.2.0[3]. Nefeli
interacts withOpenNebulathrough its API that is exposed with
the assistance of theXML-RPCprotocol.VMs use 512MB

of RAM and face no restriction on the CPU resource usage. To
achieve this the application splits the video and audio parts into
even smaller parts that are processed in parallel by all CPU
cores. To this end, we make use of theXen VCPU-option in
order to simultaneously utilize all cores available at the CPU.

Figure 13 presents the results of video encoding in our
cloud infrastructure using eitherNefeli or simply employing
the defaultOpenNebula VMscheduler.OpenNebulauses a
match making mechanism based on the free memory and CPU
each hosting node shows and respectiveVM requirements.
Each VM occupies a percentage of the hosting CPU and
uses portion of its memory. TheOpenNebulamatch-making
approach proves ineffective for our application asVM CPU
requirements are known during only runtime and not at

 0

 200

 400

 600

 800

 1000

 1200

ONE Nefeli

T
im

e
(S

ec
)

Merge
Transcode
Split

Fig. 13. ComparingNefeli to OpenNebulain the three phases of the
encoding.

deployment time.Nefeli achieves a 17% improvement on the
time required to have video and audio transcoding complete.
File splitting and merging displays no gains from an optimal
deployment since both operations are performed in a single
node. In our infrastructure featuring hosts with Core(TM)2
CPU 6600 at 2.40GHz processors, we found the overhead for
the production of the deployment profile to be negligible if
compared toVM stagingoperations; it only required less than
5 Secondsto complete.

IX. CONCLUSIONS- FUTURE WORK

This paper presentsNefeli, a flexible gateway that allows for
the effective use of virtual infrastructures.Nefeli accepts user
“hints” regarding the nature of the workload under execution
and exploits conditions that concern the physical infrastructure
to better schedule and utilize instantiatedVMs. These con-
straints essentially designate fundamental deployment patterns
which should they be followed in the actualVM deployment,
they could assist in avoiding potential bottlenecks. While
experimenting with a prototype on both simulated and real
private Iaas-cloud environments, we established significant
gains for Nefeli both in terms of performance and power
consumption. In offering a comprehensiveVM management
in IaaS-clouds, our approach displays a number of advantages:
firstly, it considers the provision of virtual infrastructures
as a whole and does not only deal with the handling of
individualVMs. Secondly, users remain at all time unaware of
the inner structure and/or architecture of the physical nodes.
Thus,Nefeli does offer a true separation of concerns inIaaS-
clouds. Lastly, our approach gracefully adapts to the changing
workload needs asVM migration do occur in order to offset
unfavorable deployments currently in place.

In the future, we plan to:a) integrate the event mechanism
provided byNefeli with other existing monitoring tools like
Nagios[26] and create connectors for other cloud middle-
wares includingEucalyptus[5] and Nimbus [21], b) examine
the use of alternative scheduling options and adopt rigorous
approaches in selecting deployment profiles,c) investigate
ways to organize and better manage virtual resources for
applications that necessitate the use of massive data sets.

REFERENCES

[1] M. T. Jones, “Cloud Computing with Linux,”
http://www.ibm.com/developerworks/linux/library/l-cloud-
computing/index.html, February 2008.

[2] M. Rosenblum and T. Garfinkel, “Virtual Machine Monitors: Current
Technology and Future Trends,”IEEE Computer, vol. 38, no. 5, pp.
39–47, 2005.

[3] “Opennebula,” http://www.opennebula.org, May 2009.
[4] Amazon, “Elastic Cloud,” http://aws.amazon.com/ec2/, 2009.
[5] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,

L. Youseff, and D. Zagorodnov, “The Eucalyptus Open-SourceCloud-
Computing System,” in9th IEEE/ACM Int. Symposium on Cluster
Computing and the Grid (CCGRID), Shanghai, China, May 2009, pp.
124–131.

[6] H. N. Van, F. D. Tran, and J.-M.Menaud, “Autonomic Virtual Resource
Management for Service Hosting Platforms,” inProc. of the 2009 ICSE
Workshop on Software Engineering Challenges of Cloud Computing,
Vancouver, BC, Canada, 2009, pp. 1–8.

[7] X. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y. Chen, and Q. Q.B.Wang,
“Appliance-Based Autonomic Provisioning Framework for Virtualized
Outsourcing Data Center,” inProc. of the 4th Int. Conf. on Autonomic
Computing, Washington, DC, 2007, p. 29.

[8] P. deGrandis and G. Valetto, “Elicitation and Utilization of Application-
level Utility Functions,” in Proc. of the 6th Int. Conf. on Autonomic
Computing. Chicago, IL, USA: ACM, 2009, pp. 107–116.

[9] J. O. Kephart and R. Das, “Achieving Self-Management viaUtility
Functions,”IEEE Internet Computing, vol. 11, no. 1, pp. 40–48, 2007.

[10] G. Tesauro and J. O. Kephart, “Utility Functions in Autonomic Systems,”
in Proc. of the 1st Int. Conf. on Autonomic Computing. New York, NY,
USA: IEEE Computer Society, 2004, pp. 70–77.

[11] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. P. Barros, “Workflow Patterns,”Distributed and Parallel Databases,
vol. 14, no. 1, pp. 5–51, 2003.

[12] K. Lee, N. Paton, R. Sakellariou, E. Deelman, A. Fernandes, and
G. Mehta, “Adaptive Workflow Processing and Execution in Pegasus,”
in Proc. of 3rd IEEE Int. Conf. on Grid and Pervasive Computing
Workshops, Kunming, PR China, 2008, pp. 99–106.

[13] K. Lee, N. Paton, R. Sakellariou, and A. Fernandes, “Utility Driven
Adaptive Workflow Execution,” inProc. of the 2009 9th IEEE/ACM Int.
Symposium on Cluster Computing and the Grid, Shanghai, PR China,
2009, pp. 220–227.

[14] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,”
IEEE–Computer, vol. 36, no. 1, pp. 41–50, 2003.

[15] B. Sotomayor, K. Keahey, and I. Foster, “Combining batch execution and
leasing using virtual machines,” inProc. of the 17th Int. Symposium on
High Performance Distributed Computing. Boston, USA: ACM, June
2008, pp. 87–96.

[16] C. Weng, M. Li, Z. Wang, and X. Lu, “Automatic Performance Tuning
for the Virtualized Cluster System,” Montreal, Quebec, Canada, 2009,
pp. 183–190.

[17] VMware, “vSphere,” http://www.vmware.com/products/vsphere/, Nov.
2009.

[18] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Centi-
mentel, Y. Xing, and S. Zdonik, “Scalable Distributed Stream Process-
ing,” in Proc. of CIDR, Asilomar, CA, January 2003.

[19] Y. Ahmad and U. Çetintemel, “Network-Aware Query Processing for
Stream-based Applications,” inProc. of VLDB’04, Toronto, Canada,
Aug. 2004.

[20] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,M. Welsh, and
M. Seltzer, “Network-Aware Operator Placement for Stream-Processing
Systems,” inProc. of ICDE, Tokyo, Japan, Apr. 2006.

[21] “Nimbus,” http://workspace.globus.org/, Nov. 2009.
[22] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simu-

lated annealing,”Science, vol. 220, pp. 671–680, 1983. [Online]. Avail-
able: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.4175

[23] “Montage: An Astronomical Image Mosaic Engine,” California Institute
of Technology, http://montage.ipac.caltech.edu, Pasadena, CA, 2009.

[24] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, “Characterization of Scientific Workflows,” in3rd Workshop
on Workflows in Support of Large-Scale Science, Austin, TX, November
2008, pp. 1–10.

[25] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in
Proc. of the 19th ACM Symposium on Operating Systems Principles.
Lake George, NY: ACM, October 2003, pp. 164–177.

[26] D. Josephsen,Building a Monitoring Infrastructure with Nagios. Upper
Saddle River, NJ: Prentice Hall PTR, 2007.

