Nefelr Hint-based Execution
of Workloads in Clouds

Konstantinos Tsakalozas, Mema Roussopoulog, Vangelis Floros and Alex Delis#?
#Univ. of Athens, Athens, 15748, Greecék.tsakalozos mema, ad®}@di.uoa.gr
*Greek Research & Technology Network, Athens, 11527, Greslogos@grnet.gr

Abstract—Virtualization of computer systems has made feasi- yield peak performance rates that are below expectation due
ble the provision of entire distributed infrastructures in the form to VM contention on particular physical nodes.
of services. Such services do not expose the internal opeiatal In this paper, we describe the design, implementation, and
and physical characteristics of the underlying machinery © ; L ' '
either users or applications. In this way, infrastructuresincluding evaluatl_on ofNefeli, a cloud gateway, t_ha_t seeks _to overcome
computers in data-centers, clusters of workstations, andetworks ~ contention of VMs for workloads consisting of diverse tasks
of machines are shrouded in “clouds”. Mainly through the executing in a cloudNefeli accepts requests from users for
deployment of virtual machines, such networks of computing execution of particular workloads in the cloud and deploys
nodes become cloud-computing environments. In this paper, \hege workloads within the cloudvefeli performs intelligent
we propose Nefeli, a virtual infrastructure gateway that is . . .
capable of effectively handling diverse workloads of jobsri cloud p!acement ofVMs onto physical nodes using user-provided
environments. By and large, users and their workloads remai hints Users model workloads as patterns of flows of data,
agnostic to the internal features of clouds at all times. Expiting computations, control/synchronization points and negss
execution patterns as well as logistical constraints, ussmprovide network connections. We refer to these patternsask-flows
Nefeli with hints for the handling of their jobs. Hints provide no to distinguish these from the traditional workflow concept.
hard requirements for application deployment in terms of pdring e . - .
virtual-machines to specific physical cloud elementsNefeli helps Specifically, task-flows |Ilustrat_e (_1|st|nct_ computatld)_plaases
avoid bottlenecks within the cloud through the realization of Meant to be executed on (distinct) virtual machines. Users
viable virtual machine deployment mappings. As the types of provide hints toNefeli by highlighting points of possible
jobs change over time, deployment mappings must follow suit resource contention in their task-flowsefeli uses these hints

To this end, Nefeli offers mechanisms to migrate virtual machines to (re-)deployVMs in the cloud in ways that achieve more
as needed to adapt to changing performance needs. Using ourefficient execution

prototype system, we show significant improvements in ovela N .
time needed and energy consumed for the execution of workloa Virtualization as used in currentaaSclouds makes de-
in both simulated and real cloud computing environments. ployment of VMs a straightforward task. However, the large
number of options ofwhere within the cloud to (re)deploy
VMs renders the problem of infrastructure tuning a real
challenge. Moreover, user hints must not be allowed to teola

Computing “clouds” allow for the transparent access ihe cloud abstraction' and refer to internals of the physical
diverse physical resources which are made available in fhardware layoutNefeli addresses both of these challenges.
form of services. In general, cloud services can be clagsifie 10 this date, there have been a number of efforts that attempt
according to the level at which they function as [4): Soft- © f!ne—tune virtual infrastructures for executing spedlypes
ware as a ServiceS@a$, b) Platform as a ServicePaag and of jobs [6_], [7]. In those,_ users “evaluate” the quality of
c) Infrastructure as a Servicta@9. In this paper, we focus on th€ mapping of computational resources /s [8], [9],
laaSclouds [2] that exploit the use of virtual machinagys) [10] by using either fixed service-level agreements (SLAs)
to deploy computing systems on-demand [3], [4], [5]. W' hlgh-leyel condltl_ops. In general, prqducmg an_“evahua
examine the effective deployment ¥Ms so that multiple and funct|on"_ is a nontrivial task for it requires expertise afth
diverse workloads can be efficiently handled by the physichie application at hand and the policies regulating resourc
infrastructure. The key benefit in using EaScloud is that it Sharing within the physical infrastructure [8].
shields users and/or applications from all administratasks ~ Our key objective in buildingVefeli is to free users from
and resource sharing policies of the underlying machinef{)€ task of creating, maintaining and tuning the operatibn o
Moreover, the decoupling of physical resources from systefs in such environmentsvefeli offers a set of predefined
software offers enhanced server-utilization throughamaition Utility functions that help users express task-flows in tthei
of virtual machines and effective options for node recovary Workloads. These utility functions communicate Mefeli

light of failure(s). However, sharing of physical resowsceay possible favorable virtual resource layouts fpr the usersk-
flows. In response to user requests, changing workloads, and

This work has been partially supported by tBdScience | & IIEU FP7 even_ts monitored W_ithin the cloudvefeli PrOduceSVMS. to
projects. physical node mappings that are near-optimal for the ei@tut

I. INTRODUCTION

of admitted task-flowsNefeli deploys these mappings withinfashion— should be also spread across different ndde&f

the cloud by issuing the appropriaté migration calls to course, this deployment pattern is not the only one thatsuser
the underlying cloud middleware. In this entire procesgrsis may ask for. Favoring specifi¥Ms or co-deploying others
have no direct contact with the physical infrastructure. may also result into enhanced performance.

We have created a detailedefeli prototype and experi- Apart from deployment decisiondaaS consumers have
mented with both simulated and real cloud environments. Oaiso no explicit control overVM migrations. Migrations
approach consistently displays significant performance irreshuffle the wayVMs share the same computing nodes so
provements when compared with a variety\@¥ scheduling they may radically hurt or significantly enhance the virtual
policies. In video transcodingyefeli achieves 17% reduction infrastructure’s performance. It would be desirable that t
in processing times while in scientific task-floefeli func- actual placement o¥/Ms to nodes changes to better address
tioning above a simulated cloud demonstrates up to sixtede needs of changing workloads. For instance in a video-
times higher throughput than oth&M scheduling policies. encoding application, it might seem beneficial to use a fighl
Significant savings in terms of power consumption are regbrtdistributed setup folVMs across various physical nodes in
as well. The rest of this paper is organized as follows: Segrder to harness as many CPU-cycles as possible. Occdgional
tion Il states the problem we address and Section Il owglineowever, the aforementioned layout might generate sigmific
earlier related work. Sections IV-VII present in detail thie network traffic calling for opportunistic collocation ®Ms. It
architectural elements alefeli. Section VIII discusses our would be therefore necessary that the cloud should undertak
experimental findings and finally, Section IX offers conéhgl actions to dynamically redepldyMs to better serve workloads

remarks. whose nature may continually change. Overall, the chadleng
laaSclouds face is how to permit more sophisticated interac-
II. MANAGING laaS-CLoUD VIRTUAL RESOURCES tion with the users while keeping the latter agnostic of the

cloud internals. Contemporary clouds allow for transptren
laaSclouds provide for their users a separation of concerpperations at the expense of depriving users from the option
at the level of hardware as their respective services asfusing key virtualization features. By accepting usert$)in
confined in the provision oV/Ms; the latter collectively form Nefeli plays a major role in helping attain favorabl&vi
virtual infrastructures. Users may consutaaS-cloud services deployments. The user remains agnostic of the clouds ilern
yet they are unable to impose changes on the fundameniglany piece of his information arriving at the cloud gateway
aspects and functional characteristics of the elementfi®f &trictly refers to the type of the workload(s) the virtual
underlying physical substrate. Users may only offer miniménfrastructure is to serve.
information in order to influence the performance of theasfr
tructure by indicating how/Ms are to be actually deployed IIl. RELATED WORK
on the physical resources [3]. On the other hand, the cloudsThe behavior of many distributed applications can be
or service providers undertake all administrative actions modeled as recurrent data and control flows (or collectively
physical computing nodes including setting the policy witivorkflows) that often follow distinct and specific patterag].
which consumer requests are to be handled. Nefeli offers the means to state the existence of such patterns
Our conjecture is that both service consumers and producasstask-flows and exploits these patterns to attain b&fiér
possess fragments of information and maintain knowleddgeployment. We have chosen the term task-flow to illustrate
in their own sphere of operation that if combined couldistinct computational phases that take place on virtadliz
jointly improve the effectiveness of the cloud. Knowledgenachines.
of the underlying hardware features, the make-up of theThe allocation of resources in distributed environments
virtual infrastructure as well as the characterization foé t requires adaptive policies. In [12], [13], such resourcarsh
workload in execution could all contribute to more effeetiving policies are proposed for the execution of jobs on the
resource sharing. As the cloud-contract does “prevent” ti&RID. Utility functions [13] are proposed to help quantify
physical substrate from revealing most of its organizationthe efficient execution of jobs in light of different resoerc
features, user preferences and desired operational @mglit sharing disciplinesGRID-jobs are frequently form largeAGs
can be mainly routed from thieaS consumer to the provider. and are often split before they are dispatched for execution
Perhaps, the most critical parameter that users have tb alhis flow splitting allows for re-adjustment in the manageme
the cloud about is the nature of the task-flows submitted. &ri resourcesNefeli also provides dynamic management of
this paper, we take the view that consumers may communicétetual) resources but operates in a much different way,
this information in the form of hints. The latter could be dsethrough migration ofVMs.
while trying to appropriately deployMs. For instance, should In many respectsNefeli realizes a number of features
a user requesyMs with the intention of deploying mirrors of envisaged by autonomic computing [14]. Autonomic systems
a database, this would be of much importan2®&! mirrors
should be placed on different physical nodes so as the systerig!oud providers such as Amazon [4] allow users to askVibts deployed
. . . on different sites. Yet, such ad-hoc engineering solutiomeer only portion
can successfully handle failures. In similar spifMs that

4) of the needs of a user and even worse, they do disclose infiorman the
are to perform parallel jobs —very much in tivdapReduce cloud's internal structure.

attempt to self-adjust according to the needs of the agfits. users.

they process. Here, specific application requirements xare e
pressed in a high-level language which are then interpreted

IV. OVERVIEW OF NEFELI

by the tuning component of the systems. In enterprise in-Nefeliadds a layer between the user and the infrastructure
frastructures, these requirements are described with el hprovidinglaaScloud services, shown in Figure Mefeli must

of service level agreements (SLAs). The level in which anterface with the lower level cloud services that handle th
SLA is satisfied is quantified through user-furnished wtilit VM lifecycle and perform fundamental administrative tasks.
functions [9], [10]. Although, the stated objective of SLi&s This interface, denoted as Clo#dl, allows us to query for

to make applications agnostic of the system they are runnigecific aspects of the hardware resources as well as manage
on, this regularly fails because defining an appropriatityti the VM deployment and migration. During operatiddefeli

function is a nontrivial task. This definition requires both
application expertise and detailed knowledge of the autéao
model used. Moreover, complex SLA requirements frequently
require significant human intervention [8]. In contraSgfeli
uses predefined utility functions that correspond to known
attributes and patterns of all task-flows under executidre T
user chooses from among the predefined utility functions and
uses them to indicate possible points of contention in the
infrastructure. This simplifies the user's responsilatias
1) the user need not create his own utility functions from
scratch an@) the user remains unaware of the cloud internals.

In pure virtualized environments Van et al. [6] and Wang et
al. [7] examine the use of SLA utility functions for workload
execution. Each function provides feedback to a globatesys
wide optimization mechanism that decides\aW deployment
policies. With Nefeli, we target private clouds on which we
process all workloads as if they were served by a singlealirtu
infrastructure featuring multiple task-flows. To this ermdyr
approach uses a single optimization function in which all
deployment preferences are accounted for.

Compared to other existing scheduling/-based load-
balancing systems [15], [16], [17]Nefeli exhibits two key

i

Task-flows

v .
Nefeli

Cloud API

% User

Event Queue

Clllllllls

Cloud Middleware Connector

Extra

Cloud Middleware Functionalities

-9

Hosting Nodes

Monitoring Tools

Fig. 1. Nefelis structured layout and interaction model

differences. First, our approach does not examine the @recu needs to obtain the following information:

of specific VMs in isolation but considers all task-flows e
making up the current workload before rearranging the &irtu
infrastructure. Second, the event-based mechanism usearby
approach to triggeVM rearrangements is not bound solely on «
specific usage thresholds of resources. Inst&ad;migration
is the outcome of external and/or internal perturbations in
our infrastructure. In this regard, we support both reseurc
depletion thresholds but also any monitoring mechanisrh tha
users may desire. .
Finally, data stream processing systems [18], [19], [26] ai
to produce the most efficient placement of operators in the
network for processing of data flowing from data sources to
interested data consumers. These systems assume a thstribu

Physical node propertiesthese properties include free
memory, total memory, CPU utilization, the name/ID of
each hosting node and the amount of free disk space.
The current status of eacdViM: in our approach eactM
may find itself in eitherSTAGINGor RUNNING state.

A VM is considered to b&TAGINGwhen management
operations such as disk image copying during/id
migration do not permit th&/M to run.

VM properties: these are similar to the properties ac-
quired for hosting nodesVM properties include the
memory usage and the disk space reserved in each virtual
machine. Also thelP-address of each/M should be
provided by the clouddPI so as to be forwarded to the

environment where data sources and data consumers are user as &/M access reference point.

widely distributed (geographically or across the Inteyrastd

VM deployment operations are handled through the cloud

task-flows can overlap in terms of operators used and d#Rl| of Figure 1 and include:

streams processedNefeli aims to support virtual machine
placement in a cloud computing environment where datae
sources are locally stored within the cloud. Moreover, task «
flows from different users are assumed to be independent of
each other and hence the instantiation afid for one user’s
task-flow and the specific actions performed by thdt are

Spawn a newM.

Shutdown avVM.

Migrate a VM. For this operation, the names/IDs of the
hosting nodes are needed.

While part of the interactiorNefeli has with the physical
infrastructure can be provided by a cloud middleware[3], [5

disjoint from otherVMs invoked for the task-flows of other[21], there are cases where additional functionality isdnee

For instanceOpenNebula v.1.2.@oes not expose all host-disk image pointer. The secondML section outlines the
related information it gathers. In such cases, we have t@eea constraints to be taken into account for the deployment of
any missing functionality and incorporate it in the “Cloudhe virtual infrastructure. As mentioned earlier, there ar
Middleware Connector” component (Figure 1). two constraints, one fo/M deployment in separate nodes
Nefelihas the role of ataaS-cloud gateway. Users contact-(Par VMs) and one for favoring the deployment &V with
ing Nefeli request virtual infrastructures created imgtanti- 1D 4 (Favor VM. In this secondXML section,VM identifiers
ating sets of¥Ms. Two sample graphs of task-flows executedre used whenever constraints have to refer to speeiis.
in such an infrastructure are displayed in Figure 2. Hereh eaSince the performance impact of specific constraints may be
greater than that of others, the thiXML section contains
@ pertinent user-assigned weights. In this example, theteins
/® l with ID 1 is more important than that with IR and thus,
@ e @ it receives a weight 0.4 While constraint2 get.s a0.3.
\ / \ Note that the correctness neither of the constraints nar the
weights is questioned. We trust the user has knowledge of the
0 @ performance bottlenecks in his task flows. In what follows, w

Task-flow A Task-flow B <Task-flow>

<Virtual Machines>
<VM><ID>1</ID> <RAM>512</RAM> <Disk>VM1.img</Disk> </VM>
; <VM> <ID>2</ID> <RAM>512</RAM> <Disk>VM2.img</Disk> </VM>
Fig. 2. Task-flow sample graphs <VM> <ID>3</ID> <RAM>512</RAM> <Disk>VM3.im§</Disk> </VM>
<VM> <ID>4</ID> <RAM>512</RAM> <Disk>VM4.img</Disk> </VM>
. . . . <VM> <ID>5</ID> <RAM>512</RAM> <Disk>VM5.img</Disk> </VM>
node represents a singlé while edges indicate control and </Virtual Machines>

<Constraints>

data_flows. ThevM speci.fication_s are accompanied with user = 8 hs1</ID> <VMID>2</VMID> <VMID>3</VMID> </ParVMs>
provided deployment “hints”. Hints are expressed as sets of <FavorvM> <ID>2</ID> <VMID>4</VMID> </FavorVM>

</Constraints>

conditions or constraints pointing out a deployment fawgri <Profiles>

specific task-flows within the virtual infrastructure. Agtaser <P'<'§zﬁ$;h<£>l</m>

must be kept agnostic of the internal deployment decision :ggﬁzgig;;;gngg; :&gﬁ:%i
algorithms of the cloud, all available constraint types are </Weights>

. . . 3 </Profile>
provided byNefeli. Constraints, even though important, may </Profiles>

also be contradicting or even impossible to satisfy all at th =™

same time. Therefore, each constraint is coupled with ahteig Fig. 3. Nefeli input derived from sampléask-flow A

value indicating its importance relative to the other hints

provided. In theask-flow Aof Figure 2 some deployment hintsdiscuss howNefeli handles this type of single task-flow input
might be that a)VMs 1 and 2 would preferably be deployedand then we look at how our approach offers simultaneous
on different hosting nodes and WM 4 should be favored execution of multiple task-flows in more than one virtual
by deploying it in a host without any othé/Ms. The latter infrastructures, running on the same physical nodes.
constraint points out a possible CPU performance bottlenec

of the task-flow at hand. Table | presents those constrdiats t .
we frequently found applicable in most task-flows testechwit Figure 4 shows the key steps followed starting from the user

Nefeli. Additional, cloud specific, constraints may allow fofNPut until we reach a/M-to-host mapping, termed deploy-
enhanced Internet connectivity or give data locality hints ment profile. W,'thv being all the_/Mg to be de_ployed and
the set of physical nodes, a profild is a function fromV" to

TABLE | ' H (M :V — H). Nefeli chooses, out of all possible profiles
COMMONLY USED CONSTRAINTS SUPPORTED BWefeli Mgy, one that best suits the constraints expressed for the task-
Favor VW | Try to reserve a single hosting node for a specdfid. | flow at hand. Profile production uses information gathered no

M nTr af Deploy on the same host a set ¥Ms so as to . ..
minimize traffic over physical network connections. only from the user hints but also from the cloud administrato

Par VVE Try to deploy a set o/Ms in separate physical nodes and the physical infrastructure. Combining the user-ptedi

V. SINGLE TASK-FLOW EXECUTION

S0 as not to compete over the same resources constraints with theVM specifications, as described in the
Power Save Sseg(;“;grg‘& Z‘;Eg%‘;fn?osmg nodes XML-document of Figure 3, results in deployment patterns.
Enpt yNode | Offoad a specific physical node These patterns are the outcome of examining user preference

alone and our approach uses them to matbh requirements
] . to physical node resources. This matching process crdaes t
A single XML document can be used to contain all usefc,al deployment profiles once preferences from the cloud

provided information. Figure 3 presents all aspects rélatgqministration have been taken into account.
to task-flow A In the first section, theVM specifications

are provided. EacVM is assigned a system-wide identifierA- Constraints
The user also sets RAM requirements and points to\the Constraints express user and administration prefererces.
type that needs to be instantiated by providing the propeonstraint is realized as a utility functiofi : M,; — [0, 1]

3 User provided XML

B. Profile production

Do 3 . . .
! % Speciﬁcaﬁonsof% | Each possible deployment profike is assigned a score
o= Virtual Machine ! computed by the formula:
Constraints
7777777777777777777777777777777777 Scorgm) = Z w;Const;(m),
Const;€Cs
Depioyment ﬁ where Cs is the set of all constraints and the respective

weights. In the example of Figure 3 where the two constraints

Adminisation lH MM Par Vs and Favor VM with weights0.3 and 0.4 are used,

Constraints Hardware the Scoreof a deployment profilen becomes:

Specifications

- Scorém) = 0.4 x Par VMs (m) + 0.3 x Favor VMm)
Pofie The optimal profile £.,.) is the one with the highest score:

Fig. 4. Nefelis operational model Scorgm,,,) > Scorémy), Vmg € Mgy

where M, is the set of all deployment profiles.

Finding optimal deployment profiles idlP-hard so we

tha; Tvaluartles ahs;ngle_dep;:oymer)t p(;_oflle. l? tnef ?ontex_t 8an|oy simulated annealing [22] to attain plausible approx
Nefeli, each such function has at its disposal all informatiog, »iong | Algorithm 2, we start from a randonvM

regarding the characteristics of both physical and vimales. deployment, produced bget RandonPr of i | e, and visit

An example of the utility functiorFavor VMis presented by Eadua"y higher-scoring neighboring deployment profileise

Algor.ithm L nge, we measure the success of a profile ighbors of each deployment profile are generated by accall t
favoring a specificvM. From the perspective of the physica t Nei ght bor OF . The neighborhoodV,, of a deployment
infrastructure, favoring &/M means that it shares the Sam?)rofilem is the set:

hosting node withas few aspossibleVMs. To evaluate the

success of a deployment profile in satisfying this constyaia Ny = {N € Myu|Prob(N(v) # m(v)) = d,Vv € V},

first coun; aIIVIV:s co—It())cagefd with the on(i we rf]avor ar|1d therl]-iere,v is the set of allVMs, M, is the set of all profiles,
we use the total number dfMs to normalize the result. We ; i e probability for aVM v to be deployed on a hosting

assume that all resources are equally shared among c@docat, 4 other than the one set by profile Increasing! results

VMs. Given that aI_I functions ara_lefeli-provided, WE ensure i, wider neighborhoods and usually longer paths between suc
that such assumptions are consistent across the boardl for Qﬁ/sively visited neighbors. Yet, too wide neighborhoessilt

constramtsb If and when ongtmor more a_inSLrJ]mpnons reggrdﬁﬂgalmost randomly generated neighbors and thus deployment
resources becomes inaccuratthen, we will have to provide profiles of low quality.

new implementations for affected utility functions. Thétda Algorithm 2 chooses to updateurrent profil e
are expected to work in a plug-and-play fashion. Clearl, %ith one of its neighbors based on a proBabiIity factor:
utility functions of Table | are realized in similar fashidut p/7 Random(), whereD is the score improvement we get

for brevity we omit their detailed discussion here. using the neighboring profile aridthe temperature. Using this
formula, we handle local minimum pits by allowing “jumps”

Algorithm 1 Favor VM Utility Function to lower scoring profiles. However, when the temperature
Input: VM_I D: ID of the VM to favor drops near zero1()—°®) only higher scoring neighbors are
V': Set of virtual machines visited. Apart from the starting temperature and the nunalber
M(): Deployment profile function non-improving iterations performed before returning tlestb
Output: Satisfaction degree of “Favor Virtual Machine” constraint profile (same_i t er at i ons), another option for enhancing
Begin the profile quality is the number of timé¢efeliruns simulated

%} 28%(':';63 JZ%’M—'D) annealing. Starting from a different initi&®V deployment, we

3 al VMs = 0 may reach a different near-optimal solution.

4: forall veV do Our approach decouples the profile evaluation and gen-

gf i C(gﬁ’;é—;t';;i”(ID of v)) AND (ID of v = VM_ID) then eration from the process of finding a near-optimé¥-to-

70 end if host mapping. This allows us to place constraints into two

8: alLVMs++ categories:

9: end for « Soft Constraints: the degree of satisfaction of constraints
10: return (all_VMs - collocated)/all VMs that belong in this class contributes to the overall quality
End of the produced profile.

SFor relatively small infrastructures, simulated annegliperforms well.
However, in large infrastructures other, more efficienttinds should be
2perhaps due to major changes in the infrastructure considered.

Algorithm 2 Simulated-Annealing-based Profile Production
Input: same_iterations: After how many iterations showing no im-
provement will we stop our search
T: Temperature
Scor e() : Deployment profile score function
Output: A near-optimal deployment profile
1: same =0
best profile = currentprofile = GetRandomProfile()

3: while same<sameiterationsdo

4: new profile = GetNeightborOf(currenprofile)
5:

6

N

D = Scordnew_profile) - Scordcurrent profile)
if (T>10"2 AND ¢P/T > Random()) OR
(T < 1075 AND D > 0) then

7: current profile = new profile

8. endif

9: if Scorénew profile) > Scorébest profile) then
10: bestprofile = new profile
11: same = 0
12: endif
13: same++
14: T=099*T
15: end while

16: return best profile

<Task-flow>
<Virtual Machines>
<VM><ID>1</ID> <RAM>512</RAM> <Disk>VM1.img</Disk> </VM>
<VM> <ID>2</ID> <RAM>512</RAM> <Disk>VM2.img</Disk> </VM>
<VM> <ID>3</ID> <RAM>512</RAM> <Disk>VM3.img</Disk> </VM>
<VM> <ID>4</ID> <RAM>512</RAM> <Disk>VM4.img</Disk> </VM>
<VM> <ID>5</ID> <RAM>512</RAM> <Disk>VM5.img</Disk> </VM>
</Virtual Machines>
<Constraints>
<MinTraf> <ID>1</ID> <VMID>1</VMID> <VMID>4</VMID> </MinTraf>
<ParVMs> <ID>2</ID> <VMID>3</VMID><VMID>5</VMID> </ParVMs>
</Constraints>
<Profiles>
<Profile> <ID>1</ID>
<Weights>
<ConstrID>1</ConstrID> <W>0.4</W>
<ConstrID>2</ConstrID> <W>0.3</W>
</Weights>
</Profile>
</Profiles>
</Task-flow>

Fig. 5. Nefeli input derived from sampléask-flow B

Producing a deployment profile for both task-flows of
Figure 2, is done by combining the respective descriptions
of Figures 3 and 5. In this case, the set\d¥Is is the same
in both descriptions but the set of constraints to be consile
is the union of all constraints. Constraint weights hargllin
policies may need to take into account the financial gain from

« Hard Constraints: conditions placed in this group havesatisfying specific users. However, such policies are out of
to be satisfied to their full extent. Otherwise, task-flowghe scope of this paper. We expect them to be enforced at a
featuring such constraints are simply not admitted fafigher level also. The score function for a deployment peofil

execution and receive no further consideration.

Escalating the severity of a soft constraint to hard reguire

setting its weight tol1.0 in the respective task-flonXML-
description. Soft constraints are used for the computadion

each profile score. Hard constraints are taken into consid

ation during the generation of new profiles from functio
Get Nei ght bor O and Get RandonProf i | e of Algo-

rithm 2. These two functions also take into account the alwio

constraints raising from the limited availability of hardre

resources such as the available main-memory on each hos

node.

VI. HANDLING INCREASING NUMBERS OF TASK-FLOWS

m becomes:

Scorém)

0.4 % Par VM5 (m) + 0.3 x Favor VM'm) +
+ 0.4 «MnTraf (m)+ 0.3 x Par VMs2(m)

WhereParVMsl and Par VN6, are thePar VMs constraints

N8t task-flove A and B respectively.

A task-flow departure also calls for the production of a new
deployment profile. This time the constraints used will hive
be the ones referring to the task-flows remaining for exeauti
?‘ﬂ% VMs used explicitly by the terminated task-flow alone will
also have to be removed.

A transition between deployment profiles (as in the case
of adding or removing task-flows) involvegM migrations

As clouds serve many users, each one in need of Mgt in the absence of a live migration feature result in
own private infrastructure, multiple task-flows may have tgéome down time of the virtual infrastructures. In this case,

be active for simultaneous execution. In its simplest forn¥Ms have to be suspended and copied to other computing
multiple task-flow execution appears whedefeli serves a nodes where they can resume their normal operation. To
single task-flow while a new one is submitted. In this castackle such inefficiency, the profile creation procedure may
a single deployment profile must be produced taking inteade profile quality for swifter transitions. To this endgw
consideration constraints for both task-flows. define the distance of two profiles to be the numbev/ts
Figure 5 shows theXML-description for the second task-deployed on different hosting nodes in the profiles compared
flow of Figure 2. For this task-flow there are two constrgint@eﬁmtion: The distanceDist betweenM,, My € M,y is:
a) nodesl and4 would better be co-located since they will be
producing too much network traffic arlij nodes3 and5 are
to be deployed on different hosting nod&44 IDs are system-
wide identifiers thus both task-flows of Figure 2 make use f,
the sameV/Ms; the two graphs describe different flows withi
the same virtual infrastructuréVefeli never reveals the set
of VM identifiers to users. Collaborative environments whe
users shar&Ms, thusVM IDs, in producing task-flows have
to be realized by frameworks in a higher level.

Dist(My,Ms) = |{v € V : My(v) # Ma(v)}|

Given an initial deployment profilen, to reduceVM mi-

ation overheadalefelifirst producek high scoring profiles
nd then picks the one whose transition fream requires

migrating fewerVMs. Let M, be the set of thé&-top scoring

r;?rofiles produced, the onen() that will be used is:

myg : Dist(mg, ms) < Dist(m;, ms), ¥m;, mg € My

With & regulating the tradeoff between migration overhead and support this kind of activity and it does so by respondimg t
profile quality, we are able to express the virtual infrastru events set by the administrator combined with hard comggai
tures’ sensitivity to downtimes. included in task-flow descriptions. In similar spirit, aetiion
of constraints such aPower Save, may be performed on
demand.

e Events triggered by any monitoring activity in the context o
In Figure 6, we present the environment in which the maifie cluster, the virtual infrastructure or an authorizedrth
Components ONefe/iOperate. Th@ep|0yel’is the Component party Component:typica”y' VM redep|0yment takes p|ace
that keeps track of all active task-flows. This component Ugfter a threshold in a resource utilization is exceededoiin

the cloud middleware connectdtefeli offers hooks for mon-

VII. NEFELI'S COMPONENTS ANDAPPLICATION
INTERACTION

5) D % % b itoring CPU utilization on bothVMs and hosting nodes.
3 . t Specifcations of . Other internal activities like network traffic are monitdre
8 onstiams .~ Viual Machines - User-moniored Events through third party monitoring tools (Figure 1) that have to
/ be installed within the infrastructure. Receiving this eypf
y " Nefeli- The Cloud Gateway event may indicate that the deployment profile currentlyduse
5 Planner Deployer is ineffective. For instance, long time periods with specifi
-‘g @ 1ss hosting nodes displaying high CPU loads while others stay
< " 8 § idle, mean that th&/Ms hosted on those nodes have become
Doporent 15 8 a performance bottleneck. Such bottlenecks can be hangled b
/ a redeployment o/Ms. This class of events includes events

»\ ‘ Cloud Middleware Connector ‘

N

coming not only from the physical infrastructure but frone th
virtual as well. The virtual infrastructure may signal thede
of a task-flow or even the initiation of a new one. This event
class allows for the development of cloud efficient appiorat
while keeping them agnostic of the infrastructure on which
they are being executed.

\
\
\

\\ P/ //
- 8
Administration E‘ Infrastructure
Constraints & Monitoring

Physical nodes

A. Applications-Driven Operation

Users contacting afaaScloud in search of a virtual in-
dates a list of all submitted task-flow descriptions upoivalr frastructure are well aware of the task-flows comprising the
of external events. Event arrival also causes the intemactiworkload they need to serve. In such cashgfeli allows
betweenDeployerand Planner. The Deployerprovides a list users to have control over which specific task-flows are to
of task-flows, constraints and the respective weights, hed te favored.

Planner produces a single deployment profile as if it were a Figure 7 presents the description of a workload that fur-
single task-flow. The profile produced is applied using dalls nishes more than one task-flow within the same infrastrectur
the cloudAPI. As in the case of a single task-flow submission ‘he t ual
The event-based mechanism that triggers Breployefs Machi nes section describes aWMs of the virtual infras-
operation is not limited to events caused by new task-flowucture. TheConst r ai nt s section describes all constraints
submission. This user generated event is not the only oregardless of the task-flow they are referring to. What diffe
required to handle task-flowslefelimust also be informed of entiates task-flows is the weight values with which constgai
a task-flow ending. Task-flow termination events come fromre accounted for during deployment profile production.eNot
either the user or some component of the task-flow itself. here that if the user wants to optimize th/ deployment
The overall goal ofNefeliis to make choices regarding thefor simultaneous execution of more than one task-flow she
deployment profile based on the user’'s needs and the systemisst consider the combination of the respective task-flows i
performance. To this end, we have extended the capabilitiesa new profile and thus provide a combined set of weights. In
the notification mechanism so thiefelireceives any kind of the Pr of i | es section the number of weight sets provided
signal that will assist in achieving its goal. We group egsenhave to be equal to the number of deployment profiles to be
into two classes according to their origin: produced. In the workload of Figure 7, there are t\Mids with
e Events activated by direct human interventi@vents of IDs 1 and2. Each binds to &avor VMconstraint with 1Dsl
this class include the submission or removal of any numband2. The user’s intention is to have two deployment profiles
of task-flows served. This class also includes events tHpt heach one with the respective constraint active. Theretbese
users gain full control over the cloud’s ankfelis operation. are two deployment profiles in ther of i | es section, each
Consider for example node maintenance tasks that requiree assigning.9 weight to the constraint to be active abd
specific parts of the hardware infrastructure to be shutdown the other one.
The cloud administration must migrate the hostéttls to The next two sections of the inpXML of Figure 7 refer to
nodes that will not be affectediefeli must provide the meansthe transition between the deployment profiles. Bvent s

Fig. 6. The environmenlefeli operates in.

<Multiple Task-flows> <Events>

<Virtual Machines> <Event_A><ID>1</ID> ...</Event_A>

<VM> <Event_B> <ID>2</ID> ...</Event_B>

<ID>1</ID> <RAM>512</RAM> <Disk>VM1.img</Disk> <Event_C><ID>3</ID> ... </Event_C>
</V1V>I> <NOT> <ID>4</ID> <Invert_ID>3</Invert_ID> </NOT>

> < >4< > < >
<ID>2</ID> <RAM>512</RAM> <Disk>VM2.img</Disk> <AND> <ID>5</ID> <EventID>2</EventID> <EventID>4</EventID> </AND:

</VM> <OR> <ID>6</ID> <EventID>1</EventID> <EventID>5</EventID> </OR>
</Virtual Machines> </Events>
<Constraints>

<FavorVM> <ID>1</ID> <VMID>1</VMID> </FavorVM> Fig. 8. Combining events into boolean expressions.

<FavorVM> <ID>2</ID> <VMID>2</VMID> </FavorVM>
</Constraints>
<Profiles>

<Profile> <ID>1</ID>

<Weights> transitions are described in the final section of the inpMiL
<ConstrID>1</ConstrID> <W>0.9</W> description. In the example of Figure 7, the event with1ID
<ConstrID>2</ConstrID> <W>0.0</W> . . .
</Weights> will cause a transition from the deployment profiléo profile
</Profile> 2 H B H . H
while activation of the evert will have the opposite effect.
<Profile> <ID>2</ID> !
<Weights> , The outcome of this “Multiple Task-flow” description is that
<C trID>1</C trID> <W>0.0</W> . .
onsHrID </ Const VM 1 will be favored for 1,000 seconds and theiV 2 will
<ConstrID>2</ConstrID> <W>0.9</W> ; .) '
</vzt1=ights> be promoted until the messa@hange is received. ThisYM
</Profile>
favoring loop will continue as long as the virtual infrastture
</Profiles>
<Events> remains on-line.
<Time>
<ID>1</ID> <Period>1000</Period> To serve a workload request indicating execution of mutipl
foime> task-flows Nefeli starts with the creation of the first profile
</N<Ig>2</11)> <Port>2324</Port> <Msg>Change</Msg> in the respective description document section. As soa thi
€
</Events> rofile is applied, thédeployerof Nefeli goes over the profile
/
<Transitions> transitions and registers for receiving those events thtt w
<Transition> cause a transition to a next profile. Upon receiving such an
<from>1</from> <to>2</to> <event>1</event> . o
</Transition> event, theDeployerproduces and applies the transition target
<Transition> profile. Immediately after that, it unregisters the old @gsen
<from>2</from> <to>1</to> <event>2</event> . I d Th fl .
</Transition> and registers any new events listed. This profile swapping
</Transitions> continues until the task-flows are removed. Of course, sgrvi

</Multiple Task~flows> workloads with multiple task-flows does not preveméfeli

from serving separate task-flows at the same time. The key
difference in this kind of task-flow description is that each
time only one profile from thé&r of i | es section is used for
section points out events whose signal will cause a changdfi§ creation of new deployment profiles.

the deployment followedNefeli can be extended with user-
provided, application-specific events since their impletae
tion does not require exposing any information about cloudWe have implementedNefeli as a Java library to more
internals. CurrentlyNefeli provides two event types (of thereadily have it embedded in cloud management systems. Our
second category of the previews subsection), also usedgluréxperimental evaluation that involves at all times defeli

Fig. 7. Nefeli input example.

VIIl. E VALUATION

our evaluation: prototype has a number of key objectives which are to:
« A time-based event that periodically sends a signal. « Examine the efficiency of our system as compared to ex-
» A network-based event that starts a server listening for a isting job scheduling alternatives as far as CPU utilizatio
predefined message to arrive. and throughput rates achieved for diverse sets of task-

Both event types are demonstrated in Figure 7. Here, the first flows.
event, with ID 1, will be triggered everyl000 seconds as .« Investigate the behavior oNefeli as the number and

defined within theTi e tag. The second everitit tag) will features of virtual resources available for processing
have Nefeli listen for messages coming in to p@324. If change over time.

the message received is the stridigange, the event will be « Evaluate the overheads involved in deploying and using
triggered. Nefeli for interacting with cloud computing systems.

All events can be used in boolean expressions formed usidgr evaluation process includes experimentation: \aitdi-
AND, OR andNOT aggregation events. Figure 8 presents onerse scientific task-flows executed on simulated infrastru
such expression. The event with Iis triggered when the tures andb) applications executed in thaascloud environ-
expressionA OR (B AND (NOT C)pvaluates to trued, B ment of our laboratory. The difference between simulation
andC are events with ID$, 2 and3 respectively. The booleanand real application evaluation is in the infrastructuredis
event operator©R, ANDand NOT make use of other event— we have done this mainly to maximize flexibility during
IDs to point to their operands. our evaluation. We have implemented two cloud middleware

Events cause transitions between deployment profiles.eThesnnectors: the first simulates an infrastructure and thersk

interacts with OpenNebula[3] through XML-RPC At this
time, OpenNebulalong withEucalyptug5] and Nimbus[21]

are all key open-sourciaS-cloud middleware projects with
similar if not identical objectives. In what follows, we firs
examine scalability and performance issues using the simu-
lated infrastructure and subsequently present the gainsiog
Nefeliin a real application.

A. Nefeliin a Simulated Cloud Environment

The physical nodes of the simulated infrastructure are
assumed to be connected over a Mbps switch in a star
network topology. Each node provides two types of resources
RAM and CPU-cyclesVMs reserve RAM upon their deploy-
ment* and consume CPU-cycles to transform input data into TABLE Il
Output. The amount Of aVaila.ble CyCIeS per Second to be dhal’e VM CHARACTERISTICS FOR THEMOI']tageLlKE TASK-FLOW.
among hostedVMs allow us to designate the CPU perfor- |

Fig. 9. Montagelike task-flow

. VM 1Ds | Input-to-Output | Cycles-to-Output |
mance rate. We set physical noqles to ha@B_of RAM and 0.2.3.4) 05070 05330
virtual ones 512V B. The behavior of eacM is designated {5,6,7,8,9, 10} 29.4070 0.0500
by theinput-to-outputsize ratio (inputKBytegoutputKByte3 11 1.5000 0.0014
; ; ; 12 30.0000 9.1910
and the CPU-cycles required to produce a single output unit ERTRERTH T 5010 07390
(cycles / outputkByte3. The input-to-outputratio quantifies T 0.0200 334910
how much of the input must be consumed in order to produce 18 1.0790 10.9050
a single unit of the output data. Similarly, thgcles-to-output 19 25.0650 0.5370
20 20.6250 0.0290

ratio indicates how many cycles have to be expended in order
to produce a single unit of output (i.eByte. Output bytes
are forwarded to other virtual machines consuming network

bandwidth. Using the above abstraction, a task-flow creatiq,eights for each of the constraints used in order to generate

requir_es the fo!lowing: firstly, setting up characteristaf each o deployment profiles. The weights in question highlidet t
VM with both input-to-outputand cycles-to-outputates and jiq|y presence of bottlenecks and offiefeli flexibility while

secondly, defining the network connections designated 8y {5cing variousvMs in different computing nodes. Table il

data paths of the specific task-flow(s) at hand. depicts two sets of constraints: the first is mostly conagrne
The workload we present here is highly influenced by tgith throughput attained by the infrastructure and is simpl
Montageengine that generates sky mosaics [23]. This engifgmed Nefeli, while the second includes the restriction that
is used in scientific applications as the wrapper t0 acC&g |owest number possible of hosting nodes should be active
telescope data. |t is used by several groups of astronOmers, jatter essentially has to do with the consumption of ppwe
including those iNNASAfor processing images taken froMgfien of very high-concern in computing installations, asd
space. During operation, numerous input images are scalgfls set is termedVefelipower On aCore(TM)2 Duo CPU
rotated and filtered using specialized algorithms so that th7100 at 1.80GHproducing a deployment profile for any of
images produced correctly map sky-areas. This applicatigfy o Nefeli configuration adds an overhead of less than
has been split into well defined tasks so that it can REg seconds
conventionally executed on cluster environments. Figure 911 cimulated environment allows us to perform two types

dh§p|ctskp][|ocess;]ng nodes and thednetv;/ork topology used BVey neriments that would have been otherwise impossible to
this task-flow. Thanput-to-outputand cycles-to-outputatios oo ysing a physical infrastructure. Here, we cayse-

for all VMs, as extracted in [24], are shown in Table II. lectively “increase” the CPU performandg), offer additional
The way nodes have been “networked”

- . . as v_veII as the dfi%‘sting nodes. In all cases, we measure the throughput of the
flow ratios of Table Il readily point out potential bottlerksc entire flow by measuring the outcome of the trailing node; in
of this task-flow and thus, we can easily formulate a number

of user hints to be passed téefeli. For example, the/Ms

insets{1,2,58,4},{5,6,7,8,9,10} and{13,14,15,16} TABLE Il

have to be deployed in different hosting nodes as they operat | WO SETS OFUSERWEIGHTED CONSTRAINTS FORMontage

in parallel, while nodes{17, 18, 19,20} are better placed | Constraints | Nefeli | Nefelrpower |

on the same hosting node since they operatsenuencend 5 PSLZNB ?MV/\zz {61,72,83794}10} 8-28 8-33

i 1 ar on S » 9, 1,0, . .

may consume considerable network bandwm_zlth (as‘data'-,ﬂows Par VNG on VMs {13, 14,15,16] | 0.30 550

in Table Il indicate). Table 11l presents our choice for ‘aréd M nTraf on VMs {17, 18, 19,20} | 0.50 050
Power Save 0.0 0.80

4VM deployment may fail due to resource shortage.

our Montagelike task-flow this is theVM with 1D 20. Our 40 —
two configurations Nefeli and Nefelipower are compared 7 7] phower 7
against our own implementations of the following schedulin @ 30n Nefeli - 1
policies: ;%
o Power Savingin instantiatingVMs exclusively use the ::'
clause that the number of active hosting nodes be the s
smallest possible. E
o Random: schedule VMs randomly. The discipline is ©
Etraij;htforward to implement and bears minimal over- s 4 s & 7 8 9 1w
eads. Number of hosting nodes
« Balance VMs:attempt to distributed/Ms equally across
all hosting nodes. Fig. 11. Montagethroughput under increasing number of hosting nodes

CPU performance: we select6 hosting nodes in this experi-
ment and gradually increase the CPU performance rate up,{0.q 5 fixed number of hosting nodes, in our case two, thus it
200 times. Figure 10 depicts the performance gains obtainagmayS no improvement.

while using the configuratioNefeli of Table Ill. TheRandom
and Balance VMsschedulers demonstrate approximately th%
same performance. As thBalance VMsiterates over the

Power saving schedulers are popular among cloud operators
r they reduce the maintenance cost of the physical plant.
) Nodes serving noVMs may enter a “deep-sleep” state in
hosting nodes for placing newly instantiat&/s, it would . 9 Y b p S

which they consume far less energy compared to their normal

appear that it should be more beneficial than Random . . Y .
o o operation.Nefel-powermay assist in reducing the number of
counterpart. However, it is not. The reason for this is that |

does not discriminate between whisfMs to be deployed on active hosting nodes through its power saving constraint in

the hostsVMs are chosen randomly, though evenly distributetc(li(') iszrﬁ]ilécg?ﬁ OJ dtizloggg\?gthzrs(iif:esﬁcffjlggna;zagrﬂovéirriIns
to hosts. ThePower Savingproduces less network traffic y by g y 9

than Balance VMsand Randomthus it is favored by high the period the virtual mfrastructure_ls ava|lable,_F|gUIré
; . shows the task-flow throughput achieved normalized by the
performance CPUs\Vefeli consistently manages to outperform

: : number of active nodes. This average throughput rate per
all other schedulers showing that the potential bottleadlkt . 19 gnp P
o N : . active host captures the power efficiency of the physical
have been user-“hinted” through pertinent constraintsehay o)
: substrate. Lower values indicate that nodes have to renmain o
been addressed successfully. Our approach achieves a facto . .
. . . ine longer periods for producing the same amount of output.
of 2 to 16 times in throughput increase.

The Power Savingcheduler always uses exactly two nodes to
deploy all VMs and therefore, it remains largely unaffected

700 L S — T

el B] | by the addition of extra nodes; it provides an average of
8 3.1 KBytesper active nodeRandom Balance VMsand Nefeli
E el 2t Random —+—1 | use as many hosting nodes as possible. The trend displayed
g 4o pwer by those three policies is a decrease in the average thratghp
5 s0f Nefeli o | | as nodes are added. As Figure 12 shoMesfelrpoweroffers
% 200 |- X: i an improvement oveNefeli in terms of average throughput
£ 10l g achieved per active nodé&lefel-poweralso outperforms the
S ‘ Power Savingscheduler in settings with few hosting nodes,
x10 x40 x70 x100 x130 X160 x200 while both policies perform equally well for more than six
CPU performance scale nodes. The reason for this is thifefelipower “settles” for

solutions that use more nodes in order to satisfy Rae VM
deployment constraintgVefelipowerpresents a compromise
Provide additional physical nodes:increasing the number between the high throughput rates achieved\feli and the

of physical nodes results in having) more CPU-cycles number of active nodes. Figure 11, combined with Figure 12,
available, b) increased overall network bandwidth capacitgompletes our view of the power saving constraint used
andc) increased power consumption. We start withosting as it depicts the impact of compromising between overall
nodes and we gradually reach an infrastructure consisfing o performance and number of active nodes.

nodes. In Figure 11, we present the mean throughput detivere The outcome of experimenting with simulated cloud en-
by the Montageworkload when the three schedulers and tharonments points out the potential of our approach. While
two Nefeli configurations are used. Even in an infrastructuiutlining likely bottlenecks using “hints” or constraintefeli
with very few nodes the performance gains achieved withay drastically enhance the overall performance of thepequi
Nefeli are noteworthy. As the number of nodes increasesent used. Moreover, the user does not violate in any way
all schedulers except thPower Savingdisplay minor per- the cloud contract as she cannot directly influence the inner
formance improvements. Theower Savingcheduler always working of what is used beneath the cloud middleware. In

Fig. 10. Montagethroughput under increasing CPU performance

I

§ 9 w — of Table IV show all allowed transcoding operations each one

2 er poower 1] requiring its own optimal deployment profile.

< 7r ~ Nefeli &

% 64 Nefeli-power ——#— TABLE IV

S 5L i MAPPING OF TRANSFORMATIONAL TASKS TOVMS.

- -
‘% 4l B . i [Transformation | VMs for Video | VMs for Audio |
el . — =i

g gt b DVDIPAL 1,23 1,45

5, DVD/NTSC 2,3, 4 2,56

5, - e) VCD/PAL 3,4,5 3,6, 1

3 1 1 1 L 1 1 VCD/NTSC 4,56 4,1, 2

£ 3 4 5 6 7 8 9 10 SVCD/PAL 56,1 5723
Number of hosting nodes SVCD/NTSC 6,1,2 6, 3,4

Fig. 12. Average task-flow throughput per active node whesremsing
hosting nodes . . .
The constraints expressed Mefeli for each of the profiles

is to have those/Ms operating simultaneously —processing

the next subsection, we outline our evaluation using a ferivadifferent parts of the input file— deployed in separate phys-
cloud environment runningyefeli and show the gains obtainedical nodes since they will be consuming considerable CPU
while competing with the scheduler of the open-source clotiisources. For example in the optimal mapping of DVD/PAL,
middleware used [3]. VMs 1, 2, 3 are distributed among different nodes as they
N _) perform the video transformations. Along these lings/s 1,
B. Nefeliin a Private Cloud Environment 4, 5 have also to be placed in different nodes.
We have created a cloud-enabled application that Nedsli When a user commences the procedure of transcoding,
to perform video and audio transcoding. Such applicatiotise application issues its constraints so thdefeli finds
are very well suited for cloud execution as maws can proper deployment profiles. The communication between the
be simultaneously utilized, each one operating on a separapplication andVefeliis based on the events mechanism of the
fragment of the input media. In addition, the elongated pr®eployer We assign one event for each of the output formats
cessing time ameliorates théV scheduling and deployment(DVD, VCD, SVCD) and one for the region property (PAL or
delays. In our implementation of the application, the otfigs NTSC). These four events are triggered by sending a signal
format may be any of the following: DVD, SVCD or VCD.to ports Nefeli listens to. Format and region related events
For each of those formats the user is allowed to set an extn@ combined into boolean expressions before invoking the
video encoding property regarding regional settings,(ife. Deployerto take appropriate action. For instance, requesting
the encoding is going to produce video according to eithar DVD/PAL transformation will trigger events “DVD” and
PAL or NTSC standards). Also, we first transcode video arf@AL”".
then we separately work with audio. As soon as the outputThe transcoding application is setup on a rack whose three
format (DVD, SVCD or VCD) and the regional settings (PAlLdedicated nodes work under the supervisionNs#feli. All
or NTSC) sought are defined, the transformation commencsgstems are connected throughl aG Bps Ethernet switch.
A four step procedure is followedt) the input file is split Each physical node is equipped with GB of RAM and
into equally sized parts. The number of parts is equal to thelntel(R) Core(TM)2 CPU 6600 at 2.40Hz CPU. Live
number of VMs capable of processing themi(this setting). migration is not available an&¥Ms images are fetched from
2) each part is dispatched WMM's performing the appropriatea file server. TheVM hypervisor we use is Xen 3.2-1 [25]
video transformation3) once video transformation completesand the cloud middleware i®penNebula v.1.2.(B]. Nefeli
all parts are forwarded to th&#Ms that perform the audio interacts withOpenNebuldhrough its API that is exposed with
transformation, and finally4) all segments are merged intothe assistance of th&€ML-RPC protocol. VMs use 512M B
one transcoded video. of RAM and face no restriction on the CPU resource usage. To
All valid combinations of the three output formats and thachieve this the application splits the video and audicsgatod
two regional settings for audio and video transformatiaid/i even smaller parts that are processed in parallel by all CPU
12 distinct tasks. Each of these tasks is carried ou8 bMs cores. To this end, we make use of tken VCPU-option in
so that the input file split into three parts and processed ander to simultaneously utilize all cores available at tHelUC
parallel. In our virtual infrastructure, there is a total ®f Figure 13 presents the results of video encoding in our
VMs deployed on3 physical nodes. Table IV presents theloud infrastructure using eithé¥efeli or simply employing
transformational tasks and the correspondiitfs capable the defaultOpenNebula VMscheduler.OpenNebulauses a
of serving them. The mapping of transformational tasks-toaatch making mechanism based on the free memory and CPU
VMs is fixed during the the application’s operation whereaach hosting node shows and respectd requirements.
the VM-to-host mapping is performed dynamically Biefeli. Each VM occupies a percentage of the hosting CPU and
In an optimal VM deployment virtual machines of video anduses portion of its memory. Th®penNebulanatch-making
audio transcoding tasks are distributed among differestitigp approach proves ineffective for our application \d@s! CPU
nodes so that they do not compete for CPU cycles. The linesjuirements are known during only runtime and not at

1200 T

m Split
Transcode
EXXX Merge

(2]

1000 -
800

(3]
1 (5]

600

Time (Sec)

400

200

ONE Nefeli

Fig. 13. el

encoding.

ComparingNefeli to OpenNebulain the three phases of the

(7]
deployment timeNefeli achieves a 17% improvement on the
time required to have video and audio transcoding complete.
File splitting and merging displays no gains from an optimalg]
deployment since both operations are performed in a single
node. In our infrastructure featuring hosts with Core(TM)Z29]
CPU 6600 at 2.40GHz processors, we found the overhead for
the production of the deployment profile to be negligible i
compared to/M stagingoperations; it only required less than
5 Secondgo complete. [11]

IX. CONCLUSIONS- FUTURE WORK [12]

This paper presentsefeli, a flexible gateway that allows for
the effective use of virtual infrastructure§efeli accepts user
“hints” regarding the nature of the workload under exeautig3
and exploits conditions that concern the physical infragtire
to better schedule and utilize instantiatéd/s. These con-
straints essentially designate fundamental deploymetemnpa
which should they be followed in the actuglM deployment,
they could assist in avoiding potential bottlenecks. Whilé®]
experimenting with a prototype on both simulated and real
private laascloud environments, we established significant
gains for Nefeli both in terms of performance and poweFls]
consumption. In offering a comprehensivi4/ management
in laaS-clouds, our approach displays a number of advantagési
firstly, it considers the provision of virtual infrastructs (18]
as a whole and does not only deal with the handling o]f
individual VMs. Secondly, users remain at all time unaware of
the inner structure and/or architecture of the physicalesod 19]
Thus, Nefeli does offer a true separation of concerndaaS
clouds. Lastly, our approach gracefully adapts to the cimang [20]
workload needs a¥M migration do occur in order to offset
unfavorable deployments currently in place. [21]

In the future, we plan toa) integrate the event mechanisni22]
provided by Nefeli with other existing monitoring tools like
Nagios[26] and create connectors for other cloud middigsg)
wares includingeucalyptuq5] and Nimbus[21], b) examine
the use of alternative scheduling options and adoptﬂgmrda4
approaches in selecting deployment profile¥,investigate
ways to organize and better manage virtual resources for
applications that necessitate the use of massive data sets.[?"]

[14]

REFERENCES

[1] M. T. Jones, “Cloud Computing with Linux,” (6]
http://www.ibm.com/developerworks/linux/library/lexid-

computing/index.html, February 2008.

M. Rosenblum and T. Garfinkel, “Virtual Machine Monitor€urrent
Technology and Future TrendsEEE Computer vol. 38, no. 5, pp.
39-47, 2005.

“Opennebula,” http://www.opennebula.org, May 2009.

Amazon, “Elastic Cloud,” http://aws.amazon.com/ec2009.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Sam
L. Youseff, and D. Zagorodnov, “The Eucalyptus Open-SowCteud-
Computing System,” in9th IEEE/ACM Int. Symposium on Cluster
Computing and the Grid (CCGRIDBhanghai, China, May 2009, pp.
124-131.

H. N. Van, F. D. Tran, and J.-M.Menaud, “Autonomic Virtudesource
Management for Service Hosting Platforms,”Rnoc. of the 2009 ICSE
Workshop on Software Engineering Challenges of Cloud Ctimgpu
Vancouver, BC, Canada, 2009, pp. 1-8.

X.Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y. Chen, and Q. Q/M&ang,
“Appliance-Based Autonomic Provisioning Framework fort\alized
Outsourcing Data Center,” iRroc. of the 4th Int. Conf. on Autonomic
Computing Washington, DC, 2007, p. 29.

P. deGrandis and G. Valetto, “Elicitation and Utilizati of Application-
level Utility Functions,” in Proc. of the 6th Int. Conf. on Autonomic
Computing Chicago, IL, USA: ACM, 2009, pp. 107-116.

J. O. Kephart and R. Das, “Achieving Self-Management Utlity
Functions,”|IEEE Internet Computingvol. 11, no. 1, pp. 40-48, 2007.

10] G. Tesauro and J. O. Kephart, “Utility Functions in Antonic Systems,”

in Proc. of the 1st Int. Conf. on Autonomic Computinflew York, NY,
USA: IEEE Computer Society, 2004, pp. 70-77.

W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszdy and
A. P. Barros, “Workflow Patterns Distributed and Parallel Databases
vol. 14, no. 1, pp. 5-51, 2003.

K. Lee, N. Paton, R. Sakellariou, E. Deelman, A. Fermadand
G. Mehta, “Adaptive Workflow Processing and Execution in d&e,”
in Proc. of 3rd IEEE Int. Conf. on Grid and Pervasive Computing
WorkshopsKunming, PR China, 2008, pp. 99-106.

K. Lee, N. Paton, R. Sakellariou, and A. Fernandes, litytiDriven
Adaptive Workflow Execution,” irProc. of the 2009 9th IEEE/ACM Int.
Symposium on Cluster Computing and the G&dhanghai, PR China,
2009, pp. 220-227.

J. O. Kephart and D. M. Chess, “The Vision of Autonomicn@muting,”
IEEE—Computervol. 36, no. 1, pp. 41-50, 2003.

B. Sotomayor, K. Keahey, and I. Foster, “Combining batgecution and
leasing using virtual machines,” iAroc. of the 17th Int. Symposium on
High Performance Distributed Computing Boston, USA: ACM, June
2008, pp. 87-96.

C. Weng, M. Li, Z. Wang, and X. Lu, “Automatic Performanduning
for the Virtualized Cluster System,” Montreal, Quebec, &im 2009,
pp. 183-190.

VMware, “vSphere,” http://www.vmware.com/produstsphere/, Nov.
2009.

M. Cherniack, H. Balakrishnan, M. Balazinska, D. Catnd. Centi-
mentel, Y. Xing, and S. Zdonik, “Scalable Distributed SimeRrocess-
ing,” in Proc. of CIDR Asilomar, CA, January 2003.

Y. Ahmad and U. Cetintemel, “Network-Aware Query Peesing for
Stream-based Applications,” iRroc. of VLDB’'04 Toronto, Canada,
Aug. 2004.

P. Pietzuch, J. Ledlie, J. Shneidman, M. RoussopoWbsyelsh, and
M. Seltzer, “Network-Aware Operator Placement for Stre@roeessing
Systems,” inProc. of ICDE Tokyo, Japan, Apr. 2006.

“Nimbus,” http://workspace.globus.org/, Nov. 2009.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optinaizon by simu-
lated annealing,Sciencevol. 220, pp. 671-680, 1983. [Online]. Avail-
able: http://citeseerx.ist.psu.edu/viewdoc/summani2iD.1.1.18.4175
“Montage: An Astronomical Image Mosaic Engine,” Califiia Institute
of Technology, http://montage.ipac.caltech.edu, Pasad€A, 2009.

] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-Hi, @&nd

K. Vahi, “Characterization of Scientific Workflows,” iBrd Workshop
on Workflows in Support of Large-Scale Scientestin, TX, November
2008, pp. 1-10.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. HarrisHA, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtuaiion,” in
Proc. of the 19th ACM Symposium on Operating Systems Plascip
Lake George, NY: ACM, October 2003, pp. 164-177.

D. JosephserBuilding a Monitoring Infrastructure with Nagios Upper
Saddle River, NJ: Prentice Hall PTR, 2007.

