Unix
Programming
Tools

By Parlante, Zelenski, and many others Copyright ©1998-99, Stanford University

Introduction

This document explains the overall edit-compile-link-debug programming cycle and
introduces several common Unix programming tools— gcc, make, gdb, emacs, and the
Unix shell. The goal is to describe the mgjor features and typcia uses of the tools and
show how they fit together with enough detail for simple projects.

Contents
Introduction — the compile-link process 1
The gcc compiler/linker 2
The make project utility 4
The gdb debugger 8
Theemacs editor 13
Summary of Unix shell commands 15

Thisis document #107, Unix Programming Tools, in the CS Education Library at
Stanford. Thisand other free educational materials are available at
http://cdlibrary.stanford.edu/. This document is free to be used, reproduced, or
redistributed so long as this notice is clearly reproduced at its beginning.

This is a beta draft

Note: thisisbasically a quick-n-dirty handout we've used to introduce CS students to the
Unix programming environment. It has not been edited or improved especially before
being added to the CS Education Library. It may get edited and polished up sometime in
the future — in any case it will keep its permanent URL above. Thisisthe first public
draft of the document on Jan 26th, 1999. Please send suggestions or comments to
nick.parlante@cs.stanford.edu.

Other Resources

This document is an introduction — for more detailed information about a particular tool,
see thetool's man pages and xi nf o entries. Also, O'Reilly & Associates publishes a
pretty good set of references for many Unix related tools (the books with animal pictures
on the cover). For basic coverage of the C programming language, see CS Education
Library #101, (http://cslibrary.stanford.edu/101/).

The Compile Process

Before going into detail about the individual tools themselves, it is useful to review the
overall process that goes into building an executable program. After the source text files
have been edited, there are two stepsin the build process. compiling and linking. Each

source file (.c) is compiled into an object file (.0). Each object file contain a system
dependent, relocatable compiled representation of the program as described in its source
file. Typicaly the file name of an object module is the same as the source file that
produced it, but with a“.0” extension — “main.c” is compiled to produce “main.o”. The
individual object files are then linked together to produce a single executable file which
the system loader can use when the program is actually run. The link step will also bring
in library object files that contain the definitions of library functions such asprint f ()
and nal | oc() . The overal processisillustrated in the following drawing...

C compiler

library
‘(//////// functions

Section 1 — gcc

Linker

The following discussion is about the gcc compiler, a production of the open-source
GNU project (www.gnu.org). Using gcc has several advantages— it tends to be pretty
up-to-date and reliable, it's available on avariety of platforms, and of courseit's free and
open-source. Gee can compile C, C++, and objective-C. Gec is actually both a compiler
and alinker. For simple problems, asingle call to gcc will perform the entire compile-
link operation. For example, for small projects you might use acommand like the
following which compiles and links together three .c files to create an executable named
“program”.

gcc nmain.c nmodul el. ¢ nodul e2.c¢ -0 program

The above line equivalently could be re-written to separate out the three compilation
steps of the .c files followed by one link step to build the program.

gcc -c main.c ## Each of these conmpiles a .c

gcc -c nodulel.c

gcc -c nodul e2.c

gcc nmain. o nodul el. o nodul e2.0 -0 program ## This line links the .0's
to build the program

The general form for invoking gccis...

gcc options files

where options isalist of command flags that control how the compiler works, and
Tiles isalist of filesthat gcc reads or writes depending on the options

Command-line options

Like most Unix programs, gcc supports many command-line options to control its
operation. They are all documented in its man page. We can safely ignore most of these
options, and concentrate on the most commonly used ones, whichare: -c, -0, -g,
-wall, -1, -L, and -1I.

-c files Direct gcc to compile the source files into an object files without
going through the linking stage. Makefiles (below) use this option to
compilefilesone at atime.

-o file Specifies that gcc's output should be named file. If this option is
not specified, then the default name used depends on the context...(a) if
compiling asource .c file, the output object file will be named with the
same name but with a .o extension. Alternately, (b) if linking to create an
executable, the output file will be named a. out . Most often, the -o option
is used to specify the output filename when linking an executable, while
for compiling, people just let the default .c/.0 naming take over.

It's amemorable error if your -0 option gets switched around in the
command line so it accidentally comes before a source file like
“...-0 foo.c progrant — thiscan overwrite your source file —
Woo Hoo!

-g Directs the compiler to include extra debugging information in its output.
We recommend that you always compile your source with this option set,
since we encourage you to gain proficiency using the debugger such as
gdb (below).

Note — the debugging information generated is for gdb, and could possibly
cause problems with other debuggers such as dbx. Thisis because thereis
typically more information stored for gdb that dbx will choke on.
Additionally, on some systems, some MIPS based machines for example,
this information cannot encode full symbol information and some
debugger features may be unavailable.

-\l | Give warnings about alot of syntactically correct but dubious constructs.
Think of this option as being a way to do a simple form of compile-time
error checking. We highly recommend that you compile your code with
this option set.

Most of the time the constructs that are flagged are actually incorrect
usages, but there are occasionally instances where they are what you really
want. Instead of simply ignoring these warnings there are smple
workarounds for ailmost all of the warnings if you insist on doing things
thisway.

This sort of contrived snippet is acommonly used construct in C to set and
test avariablein asfew lines as possible :

int flag;
if (flag = IsPrine(13)) {

}

The compiler will give awarning about a possibly unintended assignment.
Thisis because it is more common to have aboolean test inthei f clause
using the equality operator == rather than to take advantage of the return
value of the assignment operator. This snippet could better be written as :

int flag;
if ((flag = IsPrime(13)) !'=0) {

}

so that the test for the O value is made explicit. The code generated will be
the same, and it will make us and the compiler happy at the same time.
Alternately, you can enclose the entire test in another set of parenthesesto
indicate your intentions.

-1 dir Addsthedirectory dir to thelist of directories searched for include files.
There are avariety of standard directories that will be searched by the
compiler by default, for standard library and system header files, but
sometimes you need to specify an additional directory for the compiler to
find include files. There is no space between the option flag and the
directory name.

-l mylib Search the library named mylib for unresolved names when
linking. The actual name of the file will be libmylib.a, and must be found
in either the default locations for libraries or in a directory added with the

- L flag.

The position of the- 1 flag in the option list isimportant because the
linker will not go back to previously examined librariesto look for
unresolved names. For example, if you are using alibrary that requires the
math library it must appear before the math library on the command line
otherwise alink error will be reported. Again, there is no space between
the option flag and the library file name, and that's alower case'L’, not the
digit '1".

-Ldir Addsthedirectory dir to thelist of directories searched for library files

specified by the- | flag. Here too, there is no space between the option
flag and the library directory name.

Section 2 — make

Typing out the gcc commands for a project gets less appealing as the project gets bigger.
The “make’ utility automates the process of compiling and linking. With make, the
programmer specifies what the files are in the project and how they fit together, and then
make takes care of the appropriate compile and link steps. Besides the advantage of less
typing, make can speed up your compiles since it is smart enough to know that if you
have 10 .c files but you have only changed one, then only that one file needs to be
compiled before the link step. Make has some complex features, but just using it for
simple thingsis pretty smple.

Running make

Go to your project directory and run make right from the shell with no arguments, or in
emacs (below) [esc] - x conpi | e will do basically the same thing. In any case, make
looks in the current directory for afile called Makef i | e or makefi | e foritsbuild
instructions. If there is a problem building one of the targets along the way the error
messages are written to standard error or the emacs compilation buffer.

Makefiles

A makefile consists of a series of variable definitions and dependency rules. A variable in
amakefileis aname defined to represent some string of text. This works much like
macro replacement in the C pre-processor. Variables are most often used to represent a
list of directoriesto search, options for the compiler, and names of programsto run. A
variable is declared when it is set to a value. For example, theline:

CC = gcc

will create avariable named CC, and set its value to be gcc. The name of the variableis
case sensitive, and traditionally make variable names are in all capital letters.

While it is possible to define your own variables there are some that are considered
standard, and using them along with the default rules makes writing a makefile much
easier. The most important variables are: CC, CFLAGS, and LDFLAGS.

CC The name of the C compiler, thiswill default to cc or gcc in most
versions of make.

CFLAGS A list of optionsto pass on to the C compiler for all of your source
files. Thisis commonly used to set the include path to include non-
standard directories or build debugging versions, the -1 and -g
compiler flags.

LDFLAGS A list of optionsto pass onto the linker. Thisis most commonly
used to set the library search path to non-standard directories and
to include application specific library files, the -L and -1 compiler
flags.

Referencing the value of avariable is done by having a$ followed by the name of the
variable within parenthesis or curly braces. For example:

CFLAGS = -g -Il/usr/class/cs107/incl ude
$(CC) $(CFLAGS) -c binky.c

Thefirst line sets the value of the variable CFLAGS to turn on debugging information and
add the directory / usr/ cl ass/ ¢s107/i ncl ude to theinclude file search path. The
second line uses the value of the variable CC as the name of the compiler to use passing
to it the compiler options set in the previous line (all of these options are explained
below). If you use avariable that has not been previously set in the makefile, make will
use the empty definition, an empty string.

The second major component of makefiles are dependency/build rules. A ruletells how
to make atarget based on changesto alist of certain files. The ordering of the rules does
not make any difference, except that the first rule is considered to be the default rule. The
default ruleisthe rule that will be invoked when make is called without arguments (the
most common way).

A rule generally consists of two lines: a dependency line followed by a command line.
Hereisan examplerule:

bi nky. o : binky.c binky.h akbar.h
tab$(CC) $(CFLAGS) -c binky.c

The dependency line says that the object file bi nky. o must be rebuilt whenever any of
bi nky. c, bi nky. h, orakbar . h arechanged. Thetarget bi nky. o issaid to
depend on these three files. Basically, an object file depends on its source file and any
non-system files that it includes. The programmer is responsible for expressing the
dependencies between the source files in the makefile. In the above example, apparently
the source code in bi nky. ¢ #includes both bi nky. h and akbar . h — if any of those
files change, then bi nky. ¢ must be re-compiled. (Thenake depend facility triesto
automate that authoring of the makefile, but it's beyond the scope of this document.)

The command line lists the commands that build bi nky. o — invoking the C compiler
with whatever compiler options have been previously set (actually there can be multiple
command lines). Essentially, the dependency lineis atrigger which says when to do
something. The command line specifies what to do.

The command lines must be indented with at ab character— just using spaces will not
work, even though the spaces will sortof look right in your editor. (This design is aresult
of afamous moment in the early days of make when they realized that the tab format was
aterrible design, but they decided to keep it to remain backward compatible with their
user base — on the order of 10 users at the time. There's areason the word “ backward” is
in backward compatible. Best to not think about it.)

Because of the tab vs. space problem, make sure you are not using an editor or tool which
might substitute space characters for an actual tab. This can be a problem when using
copy/paste from some terminal programs. To check whether you have atab character on
that line, move to the beginning of that line and try to move one character to theright. If
the cursor skips 8 positions to the right, you have atab. If it moves space by space, then
you nheed to del ete the spaces and retype a tab character.

For standard compilations, the command line can be omitted, and make will use a default
build rule for the source file based on its extension, .c for C files, .f for Fortran files, and
so on. The default build rule for C fileslooks like...

$(CO $(CFLAGS) -c source-Ffile.c

It's very common to rely on the above default build rule — most adjustments can be made
by changing the CFLAGS variable. Below isasimple but typical looking makefile. It
compiles the C source contained in the filesmai n. ¢, bi nky. c, bi nky. h, akbar. c,
akbar . h,anddef s. h. Thesefileswill produce intermediate filesmai n. o,

bi nky. o, and akbar . 0. Those fileswill be linked together to produce the executable
filepr ogr am Blank lines are ignored in a makefile, and the comment character is'#.

CC = gcc

CFLAGS = -g -1/usr/class/csl107/incl ude
LDFLAGS = -L/usr/class/cs107/1ib -1graph

PROG = program
HDRS = bi nky. h akbar.h defs.h
SRCS = nmin.c binky.c akbar.c

This incantation says that the object files
have the sanme nane as the .c files, but with .o
OBJS = $(SRCS: . c=.0)

This is the first rule (the default)
Build the programfromthe three .0's
$(PROG : $(0OBIS)

tab$(CC) $(LDFLAGS) $(0BJS) -0 $(PROG

Rules for the source files -- these do not have
second build rule lines, so they will use the
default build rule to conpile X.c to make X. o
mai n. o : main.c binky.h akbar.h defs.h

bi nky. o : binky.c binky.h
akbar.o : akbar.c akbar.h defs.h

Renove all the conpilation and debugging files
cl ean :
tabrm -f core $(PROG $(OBIS)

Build tags for these sources
TAGS : $(SRCS) $(HDRS)
tabetags -t $(SRCS) $(HDRS)

The first (default) target builds the program from the three . 0's. The next three targets
suchas“main. o : main.c binky.h akbar.h defs. h” identify the. o'sthat
need to be built and which source files they depend on. These rules identify what needsto
be built, but they omit the second line build rule. Therefore they will use the default rule
which knows how to build one . o from one. ¢ with the same name. Finally, make
automatically knows that a. o always depends on its source. ¢, so themai n. c,

bi nky. ¢, and akbar . ¢ dependencies could have been omitted from the three
dependency lines.

The later targets, cl ean and TAGS, perform other convenient operations. Thecl ean
target is used to remove al of the object files, the executable, and a corefileif you've
been debugging, so that you can perform the build process from scratch . Y ou can nake
cl ean if you want to recover space by removing all the compilation and debugging
output files. You also may need to nake cl ean if you moveto asystem with a
different architecture from where your object libraries were originally compiled, and so
you need to recompile from scratch. The TAGS rule creates atag file that most Unix
editors can use to search for symbol definitions.

Compiling in Emacs

Emacs has built-in support for the compile process. To compile your code from emacs,
type M x conpi | e. You will be prompted for acompile command. If you have a
makefile, just type make and hit return. The makefile will be read and the appropriate
commands executed. The emacs buffer will split at this point, and compile errors will be
brought up in the newly created buffer. In order to go to the line where a compile error
occurred, place the cursor on the line which contains the error message and hit *c- "c.
Thiswill jump the cursor to the line in your code where the error occurred (“cc” isthe
historical name for the C compiler).

Section 3 — gdb

Y ou may run into a bug or two in your programs. There are many techniques for finding
bugs, but a good debugger can make the job alot easier. In most programs of any
significant size, it is not possible to track down all of the bugsin a program just by staring
at the source — you need to see clues in the runtime behavior of the program to find the
bug. It's worth investing time to learn to use debuggers well.

GDB

We recommend the GNU debugger gdb, since it basically stomps on dbx in every
possible area and works nicely with the gcc compiler. Other nice debugging
environments include ups and CodeCenter, but these are not as universally available as
gdb, and in the case of CodeCenter not as cheaply. While gdb does not have a flashy
graphical interface as do the others, it is a powerful tool that provides the knowledgeable
programmer with al of the information they could possibly want and then some.

This section does not come anywhere close to describing all of the features of gdb, but
will hit on the high points. There is on-line help for gdb which can be seen by using the
hel p command from within gdb. If you want more information try xi nf o if you are
logged onto the console of a machine with an X display or use the info-browser mode
from within emacs.

Starting the debugger
Aswith make there are two different ways of invoking gdb. To start the debugger from
the shell just type...

gdb program

where program is the name of the target executable that you want to debug. If you do
not specify atarget then gdb will start without a target and you will need to specify one
later before you can do anything useful.

As an alternative, from within emacs you can use the command [Esc] - x gdb which
will then prompt you for the name of the executable file. Y ou cannot start an inferior gdb
session from within emacs without specifying atarget. The emacs window will then split
between the gdb buffer and a separate buffer showing the current source line.

Running the debugger

Once started, the debugger will load your application and its symbol table (which
contains useful information about variable names, source code files, etc.). This symbol
table is the map produced by the -g compiler option that the debugger reads asit is
running your program.

The debugger is an interactive program. Once started, it will prompt you for commands.
The most common commands in the debugger are: setting breakpoints, single stepping,
continuing after a breakpoint, and examining the values of variables.

Running the Program

run Reset the program, run (or rerun) from the
beginning. Y ou can supply command-line
arguments the same way you can supply command-
line arguments to your executable from the shell.

step Run next line of source and return to debugger. If a
subroutine call is encountered, follow into that

subroutine.
step count Run count lines of source.
next Similar to step, but doesn't step into subroutines.
finish Run until the current function/method returns.
return Make selected stack frame return to its caller.
j unp address Continue program at specified line or address.

When atarget executableisfirst selected (usually on startup) the current sourcefileis set
to the file with the main function in it, and the current source lineis the first executable
line of the this function.

Asyou run your program, it will always be executing some line of code in some source
file. When you pause the program (when the flow of control hits a*“breakpoint” of by
typing Control-C to interrupt), the “ current target file” is the source code file in which the
program was executing when you paused it. Likewise, the “ current source ling” istheline
of code in which the program was executing when you paused it.

Breakpoints

Y ou can use breakpoints to pause your program at a certain point. Each breakpoint is
assigned an identifying number when you create it, and so that you can later refer to that
breakpoint should you need to manipulate it.

A breakpoint is set by using the command br eak specifying the location of the code
where you want the program to be stopped. This location can be specified in several
ways, such as with the file name and either aline number or a function name within that
file (aline needs to be aline of actual source code — comments and whitespace don't
count). If the file name is not specified the file is assumed to be the current target file, and
if no arguments are passed to br eak then the current source line will be the breakpoint.
gdb provides the following commands to manipul ate breakpoints:

i nfo break Printsalist of all breakpoints with numbers and
status.
break function Place a breakpoint at start of the specified function
break linenumber Prints a breakpoint at line, relative to current source
file.
break filename:linenumber Place a breakpoint at the specified line within the

specified sourcefile.
Y ou can also specify an if clause to create a conditional breakpoint:

break fn if expression Stop at the breakpoint, only if expression evaluates
to true. Expressionisany valid C expression,
evaluated within current stack frame when hitting
the breakpoint.

di sabl e breaknum

enabl e breaknum Disable/enable breakpoint identified by breaknum..
del et e breaknum Delete the breakpoint identified by breaknum.
commands breaknum Specify commands to be executed when breaknum

is reached. The commands can be any list of C
statements or gdb commands. This can be useful to
fix code on-the-fly in the debugger without re-
compiling (Woo Hoo!).

cont Continue a program that has been stopped.

For example, the commands...

break binky.c: 120
break DoGoof ySt uf f

set a breakpoint on line 120 of the file binky.c and another on the first line of the function
DoGoof y St uf f . When control reaches these locations, the program will stop and give
you a chance to look around in the debugger.

Gdb (and most other debuggers) provides mechanisms to determine the current state of
the program and how it got there. The things that we are usually interested in are (a)
where are we in the program? and (b) what are the values of the variables around us?

Examining the stack

To answer question (a) usethebackt r ace command to examine the run-time stack.
The run-time stack islike atrail of breadcrumbs in a program; each time afunction call is
made, a crumb is dropped (an run-time stack frame is pushed). When areturn from a
function occurs, the corresponding stack frame is popped and discarded. These stack
frames contain valuable information about the sequence of callers which brought usto the
current line, and what the parameters were for each call.

Gdb assigns numbers to stack frames counting from zero for the innermost (currently
executing) frame. At any time gdb identifies one frame as the “ selected” frame. Variable
lookups are done with respect to the selected frame. When the program being debugged
stops (at a breakpoint), gdb selects the innermost frame. The commands below can be
used to select other frames by number or address.

backtrace Show stack frames, useful to find the calling
sequence that produced a crash.
frame framenumber Start examining the frame with framenumber. This

does not change the execution context, but allows
to examine variables for a different frame.

down Select and print stack frame called by this one. (The
metaphor hereisthat the stack grows down with
each function call.)

up Select and print stack frame that called this one.

10

info args Show the argument variables of current stack
frame.
info | ocal s Show the local variables of current stack frame.

Examining source files
Another way to find our current location in the program and other useful information isto
examine the relevant source files. gdb provides the following commands:

list linenum Print ten lines centered around linenum in current
sourcefile.
i st function Print ten lines centered around beginning of

function (or method).
list Print ten more lines.

Thel i st command will show the source lines with the current source line centered in
the range. (Using gdb from within emacs makes these command obsolete since it does
all of the current source stuff for you.)

Examining data
To answeer the question (b) “what are the values of the variables around us?’ use the
following commands...

print expression Print value of expression. Expressionisany valid C
expression, can include function calls and
arithmetic expressions, all evaluated within current
stack frame.

set variable = expression Assign value of variable to expression. Y ou can
set any variable in the current scope. Variables
which begin with $ can be used as temporary
variableslocal to gdb.

di spl ay expression Print value of expression each time the program
stops. Thiscan be useful to watch the changein a
variable as you step through code.

undi spl ay Cancels previous display requests.

In gdb, there are two different ways of displaying the value of avariable: a snapshot of
the variable' s current value and a persistent display for the entire life of the variable. The
pri nt command will print the current value of avariable, and thedi spl ay command
will make the debugger print the variable's value on every step for aslong as the variable
exists. The desired variable is specified by using C syntax. For example...

print Xx.y[3]

will print the value of the fourth element of the array field named y of a structure variable
named x. The variables that are accessible are those of the currently selected function's
activation frame, plus all those whose scope is global or static to the current target file.
Boththe pri nt anddi spl ay functions can be used to evaluate arbitrarily complicated

11

12

expressions, even those containing, function calls, but be warned that if afunction has
side-effects a variety of unpleasant and unexpected situations can arise.

Shortcuts

Finally, there are some things that make using gdb a bit ssmpler. All of the commands
have short-cuts so that you don’t have to type the whole command name every time you
want to do something smple. A command short-cut is specified by typing just enough of
the command name so that it unambiguously refers to acommand, or for the special
commands br eak, del et e,run, conti nue, st ep, next andpri nt you need only
use thefirst letter. Additionally, the last command you entered can be repeated by just
hitting the return key again. Thisisreally useful for single stepping for arange while
watching variables change.

Miscellaneous
edi t rode mode Set editmode for gdb command line. Supported
values for mode are emacs, vi, dumb.

shel | command Execute the rest of the line as a shell command.

hi story Print command history.

Debugging Strategies

Some people avoid using debuggers because they don't want to learn another tool. Thisis
amistake. Invest the timeto learn to use a debugger and all its features — it will make
you much more productive in tracking down problems.

Sometimes bugs result in program crashes (ak.a. “ core dumps’, “register dumps’, etc.)
that bring your program to a halt with amessage like “ Segmentation Violation” or the
like. If your program has such a crash, the debugger will intercept the signal sent by the
processor that indicates the error it found, and allow you to examine the state program.
Thus with ailmost no extra effort, the debugger can show you the state of the program at
the moment of the crash.

Often, abug does not crash explicitly, but instead produces symptoms of internal
problems. In such a case, one technique isto put a breakpoint where the program is
misbehaving, and then look up the call stack to get some insight about the data and
control flow path that led to the bad state. Another technique isto set a breakpoint at
some point before the problems start and step forward towards the problems, examining
the state of the program along the way.

Section 4 — emacs

The following is a quick introduction to the “emacs’ text editor which is afree program
produced by GNU (www.gnu.org). It's afine editor, and it happens to integrate with
many other Unix tools nicely. There's afabulous history of various editor adherents
having long and entertaining arguments about why their editor is best, but we're just
going to avoid that subject entirely.

To start editing anew or existing file using emacs, ssimply type the following to the UNIX
prompt...

enmacs filename

where filename is the file to be edited. The X-Windows version of emacsis called
xemacs, and if you're using it... well just look in the menus. The commands are al the
same, but you don't have to remember the funny key-combinations.

All the fancy editing commands, such as find-and-replace, are invoked through typing
special key sequences. Two important key sequences to remember are: *x (holding down
the “ctrl” key whiletyping “x”) and [esc] - x (ssmply pressing the “esc” key followed
by typing “x”), both of which are used to start many command sequences. Note that for
historical reasons in most user manuals for emacs, the “esc” key is actualy referred to as
the“Meta’ or “M-" key. Therefore, you may seethe[esc] - x written as equivalently
as M x.

To save thefile being edited the sequenceis*x”"s. To exit (and be prompted to save)
emacs, the sequence isx” c. To open another file within emacs, the sequence is*x"f .
This sequence can be used to open an existing file aswell asanew file. If you have
multiple files open, emacs stores them in different “buffers’. To switch from one buffer
to another (very handy when you are editing a. ¢ source file and need to refer to the
prototypes and definitionsin the . h header file), you use the key sequence *x- b (note
the“b” istyped plain). You can then enter the name of the file to switch to the
corresponding buffer (a default name is provided for fast switching). The arrow keys
usually work as the cursor movement keys, but there are other nagivation key
combinations listed below.

Running emacs

emacs <filenane> Runenacs (onaparticular file). Make sure you don't already have
an enmacs job running which you can just revive with f g. Adding a
'&" after the above command will run emacs in the background,
freeing up your shell)

Nz Suspend emacs— revive with % command above, or thef g
command

AXNC Quit emacs

AN f Load a new file into emacs

AXNV Load a new file into emacs and unload previousfile

AXNs Savethefile

Ax-k Kill abuffer

Moving About

N Move forward one character

b Move backward one character

n Moveto next line

p Moveto previous line

Searching
"s
Nr

M %
Deleting
~d

"k
Ny

Regions

14

Move to beginning of line
Move to end of line

Scroll down a page

Scroll up apage

Move to beginning of document
Move to beginning of page
Move to end of document
Moveto end of page

Redraw screen centered at line under the cursor
Move to other screen
Switch to another buffer

Search for a string

Search for a string backwards from the cursor (quit both of these
with ~f)

Search-and-replace

Deletes | etter under the cursor

Kill from the cursor all the way to the end of the line

Y anks back all the last kills. Using the“k "y combination you can
get a cut-paste effect to move text around

emacs defines aregion as the space between the mark and the point. A mark is set with
N - space (control-spacebar). The point is at the cursor position.

M w

AW

Screen Splitting
AX-2
Ax-3
Ax-1
Ax-0

Miscellaneous
M $
N

M x goto-Iline num
AX-U
M x shel |

Copy theregion

Delete theregion. Using My will also yank back the last region
killed or copied — thisis the way to get a cut/copy/paste effect with
regions.

Split screen horizontally

Split screen vertically

Make active window the only screen
Make other window the only screen

Check spelling of word at the cursor

In most contexts, cancel, stop, go back to normal command
Goes to the given line number

Undo

Start a shell within emacs

Compiling

M x conpile Compile code in active window. Easiest if you have a makefile set
up.

Ac e Do this with the cursor in the compile window, scrolls to the next

compiler error. Cool!

Getting Help
h emacs help
Ahot Run the emacs tutoria

emacs does command completion for you. Typing M x space will giveyou alist of emacs
commands. Thereis aso aman page on emacs. Typeman enacs inashell.

Printing Your Source Files

There'sareally neat way to print out hardcopies of your source files. Use acommand
called “enscript”. Commonly, it's used at the Unix command line as follows:
enscript -2GPsweet5 binky.c lassie.c *.h

Where we want to print the two source filesbi nky. ¢ and| assi e. ¢, aswell asall of
the header filesto printer sweet5. Y ou can change these parameters to fit your needs.

Section 5 — Unix Shell

This section summarizes many of the commands used in the Unix shell.

Directory Commands

cd directory Change directory. If directory is not specified, goes to home
directory.

pwd Show current directory (print working directory)

I's Show the contents of adirectory. |s-awill also show files whose
name begins with adot. Is-l shows lots of miscellaneous info about
each file

rm file Delete afile

nv old new Rename afile from old to new (also works for moving things
between directories). If there was already afile named new, it gets
overwritten.

cp old new Creates afile named new containing the same thing as old. If there
was aready afile named new, it is overwritten.

nkdi r name Create adirectory

ridi r name Delete adirectory. The directory must be empty.

Shorthand Notations & Wildcards

: Current directory

.. Parent directory

~ Y our home directory

~user Home directory of user

* Any number of characters(not'.) Ex: *.cisall filesendingin'.c'
? Any single character (not '.")

15

16

Miscellaneous Commands

cat File
nmore Ffile
| ess File

w

ps
| obs

programé&
ctrl-z
%

% number

kill
kill

process-id
-9 process

grep exp files
we fTile
script

| pr file
| pr -Pinky file

diff filel file2
t el net hostname

source fTile

Getting Help
man subject
man -k keyword

History
hi story
11

I number
I'string
AwrongMright”
ctrl-P

Pipes
a>»b
a>>»>b
a>&b
a<b
al b

Print the contents of file to standard output
Sameas cat , but only a page at atime (useful for displaying)
Same as nor e, but with navigability (I ess isnor e)

Find out who is on the system and what they are doing
List al your currently active processes
Show jobs that have been suspended

Runs program in the background

Suspend the current program

Continue last job suspended, or usef g (foreground)
Continue a particular job

Kill aprocess
Kill a process with extreme prejudice

Search for an expression in a set of files
Count words, lines, and charactersin afile
Start saving everything that happensin afile. type exit when done

Print file to the default printer
Print file to the printer named inky

Show the differences between two files
Log on to another machine

Execute the linesin the given file asif they were typed to the shell

Read the manual entry on a particular subject
Show all the manual pages for a particular keyword

Show the most recent commands executed

Re-execute the last command

Re-execute a particular command by number

Re-execute the last command beginning with string
Re-execute the last command, substituting right for wrong
Scroll backwards through previous commands

Redirect a's standard output to overwrite file b
Redirect a's standard output to append to the file b
Redirect a's error output to overwritefileb
Redirect a's standard input to read from thefileb
Redirect a's standard output to b's standard input

